CHALMERS

FINITE ELEMENT CENTER

PREPRINT 2001-03

The Fokker-Planck Operator
as an Asymptotic Limit in Anisotropic Media

Mohammad Asadzadeh

- . Chalmers Finite Element Center
<« p CHALMERS UNIVERSITY OF TECHNOLOGY
- - Goteborg Sweden 2001






CHALMERS FINITE ELEMENT CENTER

Preprint 2001-03

The Fokker-Planck Operator
as an Asymptotic Limit in Anisotropic Media

Mohammad Asadzadeh

CHALMERS

Chalmers Finite Element Center
Chalmers University of Technology
SE—412 96 Goteborg Sweden
Goteborg, January 2001



The Fokker-Planck Operator

as an Asymptotic Limit in Anisotropic Media
Mohammad Asadzadeh

NO 2001-03

ISSN 1404-4382

Chalmers Finite Element Center
Chalmers University of Technology
SE—412 96 Goteborg

Sweden

Telephone: +46 (0)31 772 1000

Fax: +46 (0)31 772 3595
www.phi.chalmers.se

Printed in Sweden
Chalmers University of Technology
Goteborg, Sweden 2001



THE FOKKER-PLANCK OPERATOR
AS AN ASYMPTOTIC LIMIT IN ANISOTROPIC MEDIA

MOHAMMAD ASADZADEH

ABSTRACT. We derive the Fokker-Planck operator describing a highly forward peaked
scattering process in the linear transport equation, in anisotropic media, as a formal
asymptotic limit of the exact integral operator. The resulting operator, being both con-
vective and diffusive in angle and energy variables, reduces the degenerate nature of the
Fokker-Planck system compared to the isotropic media case where the corresponding limit
is only convective in energy and diffusive in angle.

1. INTRODUCTION

The particle flow through a background medium is described by a linear transport equa-
tion in phase space viz:

Loy

(1.1) a—+Q-wa+mp:/ dE’/ dVo) + Q,
v ot 0 S2

associated with appropriate initial and boundary conditions which we will not concern us
in this note. Here
e Y=Y E Qt)=vf(x,E Q,t) isthe current function
e  fis the distribution of particles in phase space (x,v) € R® x R?,
e tin the time variable
e Q=v/lv|
. u=pv
e  E is the energy variable (E = imv?),
e Q=Q(x,E,Qt)is the external source term
e o0 =o0(x,FE, Q1) is the total cross-section
e o0,=0,x,E' = E,Q —Q1),
is the scattering kernel describing the probability of scattering from
a pre-collision particle energy and direction (E’, ') to a post colli-

sion coordinates (F,2). Below, in o4, we shall replace “—” by a”,”
sign unless we want to indicate the explicit pre and post collision

variables.

1991 Mathematics Subject Classification. 82C70, T6Rxx, 35L80.
Key words and phrases. Fokker-Planck, anisotropic media, forward peaked scattering, surface harmon-
ics, asymptotic limit.
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In the case of isotropic background media o, depends only on €' - 2, rather than '
and (2 separately, then the total cross-section ¢ may be assumed to be independent of the
direction €. This case is investigated by Pomraning in [22]. Asymptotic analysis, based
on Enskog type expansions is given in a pioneer work by Larsen and Keller [19]. Similar
studies can be found in [24], [1], [7], [8] and [9]. See also [2] and [12] for some related
mathematical studies. In all these studies, the energy dependence is explicitly included.

In anisotropic media the micro-structure causes the mean free path of the particles
to become dependent on their direction of motion with respect to some fixed axis. The
equation which results is similar to the one-speed Boltzmann transport equation but has
cross-sections which are functions of direction. In some applications, the value of this
consideration is more evident when the anisotropy of the medium is caused by its atomic
structure (e.g., in radiation therapy, see Jette [17]), or method of fabrication (e.g., in semi-
conductor devices) rather than any physical heterogeneity. Usually for velocity dependent
cross-sections the energy and directional components are not separated, see Cercignani
[10]. In this study, however, we are in particular interested in the order of the, limiting,
convective and diffusive terms with respect to each velocity component. Here are some
classical examples on the influence of the direction dependent cross-sections, see, e.g. Dud-
erstadt and Martin [13] and Williams [26]: (i) The particle distribution arising from a plane
source emitting particles at a well defined angle into an infinite medium. (ii) The albedo
and Milne problems for a half-space solved by Weiner-Hopf technique and connected by
an asymptotic method to give a full description of transmission through a thick slab. (iii)
Solution of integral form of the Boltzmann equation reduced to a diffusion like situation
resembling the rod model of Wing, see [20]. (iv) The energy spectrum of particles slowing
down from a high energy source by elastic collisions in an infinite homogeneous system.

