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THE ££* FINITE ELEMENT METHOD AND MULTIGRID FOR THE
MAGNETOSTATIC PROBLEM

RICKARD BERGSTROM, MATS G. LARSON, AND KLAS SAMUELSSON

ABSTRACT. We develop the ££* method for a magnetostatic model problem in electro-
magnetics with large jumps in material parameters in three spatial dimensions. A priori
and a posteriori error estimates are presented as well as an adaptive algorithm. We em-
ploy a multigrid method to solve the resulting algebraic equations. Finally, we present
numerical results.

1. INTRODUCTION

In this paper we are concerned with finite element approximation of first order elliptic
partial differential equations of the form Lu= f. More precisely, we study a model problem
from magnetostatics in three spatial dimensions with large jumps in the material coeffi-
cients. Typically, due to corners in the geometry, the solution develops singularities and
does not reside in H', and thus cannot be accurately approximated in spaces of continuous
piecewise polynomials. As a remedy we instead introduce the dual variable v such that
u = ML*v, where M is a bounded symmetric operator with bounded inverse. Substitut-
ing into the equation Lu = f we obtain the symmetric second order problem LML*v = f,
which can be approximated by standard continuous polynomials, since v € H'. Choosing
M properly, the energy minimized is the physical energy, which is a desireable property.
We refer to this approach as the LL£*-method. The resulting algebraic system is symmetric
positive definite and can be efficiently solved by a multigrid method.

The LL*-method was recently suggested by Cai et al [11] for solving a second order ellip-
tic problem by first rewriting it as a first order system of equations and then applying the
aforementioned approach. Here the method is viewed as a remedy of the difficulties which
the Least Squares finite element method exhibits on problems which are not sufficiently
regular. The least squares method, see for instance [3], [5], [6], [13], and the references
therein, determines an approximate solution u; which minimizes the L?-norm of the resid-
ual || Lup, — f]|?. Thus u is required to be in H! for the residual to be well defined. It is also
shown that £L*-method is closely related to least squares methods based on weak norms
of the residual, see Bramble et al [7] and Cai et al [10].

We may also view the LL*-method as a generalization of the classical potential methods
in electromagnetics, see for instance Jin [15] for a general introduction to such techniques.
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FIGURE 1. The notation used when a region is split into subregions.

In the case of the LL*-method, we allow for a more general potential v defined by u =
ML .

We prove optimal a priori and a posteriori error estimates and based on the later we
develop an adaptive algorithm for refinement of the mesh. We also discuss implementation
details of the mesh refinement algorithm.

The remainder of the paper is organized as follows: in Section 2 we introduce the model
problem and derive the £LL£*-method; in Section 3 we prove a priori and posteriori error
estimates and describe the adaptive algorithm together with some details on the meshre-
finement procedure; in Section 4 we formulate the multigrid algorithm; in Section 5 we
present some numerical results.

2. THE LL* FORMULATION

2.1. A magnetostatic model problem. Assume that Q = |J, Q' € R? and denote
the interface between regions ' and €/ by I', with i < j, see Figure 1. Assume that each
subdomain have the magnetic permeability u|g:i = p’ po. The magnetostatic system then
takes the form:

(2.1a) Vxpu'B=J in(,
(2.1b) V-B=0 in ',
(2.1c) n-B=0 onTl,
and the interface conditions

(2.2a) (W 'B] xn=0 onIl¥
(2.2b) [B]-n=0 onI¥.

hold. Here, n is the exterior unit normal on the boundary I' and a fixed unit normal on
each interior interface 'Y, and [u(x)] = lim,_,o+ u(x + sn) —u(x — sn) with z € I/ denotes
the jump in u across the interface ['Y. Furthermore, it is easy to see that it is necessary
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that
(2.3) V-J=0,

for (2.1) to have a solution.

