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A Simple Nonconforming Bilinear Element
for the Elasticity Problem *

Peter Hansbo! and Mats G. Larsont

January 29, 2001

Abstract

We look at the mixed non-conforming Rannacher-Turek (RT) element from the
point of view of discontinuous Galerkin methods. In the case of the elasticity oper-
ator, for which the RT element is not stable in that it does not (in general) fulfill
a discrete Korn’s inequality, the discontinuous framework naturally suggests the ap-
pearance of (weakly consistent) stabilization terms. We thus obtain a modifed, stable
and locking free, version of the RT element for the elasticity problem. We also give
some implementation aspects of the element. Numerical results are included.

1 Introduction

Bi— or trilinear elements are often preferred to simplex elements since the former yield
more approximating power per degree of freedom. In the case of (nearly) incompressible
materials, the Q1P0—element, using a bi/tri-linear approximation of the displacements and
a constant approximation of the “pressure”, is often used. Unfortunately, this element is
not quite stable, although it usually performs quite well. An alternative is the Rannacher-
Turek (RT) element, a simple non-conforming finite element method for bi- or trilinear
elements with nodes situated at the midpoints of the element sides. It was introduced
for Stokes problem by Rannacher and Turek [7] in combination with piecewise constant
pressures. However, for the traction problem in elasticity it is not fully stable. A simple
way of seeing this is to use the argument given by Hughes [5] for the Crouzeix-Raviart
element: prescribing the displacements along one side of an element means prescribing the
displacement in only one node, which cannot preclude rigid body rotations.
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In this paper, we suggest a simple modification of the RT element, motivated by
Nitsche’s method [6], which introduces stability without sacrificing accuracy. This means
that the modified RT element can be used for the elasticity operator (which is the physi-
cally correct operator also in the case of fluid dynamics), and that it will not lock in the
incompressible limit.

2 The equations of elasticity

We consider the equations of linear elasticity in two dimensions: Find the displacement
2 . 2
u = [u;];_; and the symmetric stress tensor o = [0y;]; ;_, such that

o=AV-ul +2ue(u) in,
—V-o=f inQ, (1)

u=0 on 0{p,

o-n=h on 0.

Here )\ and p are positive constants called the Lamé constants, satisfying 0 < p; < p < o

and 0 < A < o0, and € (u) = [5Z~j(u)]?j:1 is the strain tensor with components

. 1 8uZ 811,]'
8ij(u> N 5 (8% + a.’l?z) )

Furthermore, V - & = Z?Zl 8az~j/8:rjr_l, I= [(51-]-]?’1.:1 with 6;; = 1if ¢ = j and d;; = 0 if
1# j, f and h are given loads, g is a gzi;fen boundary displacement, and n is the outward
unit normal to 0€). In terms of the modulus of elasticity, F, and Poisson’s ratio, v, we
have, in the case of plane strain, that A = Ev/((1 +v)(1 —2v)) and p = E/(2(1 +v)).

We shall consider a mixed approximation for the solution of (1), so we introduce an aux-
iliary scalar field p and formulate the elasticity problem as follows: Find the displacement

u = [u;]>_, and the “pressure” p such that

—V - Que(u) —pI)=f inQ,

1

Xp—i—V-u:O in Q,
u=0 on 0Qp,

(2ue(u) —pI)-m=h on 0fy.

(2)

Incompressible behavior is obtained as the parameter A — oo, i.e., as v — 1/2. In such
cases standard (low order) methods will lock. In [7], the RT element was shown not to lock
in the case of Stokes’ problem, where A — oo and —V - (2ue(u)) is replaced by —uAuw.
However, for (2), which is the correct form of the equations of elasticity in the general
case, the RT element cannot control the rigid body rotations, which leads to instability, cf.
Hughes [5]. Here, we will instead view the RT element as a special choice of discretization
in a discontinuous Galerkin framework following the approach suggested by Hansbo and
Larson [3] for the Crouzeix-Raviart element, which will lead to a stable element for (2).
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3 The Rannacher-Turek approximation in a disconti-
nous Galerkin framework

3.1 A parametric version of the nonparametric Rannacher-Turek
element

We shall focus on the two-dimensional case, but the formulation of the method in three
dimensions follows the same pattern. Thus, consider a subdivision of a bounded region
Q) C R? into a geometrically conforming finite element partitioning 7, = {T'} of Q consisting
of convex quadrilaterals. In [7], Rannacher and Turek give the following nonparametric
definition of a nonconforming bilinear element: for any element T € Ty, let (£, 7) denote a
coordinate system obtained by joining the midpoints of the opposing faces of 7. On each
T we set

QI(T) = Span{laga ﬁa 52 - 772}

One can now choose what type of continuity one wants. Denoting by I'* the faces of the
element and m' the midpoints of the faces, natural choices are

a) continuity in the mean, symbolized by the nodal functional Fj%(v) = |T*|~" [, v ds.

b) continuity at the midpoints of the faces, symbolized by the nodal functional F? (v) =
v(m?).