In charged particle transport the scattering kernel o is highly forward peaked about both
a zero energy transfer and a zero direction change, and the number of scattering collisions
is very large. Therefore, the scattering mean free path is very small. This problem is the
subject of asymptotic studies in [19]. To study this problem numerically using deterministic
approaches is very much involved since a reliable algorithm in this case, requires a mesh size
of order of the mean free path (i.e., very small). This implies an unrealistically fine degree of
numerical resolution, see studies in [3],[4], [5], and [6]. Likewise, a stochastic (Monte-Carlo)
simulation would be time consuming since a very large number of scattering interactions
must be followed for each particle before it demise out of the system by either absorption or
leakage, see [18]. To circumvent these difficulties Chardraseckhar [11] suggested to replace
the integral scattering operator in the transport equation with a differential Fokker-Planck
operator. As a consequence of this replacement, the dominant (large) in and out scattering
terms cancel, thus the mean free path is substantially increased and the system is semi-
rarefied. In this setting a concise and heuristic derivation of the Fokker-Planck operator,
in isotropic media case, is given by Pomraning [22], who has also formalized the derivation
procedure as an asymptotic limit of the integral transport operator.

In this note we extend Pomraning’s approach to the case of anisotropic background
media. Note that in both isotropic and anisotropic background media the scattering may be
referred as being anisotropic, see [21] and [27]. However, in the former case the scattering
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kernel is a function of only Q2 - €', while in the latter case o, would depend on Q and
2, separately. The emphasis of this difference will be more clear in Sections 4 and 5
below. In the anisotropic media the resulting asymptotic limit would contain compatible
convective and diffusive terms in both angle and energy variables, (with respect to the
smallness parameter ¢ and (0, ) describing peaking of the scattering kernel in energy ()
and direction (6,7), respectively). We shall denote the scattering mean free path by the
piecewise constant function A where, assuming a homogenization, we transfer the (E, )
dependence to the cross-sections. We let O(A) = O(5) = O(y) = O(e).

An outline of this note is as follows: in Section 2 we derive Fourier cosine moments of the
anisotropic scattering kernel. In section 3 we reformulate the transport equation expanded
in surface harmonics. Section 4 is devoted to a formal derivation of the Fokker-Planck
operator through the higher moments expansions for isotropic media with anisotropic scat-
tering. In Section 5 we give a general asymptotic approach for the anisotropic background
media. The operators obtained in Sections 4 and 5 are “convective-diffusive” in both angle
and energy variables. Finally, in our concluding Section 6, we comment on the effects of
the strength of the forward peakedness of the scattering kernel.

2. ISOTROPIC MEDIA ANISOTROPIC SCATTERING

In this section we consider the scattering kernel o,(x, E' — E,Q' — Q,t) as a function
of (€2 -€) and derive its Fourier cosine moments. The surface harmonic developments
for both transport and Fokker-Planck equations, in isotropic media, are based on these
moments. See [21] and [22] for the scattering functions depending linearly on (2 - Q'),
(referred as linearly anisotropic scattering), and [1] and [24] in some general case of higher
order moments. In an scattering event the particle must possess some final energy and
angle, and we have the relationship.

os(x,E', Q0 t) = / dE/ os(x,E' = E, Q" — Q,t)dQ
(2.1) o 2
/ dE/ 1/2d,u/ dxos(x,E' = E, u' — p, X' = x, 1),

where we used the standard spherical coordinates viz; 2 = (6, x) and p = cos 6.