2.2. An associated first order operator. By adding a slack variable b to (2.1) we can
show ellipticity of this system [14]. This extra variable is in fact zero in the continuous
problem as we show below, but this is not necessarily the case in the discrete problem.
Furthermore, adding the slack variable creates a suitable Hilbert space setting for the

analysis.
The extended system thus becomes

(2.4a) Vxu'B-Vb=J in,
(2.4b) V-B=0 in (),
(2.4c) n-B=0 onl,
(2.4d) b=0 onT,
(2.4e) [0 'B]xn=0 onI¥
(2.4f) [B]-n=0 onTl%,

The slack variable b is identically zero, since taking the divergence of (2.4a) we get the
following Poisson problem for b:

(2.5) ~Ab=V-J-V-(Vxpu'B) in,

together with the boundary condition (2.4d). From equations (2.1), (2.2) and (2.3) we see
that the right hand side of (2.5) is zero, thus b is indeed zero and hence system (2.4) is
equivalent to (2.1).

We introduce the Hilbert space

(2.6) V= (2@ x (),

and employ the notation V' = [Vv]T € V, with V € [L*(Q)]® and v € L?(Q2). Next we
define the first order operator £ and its formal adjoint £* as follows

AV x 'V =V wvar (W X W = Vuw
o v (TN (V=5

for V.W e V.
To derive the boundary conditions associated with £* we compute

(2.8) (EV,W)z(V,E*W)—i—/nx(/[1V)-W+/vn-W+/n-Vw

r r r

= (V,E*W)—i—/rn x (= 'V) - W,
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where we used (2.4c) and (2.4d). Using the scalar triple product n x (u='V)-W =
—(u~'V) - n x W, and thus the remaining boundary term vanishes if and only if the
condition

(2.9) nxW=0 onl,
holds.
The domains of £ and L* are,
(2.10a) DL)={VeHNVxpy ' QnNHV,Q) x H(Q) :
n-V =0,v=0},
(2.10b) D(LY) ={V € HVx,QNH(V-,Q) x H(Q)/ R:n xV =0},
where
(2.11a) HVxpu Q) ={Ve[l?(QP:Vxu'Vell)(Q)]},
(2.11b) H(V-,Q) ={Ve[l?(V]P:V -V e L))},
are Hilbert spaces with the norms
(2.12a) VIl wxur,0) = IVIF+ IV x oV,
(2.12D) IV gy = IVIP + 11V - V.

H(Vx,Q) corresponds to (2.11a) with p = 1. Thus, D(L) and D(L*) are Hilbert spaces,
dense in V, under the product norm

(2.13) V[ = IVIF+ IV x p VI + IV - VI + ol
and similarly for D(L*).

2.3. The LL* variational formulation. We can now in a standard manner derive a
variational problem for (2.1) by integrating by parts: find B € D(L) such that

(2.14) (J,V) = (LB,V) = (B,L*V),

for all V € D(L*).
Next we introduce dual variables U such that

(2.15) B = ML'U,

where M denotes a symmetric positive definite bounded operator with bounded inverse.
A suitable choice of M is presented below. Thus, we obtain the weak problem: find
U € D(L*) such that

(2.16) a(U,V)=1(V),
for all V' € D(L*). Here the bilinear form and functional are defined by
(2.17) a(U,V)=(MLU,LV),

(2.18) (V) = (V).
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We now turn to the operator M. For our application, we assume that M : v — Mwv
where M is a 4 x 4 diagonal matrix with diagonal [m; m;m;msy]. To determine the
parameters m; and my we note that the energy of the bilinear form is

(2.19) o(U,U) = (MLU, L*U)
(2.20) = (B,M 'B)
(2.21) = (m;'B, B) + (my 'b, b).

For the exact solution b = 0, and we should preferably obtain proportionality to the
physical energy

(2.22) S(B.H) = (B,u"'B),

and thus m; = p. Next to determine ms we note that
(2.23) a(U,U) = (up 'V x U = Vu), (p" 'V x U = Vu)) + (meV - U,V - U).

Balancing the terms involving U we are led to choosing mgy = pu .
Using Lemma 2.1 below, the bilinear form finally simplifies to

(2.24) a(U,U)=p'VxUVxU)+ (u'V-UV-U)+ (uVu, Vu).
Lemma 2.1. For V € D(L*),
(2.25) (V x V, Vo) = 0.

Proof. The identity follows using Green’s formula,
(2.26) (VXxV,Vv)=(V,V x Vv)+ (nxV,Vo)r,

since n X V =0 on 0N for V € D(L*). O
We are now ready to state the following theorems.