The corresponding approximating spaces that will be used for the displacements are

WZ/b = {v € [Ly(V)]?: v € Q:(T),VYT € Ty, v is continuous w.r.t.
all the functionals F%/*, and F%/* = 0if T C 0Qp}.

For the pressure, we will use the space
L' :={q, € Ly(Q)) : qu|lr € Po,VYT € Tp},

where P, is the space of constants. In [7], it is shown that W is less sensitive to mesh
distortion than W,fj when solving the Stokes problem, but that both are stable with respect
to the Babuska-Brezzi condition.

There is a parametric version of @1(7), which means that there exists a reference con-
figuration for the approximation (a fact not noted in [7]). There is also the possibility of
expressing the approximation in global coordinates (z,y), which simplifies the implemen-
tation. To define the reference configuration, we must separate the geometry (based on the
usual bilinear map) from the approximation itself. Consider thus a reference element de-
fined for 0 < ¢ <1, 0 < n < 1. Using the double node/side numbering of Figure 1, we use
superscripts to denote quantities associated with sides, so that {m} denotes the physical
location of the side midpoints, and {¢’} denotes the nonconforming basis functions, and
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subscripts to denote quantities related to the corners, so that {x;} denotes the physical
location of the corners. The local basis for the approximation space WZ is given by

Pt =3/4+E -8 = 2n+17,
¢’ =—-1/4++n—17,
PP =—1/4+E6-E+ 17,
¢t =3/4 -2+ +n—n’.

n
4 3 3
4 24
1
1 . 2 E

Figure 1: Reference element T.

The map F' : (£,n7) — (z,y) to be used in the following can then be defined as
(z,y) = F(&n) =Y ¢'(&mm'.

We next state the crucial property of the map F', illustrated in Figure 2.
Lemma 3.1 The map F is affine.

Proof. We have that m! = (z; + x3)/2, m? = (zs + x3)/2, m* = (z3 + x4)/2 and
m? = (z, + x1)/2, so a straightforward computation shows that
(:c2—|—:1:3—w1 —m4)§ (m3+m4—m1 —232)7’] 3$1+$2—$3+$4

i.e., the map is affine. 0

Corollary 3.2 The map between (§,7), used in [7], and (£,7) is affine and given by

1+ To+ X 1+ + + +
124+<2 3 T1 4)§andﬁ=y12y2+<y32y4—y12y2)n

§= 2 2

Thus the approrimating properties of the resulting elements are identical.
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Remark 3.3 The geometrical object obtained when using F to map (0,1) x (0,1) is called
the equivalent parallelogram by Arunakirinathar and Reddy [2], who use a different, but
equivalent, definition of F'.

- Physical element border
_— Border of the map from (0,1)x (0,1) / \
/

Figure 2: Mapped element.

4 Construction of the element

Since the map F' is affine, the basis functions can be written in terms of the global coor-
dinates (z,y) in a simple fashion. With

0= ((z2 = 24) (1 — ) — (21 — 23) (2 — wa))* = 2AT)?,
where |T'| is the area of the physical element, and
Tik = Ti — Tk, Yik = Yi — Yk, dij = TilY; — TV,
we can formulate the basis functions for W} in & on T as

(2y13% + 2231y + diz + das + d1a) (2Ys2T + 2224y + dso + das + du2)

1 p—

¢ 9 ,

# = (2ya2w + 2204y + dio + day + du2) (2y312 + 2213y + d3y + da1 + das)
= 5 ,

& = (2y137 + 2231y + di2 + diz + do3) (2Ys2T + 2204y + dio + day + dyo)
— 5 ,

6t = (2ys12 + 2313y + do1 + ds1 + ds2) (2Ya2T + 2224y + dsp + dag + da3)
= 5 '



The fact that the approximation can be written as a polynomial in the global variable x
will be of importance for the implementation.