Below we represent the right-hand side of (1.1), i.e. the so-called in-scattering term,
as an expansion over its surface harmonic components by using the addition formula for
Legendre polynomials, see [16]. In what follows, for the notational simplicity we shall omit
writing the x and ¢ dependence keeping in mind that this is for our convenience and we
have no, e.g., space homogeneity assumption.

os(E' - E,QY =5 Q) =04F — E, i’ — ,u, X = X)
(2.2)

2041 , ,
_Kz:; - asg(E,E)[Pg +2Z e+m ()PP (1) cosm(x’ — )
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where
o - deZ U 1— /1,2 m/2 dﬂ—f—m
(2.3) P (p) = (1 —p?) 2 d/ﬂi ) - ( 2@31) dpttm (b — 1)€,
2 \(+m)!
m||2 __
(24) 1P = (2£+1)(€—m)!’

By formula (2.2) o, is expanded on P(2- Q') and we have a symmetry in angle according
to

(2.5) os(E'—= E,Q = Q)=0,FE — E,Q— Q).

The relation (2.5) combined with the general assumption of the reciprocity relation or
detailed balance, (see Cercignani [10] and Williams [25] for exact definitions),

(2.6) f(VNoo(E' - E,Q — Q)= f(v)o,(E - E',—Q — —Q),

and an additional symmetry assumption on f leads to some cancellations. However, in
the present setting these cancellations do not have substantial simplifying effects. Tracing
these cancellations would require further algebraic labour with no or very little impact on
the final result.

We derive o4 (E’', E) as an integral representation of o4(E' — E,Q — Q). To this
approach we start writing the ¢-th Fourier cosine moments of o, where we use

2 2m, qg=m=020,

(2.7) / cosm(x' —x)cosgx'dx' = mcosqgx, ¢=m >1,
0 0, q#m,
to obtain that
2
/ os(E' — E,Q — Q) cosgx'dx'
0
(£—q)!

Zoo 20+ 1 , o
¢ ( Amr >05£(E Beg £+ q)!PZ (W) P (n)marg ™ cos gx
q

(2.8)

(L) U e i) s

[
N

~
Il

q

where we have defined o, as

_J 1 ¢=0,
(2.9) aq—{2, g>1

Recall that for each positive integer ¢, {P/}¢, is an orthogonal basis for L?(—1,1), see
Folland [14] Theorem 6.7. Now we multiply (2.8) by P/(x'), k¥ > ¢ and integrate over



THE FOKKER-PLACK OPERATOR IN ANISOTROPIC MEDIA 5

'€ (—1,1), to get

1

1 2m
/ P,g(,u’)du'/ os(E' = E,Q — Q) cos gx'dx’'
- 0

(2.10) = (% i 1) Z;iasz(E', E)PY(1) cos gx

l=q
x/_lP( NPV dp! = oo, B)PY (1) cos gx.

where we used (2.4). Further, multiplying (2.10) by PJ(x)cosgx and integrating over
u€ (—1,1) and x € (0,27), and using (2.4) once again, we obtain

1 1 27 2T
/ P,g(,u)du/ P,g(,u')du’/ oS qx'dx'/ cos gxdxos(E' — E, Q) — Q)
- 0 0

1 -1

1 2T
(2.11) — o (E', E) / PY() PY (1) dp / cos” gxdy
-1 0

27 >(k+Q) —1

- !
__UM(E,ED(2k+J_(k IR

Thus, we have for k£ > ¢ that

) 2k + 1\ (k — q)! ! ! N
ox(E',E) = ( )( q)'aq/IP,g(u)du/lP,g(u)du /0 cos qxdx

2 ) (k+q)!

27
X / cosgx'dx'os(E" — E,p' — pu, X" = x)-
0

(2.12)

The corresponding Legendre coefficients for the linearly anisotropic scattering reads

1
(2.13) o(E', E) = 2 / dwPy(w)oy(E' — E,w),

-1
where w = -’ and the scattering cross-section corresponding to (2.1) is now independent
of the directional variable and simply reads as follows

00 1
(2.14) os(x, B’ t) = 277/ dE/ dwos(E' — E,w).
0 -1

3. SURFACE HARMONIC EXPANSION OF THE TRANSPORT EQUATION

In this section we continue with the case of isotropic media anisotropic scattering kernel
and expand the solution 1(E, ) of (1.1) in surface harmonics Y, (2) with adjoint Y% (€2),
viz

(3'1) w(Ea Q) = Z Z (2n4;:__ 1>ank¢nk(E)Ynk(Q)a

n=0k=—n
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where

_ (n—[k])! _ .
(3.2) Ank = CEREE Vi (E) = /s? dQY 5 ()Y (E, Q),
(3.3) Yor(Q) = Yar(u, x) = Py(p)e™.