Theorem 2.1. There are constants ¢ and C, which depend only on u, such that
(2.27) Vi <a(V,V) <C|VI,

for all V- € V. Furthermore, there exists a unique solution U to (2.16) and the a priori
estimate

(2.28) 1Ul: < el|J]|-1,
holds.

Proof. To prove the lower bound we note that
a(V, V)= 'VxV,VxV)+ 'V -V,V-V)+ (uVov, Vv)
(2.29) > min(p™")|[V[[F + min(u)||][3,

which concludes the proof of the coercivity. The upper bound is an obvious consequence of
the Cauchy-Schwarz and triangle inequalities. The existence and uniqueness of the solution



6 RICKARD BERGSTROM, MATS G. LARSON, AND KLAS SAMUELSSON

to (2.16) follows from the Lax-Milgram Lemma and the a priori estimate is straightforward.
g

Theorem 2.2. There is a unique solution B € D(L) to (2.4), and B = ML*U is the
unique solution to (2.14).

Proof. First, note that £~* is continuous, since from Theorem 2.1 we have
(2.30) cIVIpey < 1LV,
for all V' € D(L*). Choosing V. = L *W for W € R(L*), where R denotes the range,
yields,
—* 2 1 2
(2.31) I£7WIL < —[[Wlipes).

In the same way, we get continuity of £~! if we can show

(2.32) Ve < CILVIE,

which is clear since for V' € D(L*),

(2.33) 1LV|5 = (Vxp ',V x ™) + (Vo, Vo) + (V- V,V - V)
> C(IVI[* + [lvll*) = CIIVI-

From Lemma 2.2 in [11], we now know that R(L) = R(L*) =V, thus B = ML*U satisfies
(2.14). The uniqueness of this solution follows from the stability estimate

(2.34) (B,L*) = (J,V) < [|J[[[[V]]

3. THE LL* FINITE ELEMENT METHOD

3.1. The finite element method. Let K be a decomposition of €2 into, e.g., tetrahedral,
elements K, with diameter hx = diam(K). We assume a minimal angle condition on the
triangulation, see Brenner and Scott [8]. Let

(3.1) Wi =D(L)N{V € [C]*: Vk € [P.(K)]*},

where P, is the vector space of all polynomials of degree less than or equal to . Thus W,
is the set of all piecewise vector polynomial functions of degree r, which are continuous in
the subdomains Q° such that, in each element, v|x € P,(K).

For the error analysis following below, we need the following approximation property of
Wi, see Scott and Zhang [16]. Given a function V' € D(L*) N [H*(Q)]*, for r > 1, there is
an interpolation operator = : D(L*) — W, such that

(32) IV —aVlk1 < Chi VN, 1<a<r+1,

where N(K) denotes the union of all elements bordering K.
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The LL* finite element method finally takes the form: find U}, € W, such that
(3.3) a(Up, V) =1(V),

for all V € W,,.

In the computations, we can benefit from the fact that uy, is zero. This is clear since the
equations for components Uy and uy separates according to Lemma 2.1, and we have zero
data for uy,. The bilinear form and functional used in computations thus takes the form
(3.4a) a,(U, V)= (u'VxUVXV)+(u'V-UV-V),

(3.4b) (V)= (J,V).
Furthermore, functionals involving the magnetic field B, should be computed via the vari-
ational form (3.4a). Hence the energy, e.g., is computed as
1
(35) Wh = §ah(Uh, Uh)

3.2. A priori error estimate. Using standard techniques we derive the following a priori
error estimate.

Theorem 3.1. Let U € D(L*) N H*(Y) be a solution to (2.16) and U, € W), the ap-
prozimate solution defined by (3.3). Then there is a constant C, independent of h, such
that

(3.6) U = U2 <C Y BP0 ) o0

KeK

with & = max(r + 1, s).