Computing instead the basis functions {¢’} corresponding to the approximating space
W we obtain, letting d* = 2|T"%9 and

= Z3Y12 + T1Y23 + T2Ys1,
T4Y32 + T3Yoa + Tolas,
T4Y13 + T1Y34 + T3Yan,
= T4Y21 + TolYa1 + T1Y42,

2™ Q
Il

the basis as
¢ =a- o,
where

(¢', 6% 6%, 9%,

(219 - CM(é + 2x2y14)a aﬁa _ﬂf)/) 76)/d15
(045, 29 — aﬂa 57’ _75)/d25
(
(

N N R

—Ojé, aﬂa 29— 7/6’ 75)/d3a
ad, —af, Bvy,209 — v(6 + 2xoy14)) /d*.

ISEESIES TS IR S

5 Formulation of a discontinuous Galerkin method

Consider a subdivision of € into a geometrically conforming finite element mesh 7, = {T'}
of ), with hr the diameter of triangle 7" and global mesh size parameter h = maxryc7 hr.
The set of edges in the mesh is denoted by £ = {E} and we split £ into three disjoint
subsets

E=EUEpUEN,

where &; is the set of edges in the interior of €2, £p is the set of edges on the Dirichlet part
of the boundary 02y, and €y is the set of edges in the Neumann part of the boundary
0Qy. Further, with each edge we associate a fixed unit normal n such that for edges on
the boundary n is the exterior unit normal. We denote the jump of a function v € W /b
at an edge E by [v] = v — v~ for F € & and [v] = vt for E € &p, and the average
(v) = (vt +v7)/2 for E € & and (v) = v* for E € Ep, where v* = lim g v(z F en)
with ¢ € E.
The discontinuous Galerkin method reads: find (U, P) € W" s» X L such that

a(U,v) +b(U,q) + b(v, P) + ¢(P,q) =l(v,q) forall (v,q) € Wi x L*,  (3)



where the bilinear forms are defined by

aU,v) = Y (2pe(U),e(v))r (4)

TeT

— Y (2pe(U) n),[v])e+ ((2ue(v) -n), [U)s

+2uy Y (WU, ))E,
bv.q) ==Y (@V-v)p+ Y. (), [v-nr])s, (5)
TeT Ec&UED
c(Pg) =Y (A'Pq),, (6)

TeT

and the linear functional is defined by

Iw,0) = S (F.0)r+ Y (hv). (7)

TeT Eeén

Here (v, w)r = [, vijwij, for 2-tensors v, w; (v, w)p = [ >, viw;, for vectors v, w;
h is defined by

hlg= (T +|T7])/(2|E|) for E=0TTNOT, (8)

with |7T'| the area of 7', on each edge. Note that the incompressible limit A — oo corresponds
to ¢(+,-) = 0.
Using Green’s formula, we readily establish the following proposition.

Proposition 5.1 The method (3) is consistent in the sense that
alu—-U,v)+b(u—-U,q)+b(v,P—p)+c(P—p,q) =0 forall(v,q) € Wa/b x L",

and (u,p) sufficiently regular.

5.1 A priori error estimates

For the purpose of error analysis, we introduce the following mesh dependent energy norm
lloll* =) (Cue(),e®)r+ >, (b 0], [0)s (9)
TeT Ee&rUEp

We also introduce the edge norms

lwlle = vl ol = > [0llzam), (10)

Ec&UED



and the norm on L”,

gz = > llallZzer)- (11)

T€ETh

The mesh dependent norm ||| - ||| can be used to bound the broken H'(£2) norm on W" Jbs
which we show in the following proposition.

Proposition 5.2 There is a constant c, independent of h, pu, and \ such that

Y ol <cllvll® for allv € Wg,. (12)
TeT,

Proof. Assume that the right-hand side of (12) is zero. Note that ||e(v)|[z2() = 0, and
thus v|p € RM(T), where

RM(T)={v e P(T): v(z) =ar +br (—z9,11), ar € R?, by € R}, (13)

is the space of linearized rigid body motions on 7'. Next, using ||[v]||,2(m) = 0, for all
E € &;, we conclude that there are constants a and b such that @ = ar and b = br, for
all triangles T'. Furthermore, from ||v||;2g) = 0 for E € &p, it follows that @ = 0 and
b = 0. Thus, if the right-hand side of (12) is zero, so is the left-hand side. Finally, finite
dimensionality, together with scaling yields the result. 0

As is well known, see Brezzi and Fortin [1], the existence of a solution to (3) satisfying
optimal error estimates (also in the limit A\ — 0o) requires the following stability conditions:

1. There is a constant o > oy > 0 such that

al|v]|| < a(v,v) forallv € W{;/,,. (14)
2. There is a constant 3 > B, > 0 such that

b
B < inf sup M
et yewn , ol Tallzr

(15)
We shall first show that a (-, -) is coercive with respect to the norm || - |||, given that ~
is sufficiently large.
Proposition 5.3 If v > cq, with ¢y sufficiently large, then the following estimates hold
alv]l* < a(v, v), (16)
for all v € WZ/,,, where a 1s independent of h.
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Proof. We first note that the following inverse estimate holds
Ih*(n - eIz < e lle@)ll3- (17)
TeT