Thus, using (2.2) and (3.1) we may expand the energy integrand in (1.1) as follows

.2)
:/ dos(E" — E, Q" — Q)¢ (E', Q)

(3.4) -3 (2 Z Z (T8 ) aneorel B By )

£=0

/. 3 o PP PP ) cos = ) You(62) .

The orthogonality condition for surface harmonics reads as
4 1
(35 [ a0Yu@Yg @ = 5
S2

oy OneOmk,
@n+1) ay "

where Y (€2) is the complex conjugate of Yy, (£2). Using (3.5) the integral in (3.4) is

computed as

¢
1
J::/ZdQ’(Zaerej(Q)Ye]( ) Z% 5 Q5 —— +1 <5n¢<5j,c
(3.6) s j=—t ¢
4 1 47
= aeknk(Q)ma—k né = mynk(g)dné

Inserting (3.6) in (3.4), we get

(37) I = Z Z (27147‘:-‘ 1)ankYnk(Q)Usn(ElaE)"/’nk(El)'

Thus, in isotropic media, the transport equation (1.1) with an anisotropic in-scattering
term expanded over surface harmonic bases functions can be written in the following form:

10%(E, Q)

5+ Vxb(E,Q) +o(E,Q)¢$(E, Q)

(3.8)

=33 (B o ial) [ (B BBV + Q)

n=0 k=—n

with o4, (E', E) given by (2.12).
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4. ASYMPTOTIC EXPANSION OF THE ANISOTROPIC SCATTERING KERNEL

In this section we consider higher moments expansion of the scattering kernel compared
with the zeroth moment studied in [22]. Equation (3.8) forms the starting point of the
Fokker-Planck development for isotropic media with anisotropic scattering. At the end of
this development, using the surface harmonics expansions, we shall be able to eliminate the
dominant in and out scattering terms and, with a positivity assumption on the resulting
“zeroth order terms”, rewrite the remaining part on the right hand side of (3.8) as a
Fokker-Planck operator acting on 1 (FE, ). To this approach we assume that the particles
transport in a bounded domain of the characteristic size O(1). The scattering mean free
path (A) is assumed to be small, O(¢), and consequently the scattering cross-section being
the reciprocal of the scattering mean free path is large, i.e., o4(E,2) > 1. For isotropic
media A may assumed to be constant, whereas in anisotropic media (Section 5) we use
a local average on each homogeneous part of the domain (local homogenization), again
denoted by A, and the (E,2) dependence is transfered to the scattering cross-section
and kernel. Without such an assumption we have to deal with somewhat more involved
algebraic labour, see, e.g. [26]. Thus using the scaling

6s(E,Q)

(4'1) Us(EaQ) = Ta

we have 65(F,Q) = O(1) and A < 1. We apply the same scaling to the scattering kernel
0s(E' = E;Q = Q)=0,(FE" = E;p/ = u; X' — %),
and use the fast variables: (£,7,¢) € R x 82; defined by
E'—F

(4.2) £ = P ek 1,
I_

(4.3) n:“6“;5<L
I_

(4.4) C:XVX; y< 1.

Thus we scale the scattering kernel as

[ A __1A /EI_E. /:u,_,u_ /XI_X
U(EaEaM7M7X7X)'_AJS(E7 € ,,LL, 5 ) ) ’}/ )
= %@(E’,&;u’,n; X5 ),
where 6,(E", & u',m; X', ¢) is O(1) and the partial derivatives 06,/0¢, 65/0n and 06,/0¢
are assumed to be O(1) as €,d,7 — 0. Physically the smallness parameters € and (6, y) are
the measures for the peaking of the scattering kernel in energy and direction, respectively.
In this way we have that the scattering cross-section is large, and the scattering kernel is
highly peaked about F = E’ and € = €)'. We also introduce the absorption cross-section
04(E, Q) defined by

(4.5)

0.(E,Q) :=0(E,Q) —0,(E,Q).
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Now we insert the Legendre coefficients oy, (E’, E), given by (2.12), and the scalings (4.1)
and (4.5) in the transport equation (3.8) and get, for any positive integer ¢ with n > ¢, a
scaled transport equation according to