Proof. Let E = U — Uy, denote the error. Then

(3.7) || Ellf < a(B,U ~Uy)
=a(E,U —7U + 71U — Uy,)
=a(E,U — 7U)

< C||E|;||U - =Uly,

where (3.3) was used in the last equality. Dividing by || E||;, and finally using the interpo-
lation estimate (3.2) proves the estimate. 0

3.3. A posteriori error estimate. Introducing the energy norm
(3-8) lvll* = a(v, v),

we can state the following energy norm a posteriori error estimate.
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Theorem 3.2. Let U € D(L*) N HY(Q) be a solution to (2.16) and U, € W, the ap-
prozimate solution defined by (3.3). Then there is a constant C, independent of h, such
that

(3.9) U = U] < CZRK(Uh)Qa
KeKk
where
(3.10) Rk (Up)? = wi||AM™Y2(J — LMLUR)||% + wsl B2 K[ M\(UR)] |34

The boundary flux A, (V') is defined by

_(nx (VX V)+nu V-V

3.1) () = (" ,
and K is a diagonal matriz with diagonal [kik,k1ks] where

(uh)'/?
3.12 k= —2—
( a) 1 o

()"
(3.12b) hy =

Wt T

Remark 3.1 Note that the constant C' = C(wq,ws, Cy,, C;). To achieve a constant free
error estimator, one may instead solve local problems, see [2], in general at the cost of more
expensive computations.

Remark 3.2 Note that
(3.13) WU —Ul|| =a(U - Uy, U -Up) =a(U,U) —a(Up, Uy) =2(W — Wy).

Thus the error in the energy is directly related to the error in the energy norm, motivating
adaptation of the grid with respect to the error measured in the energy norm.

Proof. Let E = U — U}, denote the error. Then
(3.14)  ||E|* =a(U - Uy, E)
=a(U — Uy, E —7E)
=ML (U -U,),L(E—T7E))
=Y (J—LMLU, E - 7E)x + (M(U) = \(Un), E — 7E)ox
Kek

= (J—LMLU, E —7E)g + (Au(Uy) = \(Uy), E — 7E) o,
Kek
where A, (V) is defined above in (3.11) and A, (U},) is a discrete approximation of the true
flux A\, (U). The replacement of \,(U) with A, (U}) in the last equality is possible since
on all internal edges the boundary contributions from the neighbouring elements cancel for
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A (U), and this should be true for A,(U}) by construction, as well as on external edges
A, (Uy) should satisfies the boundary conditions.

In a standard derivation of an energy norm a posteriori error estimate,e.g., as in Eriksson
and Johnson [12], one constructs a discrete flux as the average of the approximate flux on
each element side, i.e.

(315) MalT) = S On(T) + 2(0,),

which leads to the standard jump terms [\, (U})]. However, in order to correctly distrib-
ute the error in the fluxes across interfaces with large discontinuities in y, we here choose
a weighted average

(3.16) Ap(Up) = (MT + M) {(M \(UF) + MTA(UR)),

which instead lead to a jump term similar to the one derived by Cai and Samuelsson [9).
We will now get

(3.17) [IBI* =D (J - LMLUy, E - 7E)k
KeK

+ (An(Uh) — /\n(Uh); E — 7TE)3K
=Y (J-LMLU,, E - 7E)k

Kek

+ (M* + M) "Mt (UL, E — 7E)sk
<O (IRMTV2(F = LML UL ||k |k M2 (B - 7E)||x

KeK
+ |2 (MY + M) M) P DU llox |62 MY (B — 7E)lox)

1/2
<c (Z R(Uh)2> I,

KekK

where we made use of the Cauchy-Schwarz inequality and the trace inequality ||v||3; <
Cllv|lx (g |v]lx + |[Vv] &) Finally the aforementioned approximation property

R MV — 2V | < CIMPV|E < CIMPV V|2 < OV

was used. 0

3.4. An adaptive algorithm. We start the adaptive algorithm from an initial coarse
decomposition Iy consisting of tetrahedra. It is important that the interfaces between
discontinuous materials are respected by the triangulation, i.e., the material interfaces
consist of element sides.

The initial triangulation is then adaptively refined level by level. There are two main
components in this process: the error estimator and the local grid refiner. The role of the
error estimator is to locally determine which elements are to be bisected to construct a
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refined grid. It is not critical which refinement method is used, except that it should have
the property that the refinement is stable, i.e., the refined grid should remain shape regular
even after many adaptive local refinements.

We will briefly describe the refinement method used in our implementation. The refine-
ment algorithm is also used in [9] and implemented in the adaptive module of [1].

e Compute for each element K of the triangulation an indicator value Iy, where a large
value of I indicates a large error. Based on the a posteriori estimate (3.9) we use
IK = RK(Uh)2

e From the indicator values Ik , each tetrahedron K of K is assigned an integer ix €
{0,1,2,3,4,5,6}. The integer ix denotes the minimal number of edges of tetrahedron
K where new nodes are inserted in the refinement.