This inequality is proved by scaling and finite dimensionality. Furthermore, we have, for
each F € £ U Ep, that

2((n - e(v)), [v])5 < 2u0]|h? (n - o (v)) |5+ (206) |2 (], (18)

where we used the Cauchy-Schwarz inequality followed by the arithmetic-geometric mean
inequality. Using this estimate we obtain

a(v,v) > (1 - cd) Y (2pe(v),e(v))r +2u(y — 6 )|k [0]|I2.
TeT

Choosing ¢ small enough we obtain the Proposition follows. n

Remark 5.4 [t is also possible to drop the consistency terms involving the normal deriva-
tives on the boundaries of the elements, following Ranncher and Turek [7]. For the analysis,
we must then use Strang’s second lemma which is not necessary in the present case. Note,
however, that we cannot drop the jump term since it is crucial for stability (Proposition
5.2). This is an important difference from the Stokes problem, cf. [3].

For brevity, we consider the inf-sup condition only for the approximating space WZ .
The case U € W will be treated in [4].

Proposition 5.5 There is a constant 3 > 0 such that

b
G < inf sup M
aeL? yewn [[]ll]lqll e

(19)

Proof. For trial functions (v,q) € W x L we find that ({(g),[v-nz])g = 0 for all E. In
this case, the proof of (19) follows the lines of Rannacher and Turek [7]. O

We are now ready to state a standard a priori error estimate for the mixed method.
Theorem 5.6 Let (U, P) be the solution of (3) and (u,p) the solution of (2) and let the
assumptions in Propositions 5.3 and 5.5 hold. Then we have the error estimate

U =l +|P = plls < Ch(||u||H2(Q) + ||p||L2(Q))'

Here the constant C' depends on the constants a and 3 defined in Propositions 5.3 and 5.5,
but s independent of h and p.

Proof. The proof employs Proposition 5.1 and the approximation properties of the ele-
ment, c¢f. Rannacher and Turek[7], with an additional trace inequality to handle the jump
terms, cf. Hansbo and Larson[3]. We omit the details. O



6 Numerical examples

All examples in this section have been computed without the traction consistency terms;
the approximation is thus close to the original RT, but with added jump terms. Further,
we have employed the approximating space WZ (which is of no consequence on the affinely
mapped elements used in the examples).

6.1 Stabilization

We first show that the RT element without stabilization can indeed be unstable. The
problem is plane strain with Young’s modulus £ = 10® and Poisson’s ratio v = 0.3 on
the domain (0,1) x (0,3), with w = 0 at y = 0, and a body load f = (1,0). Using only
3 elements for the discretization, we obtain an unstable solution (scaled numerical noise),
Figure 3 (left), and adding the jump term (with v = 1), the solution is stable, Figure 3
(right).

%
——

Boass M O
AR

Figure 3: Solution without (left) and with jump term (right).

N
/s

However, our experience is that the RT element is much less sensitive than the Crouzeix-
Raviart element in this respect. This is expected, since there are more coupling terms
between the nodes in the discrete operator for the RT element than there are for the CR
element (notable if we, for instance, consider the case of a splitting of each quadrilateral
into two triangles). In Figure 4 the mesh has been refined once, and the solution is stable
without the jump terms.
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Figure 4: Solution without (left) and with jump term (right).

The effect of increasing v is to make the problem stiffer, cf. Figure 5, where the mesh
in Figure 4 is used. We show the effect of increasing v on the maximum displacement.
Clearly, v should not be chosen too large (although the solution will still converge to the
exact as the mesh is refined).

0.181

0.16

Maximum displacement
o o o o
o o =] [ =
2 < B D £

2

0'020 20 40 60 80 100
Y

Figure 5: The effect of v upon the maximum displacement.

6.2 The incompressible limit

We next consider the “driven cavity flow” problem, common in fluid flow applications. The
domain is Q = (0,1) x (0,1), and the boundary conditions are given by: On 09 = {x, =
land 0 < z; < 1} we set w = (1,0) and on 09 \ 92y we set u = (0,0). In Figure 6 we
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show computational results for Young’s modulus £ = 1 and Poisson’s ratio
v ={0.4,0.45,0.5}.

The method is completely robust with respect to locking.
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Figure 6: Poisson’s ratio v = 0.4, 0.45, and 0.5.
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