%w +Q-V,u(E,Q) + [aa(E, Q) + @]w(ﬂ Q)
2n+ 1\ /2n+ 1\ (n — q)!
A Z Z < ) ( 27 ) (n+ Z)!aqankYnk(Q) 8

(4.6) n=gq k=-n

o0 1 1 2 2
/ B $oi (E') / PO )dy! / Po(u) / cos 'y’ / cos gxdx
0 —1 —1 0 0

E —E 1 o
X 68(EI’ ’/’1'” /J/ N’X’ X ,)/ X) +Q(E’Q)'

€ )

We seek the asymptotic limit of the scaled transport equation (4.6) as the smallness pa-
rameters A, € and (4, ) tend to zero. To this approach, given a positive integer ¢, for n > ¢
we consider the integral

2w 27
/ dE'/ du' P (p / d,uP,‘f(u)/ dx'cosqx'/ dx cos gx
0 0

!

XUS(EI “I’u _I’I’;XI’X ;X)wnk(El)

)

557 (A-w)/ 1 @r—x)/7
2/, df/ P" u+5n)/ dupﬁ(u)/ cos ¢(x + ¢)d¢
—FE/e — -1 _

X/

x / dx 05 qx33 (B + €€, & i+ 61,75 x +1C, OB + €6),
0

where, in the second equality, we changed the integration variables from E’ and ' = (¢/, x')
to &, n and ¢ according to (4.2)-(4.4). Thus

gdy [™ (1-p)/é 1 @r—=x)/v 2
as) K=(%F [ I dn [ P [ dc [ cosgxan) Fuste),

(=1-p)/o 1 =X/
where
(4.9)  Fur(r) := P¥(pu+ 0n) cos q(x + 7C)65(E + €&, & o+ 0n,m; x + ¢, Q) onk(E + €§).

We now Taylor expand F,; about € = § = v = 0; where carrying up to quadratic terms in
smallness parameters yields

(4.10) Fo(x) = {TIE Fr(ro) +(9( 3 ey ) nk(aro-f—(l—a))

t+j+v=3
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where
0 92 1 o2
{T}i = 1+6§—+5n8 +7€—+ (e’ o5 T2 g
(4.11) X o ,
(VC) 856770]38 wféaEa 57"<auax :

further 0 < a <1 and

Fur(ro) := PX(1) cos qx¥ni(E)65(E, & 1,15 X, €)-

To proceed, we assume that we can replace the lower limit of integration over £ by —oo,
and that the error we make in doing this is O(e®) or smaller. This is certainly legitimate if
the scattering kernel falls off exponentially from its peak at £ = 0. However, if the kernel
falls off algebraically at too weak a rate, this replacement may increase the error in the
Fokker-Planck treatment over the O(e3) error indicated in (4.10). The error introduced
by the above replacement makes our treatment in here as an asymptotic, rather than a
convergence approach. As a consequence of this replacement is that we may use, in our
asymptotic derivations, the commutativity assumption

oP oP
(412) (gg)paEp = aEP (gg)p’ p = 17 2

Relation (4.12) is useful, e.g., in zero moment expansion (¢ = 0) it yields analogue expres-
sions for the coefficients of differential operators in angle and energy variables (which is not
the case in higher moments) leading to a unified operator representation. For simplicity
we shall use the “formal” notation

(2m—x)/ 27
(4.13) / dnd,udg“dxz:/ dn/ d,u/ dC/ dy,
52082 (—1-w)/ -x/v 0

Thus inserting (4.10) in (4.8) and using the above assumption, leading to (4.12), on £ we
may write

gy [ 0 0 0
K=>-1 a — —
A /Oo d¢ . Pl(p) cos(gx) - [(1 +apel + 577a + véax
1 0?2 1 82 82
+ 5552 )" + 50N 5 (vo
20F 8,u
(4'14) 82 2 82
+5n8E8 e + %aEa §+5'777<W)fnk(r0)

+ (9( Z g0y ) we(org + (1 —a)r )] dndud(dy.
i+j+v=3
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We now change integration variables in (4.13) from &, 7, to E', ', " according to