Given a parameter 3 € (0,1) and the maximal indicator value I, = maxgex I
the integer ix is computed by

. 0 lf IKSﬁGImaz:
1 = . .
7 5 i B e < Ix < B ey for j=1,...6.

e Mark the ¢x longest edges in the elements for new node insertion. By the next step
the neighbour elements might need to mark additional edges to guarantee stability of
the refinement.

e The following two rules are recursively applied to mark the neighbour elements: If
any edge in a tetrahedron is marked, then the longest edge is also marked, and if any
edge on a face of a tetrahedron is marked, then the longest edge of that face is also
marked.

e The tetrahedra having any marked edges is refined by repeated bisection until there
are no more marked edges. The length of the marked edges of the tetrahedron de-
termines the order of tetrahedral bisection. The longest edge is bisected first which
together with the marking of edges in the previous step guarantees that the refinement
will be regular.

e Project nodes at the curved outer boundaries or internal interfaces to the correct
geometry.

The method have the property that the sequence of grid refinements are nested and the
minimum number of edges where new nodes are added to the refined grid is controlled. If
the geometry model has curved outer boundaries or internal interfaces the refinement will
not be strictly nested, due to that the newly introduced nodes need to conform to the curved
geometry model. For more information on the geometry model and implementational issues
we refer to [4].

4. THE MULTIGRID METHOD

Let K¢,k =0,...,m be a sequence of decompositions of (2 and let W), 4,k =0,... ,m,
be the associated spaces of piecewise vector polynomial functions. We assume that the
spaces are nested Wy o C Wy 1 C ... C Wh .-
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The operator Ay : Wy, — Wy, is defined by (AU, V) = a(Uy, V) for all Ve W,
and Ly by L,V = (V) for all V. € W), ;. The finite element discretization (3.3) on Ky
then takes the form

AUy = Ly,

for k=0,...,m.
We define the projection operator Qy : W, g41 — Wi i by

(QU,V)=(U,V) forall Ve W,.

We denote one multigrid V-cycle with (n;,ny) pre- and post-smoothing operations by
T =T, where Ty : Wy, —= Wh i, 1 < k < m, is defined recursively by Ty = Ayt and

TkL — v"1+n2+1,
where
0 0 if k<m
vl o=
Um—l if k=m

v =0 S(L— A’ Y, forj=1,...,n4,
v = T 1 Quo (L — Ap™),
v =0T 4 S(L— Ap?™Y), forj=mni+2,... .01 +ng+ 1.

Here Sy : Wy, — W), represents one smoothing operation which can consist of a step of
a preconditioned Krylov method.

5. EXAMPLES

The £L£* method described above was tested for problem (2.1) in three dimensions on an
axisymmetric geometry that describes an electromagnet, see Figures 2 and 3. The model
consists of an iron cylinder core inserted in a copper winding. The configuration is enclosed
in air and surrounded by a box with perfectly conducting surfaces. The winding is modeled
as a homogeneous copper coil.

Data for the problem are relative magnetic permeabilities of y, p = 10* and Mr,Cu =
Mrair = 1 and po = 4m X 1077 H/m and a current density J that is constant over the cross
section of the coil with a total current of 1 A.

The geometry and data for the test problem was suggested by ABB Corporate Research,
who also provided reference two dimensionally axisymmetric solutions, reported in [4]. Note
that the problem includes a large discontinuity in the coefficients of the problem, as well
as edges where the field solution is singular.

The problem was solved using multigrid as described above, with three iterations of
GMRES, preconditioned with one SSOR sweep at each level. The coarsest problem was
solved using stabilized bi-conjugated gradient (BCGSTAB). Mesh adaptation was based
on the energy norm a posteriori error indicator derived above.
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1.00

020 Air

1.00 2.00

Iron

F1GURE 2. The geometry of the axisymmetric problem. The dimensions are
given in meters.