E—-FE'
(4.15) §= ;
15
I_
(4.16) n=5=F,
X —x
(4.17) 5

Note that equations (4.16) and (4.17) are identical to equations (4.3) and (4.4) respectively,
but equation (4.15) is not identical to equation (4.2) (the E and E’ are interchanged). For
isotropic background media this is motivated by the angular reversibility relation (2.5),
whereas for anisotropic media it is included in the asymptotic procedure. We use the
simplifying notation

1 1 2m 2m
(4.18) / dp'dudyx'dx :=/ d,u'/ d,u/ dx'/ dx,
52@52 -1 -1 0 0

and define

1 E-F ,py—p ,xX—x
. pq / L
gA(I'()) S Pn (,U,) COS(QX) A Os (Ea - s 5 ~ ) .

Now recalling (4.9)-(4.13); and using (4.15)-(4.17), the equation (4.14) can be written as
follows:

419
9 ) B
K= dE'/ PI(u) cos(q 1+ —(E—-E")+ - (v =)=
/ S22 (X)K 57 )+ (1 “)au (x X)ax
1 6° ne o Loy 2 0% 1 62
- y(E—E»M'—) y(E—E)
bl aEau X =X 5Eax

2

+ (W =) (X~ X)aaa ) (QA(I‘OWnk(E))

+ (9( Z 67y )QA arg + (1 — o)) (aE + (1 — a)E')] du'dudyx'dy.

i+j+v=3

Below we shall frequently use the symmetry relation (2.5) and the identity

1 E—F' ' '
Ga(ro) = Pl(p) COS(qx)K&s(E, . il B 5 By X 5 X)

(4.20)
= PZ(u) cos(qx)os(E, E's ', s X', x) = Pl(p) cos(qx)os(E, E'; p, i’ X, X')-

Note that the bottom limit of integration on the E’ integrals can be replaced by zero since
the scattering kernel vanishes for negative E’ (the probability of scattering to a negative
energy is zero). In the remaining of this section we do not retain the explicit cross-term
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derivatives. This is because the standard Fokker-Planck operator does not possess cross-
term differentiations. In a similar case Hagedorn [15] has given a full development retaining

all the involved terms up to a significantly high order of accuracy. Now we split the right
hand side of (4.19) as

K (B) i=[KC8, (B) + KE,(B) + Kiy(E) + 103, (B)] (e (B))
(421) vo( Y Yoy 8T,
t0+jo+ro=2 i1+j1+v1=3
’io,jo,VoIO,l; il,jl;”l :0,1,2,3,

where

2w 1 2w
= / dE'/ du[P(p / dx cos? qx/ d,u'/ dy'
(4.22) 0 o

Os (E7 Ela ,U,, :U’ ) X7 X,)) = AZ,2O-S(E7 Ela /1’7 :U’I7 X7 XI)7

(4.23)

it (8) =t { [ - )+ L2 By (B Bt o) )

(4.24)

KB =L [ = ) 2+ 50 = ] (PR cosanan (B, B )

with

o] 1
425 At = [ [ apsor [ aveos o [ an / o, r=12,
0 -1 0

and KX, (E) is defined analogously as ¥ (E). Inserting K in (4.6) we thus have
10%(B,9)

v o +9'Vz¢<Ea9)+[%(E,mws(E,m]w(E,m

=3 3 () () @) >
[/czqw) + KE(B) + Kty (B) + Ky (B)| (4 (B)) + Q(E, )
o X TR ve( x5

t0+jo+ro=2 i1+j14+v1=3
ZOa]OaI/OZOal; Zla]laV1:0a152a3'

(4.26)

Now the idea is: (i) to move in ¥;4(2) inside K[, (E) (in front of o,) and (ii) to move
out ¥k (F) in the remaining terms outside Af . operators. In this way, for the “zeroth
moment”, (corresponding to the choice of ¢ = 0), the contribution from K (E) will be
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cancelled by a principal part of o4(FE,(2) on the left hand side. This would correspond
to the cancellation of the large in and out scattering terms. Likewise the K[ (E) term
would result in a convection-diffusion term in energy variable with the convection of order
O(g/A) and the diffusion of order O(¢?/A). These terms coincide with the corresponding
terms in Pomraning’s [22] treatment of the isotropic media case. In the case of general
moments, (i.e. for ¢ > 0, integer), the terms involving KY (E) and K[, (E) would have
similar behaviour as above. However, because of the presence of Y,(u, x) in (4.6), the
contributions from the terms corresponding to K% (£) and KX, (E) are somewhat different.
For these terms we may write

u o 1., L& y
gy OB =N, [( W+ 5 — 5]
( w)cos gxos(E, E', Q Q)) + L4 (E,Q),

and analogously introduce the rest term LY (E,2) in representing Y;;(Q)KX (E) in a
similar form as (4.27). Inserting Yy, (Q2)Kk (E) and Y, (Q)KX, (E) in (4.26), yields (i) a

correctly ordered angular diffusion of 0((52 +7?)/ A) compared to 0(5 / A) in [22], and