Table 1 gives the errors in energy, €., and the solution times, t,, on each level of the
computation. The error is defined as

[Wies — Wh|
(5.1) ¢ = rel = Thll,
”Wref”

where W,.; denotes the magnetic energies in the reference solution computed by ABB,
and W), denotes the ones computed from the L£L£* solutions through (3.5). The actual
computed energies are shown in Table 2 for the finest mesh.

Due to the use of unstructured grids together with non-uniform mesh refinement, asymp-
totic order of convergence is difficult to measure. However, in Figure 4 we show convergence
of the error in energy compared with the error indicator, and we can see that the error
shows the same behaviour as the indicator. Thus, the convergence rate appears to be O(h)
as expected.

The convergence in multigrid is measured by the decrease in algebraic residual between
two V-cycles on the same level in the grid hierarchy. In Table 3 these factors, called p,
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FicUrE 3. The magnetic field lines in a slice through the three dimensional
solution of the axisymmetric problem.

‘ Noelements ‘ Nonodes ‘ ls [S] ‘ €r,air ‘ €r Fe ‘ €r.Cu ‘ €r total ‘
14401 2580 4.1 10.23]047| 047 0.24
32498 5938 41.29 | 0.14 | 0.33 | 0.29 | 0.15

104304 | 18868 | 172.56 | 0.07 | 0.18 | 0.13 | 0.07

294521 | 53417 | 967.69 | 0.04 | 0.09 | 0.07| 0.04

645947 | 116506 | 3257.73 | 0.02 | 0.05 | 0.05| 0.02

970767 | 175165 | 6331.57 | 0.02 | 0.04 | 0.03 | 0.02

TABLE 1. The time to solve the problem on each level and relative error in

the computed magnetic energies using LL* and piecewise linear polynomial

elements. The reference values are from two dimensional computations done
at ABB, see [4].
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are given as the geometric mean value for all V-cycles on each level, and for different sizes
of the discontinuity in material parameters. As expected, the convergence increases for
smaller discontinuities.

Acknowledgements. This research is supported by ABB Corporate Research, Sweden, and
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| Linear | Reference |

Wair (J) |8.947¢-7 |9.089e-7
Wre (J) | 4.539¢-10 | 4.731e-10
Wee (3) | 3.494¢-8 | 3.614e-8
Wtotal (J) 9.301e-7 9.455e-7

TABLE 2. The computed magnetic energies compared with reference values
The mesh used to
obtain these values had 970,767 elements and 175,165 nodes. The reference
values are from two dimensional computations done at ABB, see [4].

using LL* and piecewise linear polynomial elements.

100 1

-1

™ _m _;_m|]

r,air
r,Cu

r,Fe

10”
10

10°

No
elements

Ficure 4. Convergence in error compared with the indicator derived in

Section 3.3.

the Swedish Foundation for Strategic Research.
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UFe

‘ Lair Noelements ‘ Nonodes ‘ Y
10000 14401 2580 | 2.43e-14
32498 5938 | 1.42e-1
104304 | 18868 | 3.59%e-1
294521 | 53417 6.13e-1
645947 | 116506 | 7.21e-1
970767 | 175165 | 7.07e-1
1000 14401 2580 | 2.36e-14
32282 5898 | 9.86e-2
104162 | 18850 | 2.87e-1
294581 | 53430 | 4.92e-1
582500 | 105255 | 5.86e-1
1318174 | 237107 | 6.67e-1
100 14401 2580 | 2.26e-14
31418 5741 | 4.90e-2
102341 | 18515 | 1.65e-1
266466 | 48356 | 2.33e-1
594002 | 107212 | 2.89-1
1235205 | 222242 | 2.94e-1
10 14401 2580 | 1.66e-14
25239 4583 | 9.74e-3
84852 | 15395 | 2.86e-2
193051 | 34983 | 3.25e-2
492963 | 89041 | 3.38e-2
1098954 | 197763 | 3.38e-2
1 14401 2580 | 7.66e-15
21895 3982 | 6.69e-3
95870 | 10095 | 8.64e-3
96370 | 17475 9.53e-3
290141 | 52226 | 1.18e-2
016202 | 93285 | 1.03e-2
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TABLE 3. Convergence factors for the multigrid iterations for different sizes
of discontinuity. The factor p is the geometric mean of the decrease in the
algebraic residual between two consecutive V-cycles for all V-cycles on each
level.
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