(ii) a convective term of O (((5 +v)/ A) , corresponding to the contributions of the first order

terms involving (u' — p) and (x' — x). Such a convective term in angle is missing in the zero
moment representation of [22]. Further, we point out that, the diffusion part of the result
of [22] is based on the differential equation (n(n +1)+ V%) Y,e(Q) = 0, satisfied by the
surface harmonics (see also Section 6, below). More specifically in the Taylor expansion, of
the Legendre polynomial P, (w) about w = 1, the second term 6P’ (1) = dn(n+1) ~ —4V3

is of order O(4). This gives rise to a full diffusion of order O(§/A) = O(1), with § ~ A.
In general, (when higher moments are involved), the diffusion, involving second order

derivatives, has the correct order of O (((52 +72)/ A) ~ O(8+7). The serious draw-back in
the higher moment representation is related to the decrease of the absorption term o, (E, €2)

corresponding to the contributions from L4 (E,€) and LX (E,):
(4.28)

5B, QU(E, Q) = (04(E,2) +0,(E, D) )4(B, ) ZZ 2"“ Z;Zi:x

n=q k=—n

gtk | Yok ()N, 205 (B, B', 0, 2) + Ly (B, Q) + L3, (B, Q)| o (B).

Thus the higher moments expansion simply requires either an assumption on, or a guar-
antee of the positivity of 5,. In either case this is a strong and cumbersome condition to
fulfil. We skip the details and, assuming positive o,, summarise the results of this section
in the following ¢-th moment asymptotic Fokker-Planck expansion of the linear transport
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equation in isotropic background media with anisotropic scattering:

(4.29)
1 E. Q
;% + Q- V;ﬂﬁ(EaQ) + 6a(EaQ)w(E7Q)
= [ 3, 1 0°
— E'S|==(F - E+ -—=(E - E')?| -
>3 [ ae{[oF - B+ 555 - B
( ;]Lk:(E’ Q)FEL,ZJS(E’ El: Q: Q,))
0 1 0? 0 1 0?
+ T8, | - Wap T =g+ (X = X)g T 5 - X)Za—XZ] :
(v8k(B, Q) PI(0) cos axos (B, B,0,0)) |
5i0 5j0,yl/0 Eil 6]1 f}/lfl
+Q(E,Q)+(’)( 3 X )+0( > )
to+jo+ro=2 t1+j1+v1=3
iOajOal/O:Oal; ilajlaylz()ala?a?)a
where
2n +1)2 (n — q)!
(4.30) Zk(E, Q) = ( = ) En+q;!aqankYnk(Q)¢nk(E),
and

1 2w 1 2
@s) T [ aupr [aveoso [ de [a, r=12
— -1 0

1 0

is the energy integrand in A? . Now we assume that the integrations do not change
orderings. Moreover since &, 7 and ¢ are O(1) variables, then according to relations (4.15)-
(4.17); (E—E') = O(e), (0" —p) = 0(0), (X' —x) = O(7) and o,(E, E', 2, Q) = O(1/A).
Hence we have obtained both convective and diffusive terms in both energy and angular
variables of magnitudes

(4.32)

(E—E"o,(E,E',Q,QY) = (’)(%), (order of convection in energy)
(4.33)

(B — E'20,(E, E',Q,Q) = o(
(4.34)

[(,u' —p)+ (X - X)] o,(E,E',Q,Q) = (’)(%), (order of convection in angle)
(4.35)

[(u’ — )+ (X - X)Q} os(E,E',Q,Q) = 0(

82

Z>’ (order of diffusion in energy)

62 + 2
A

), (order of diffusion in angle).
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We emphasis that all these orderings are in the integrand, and the assumption we made in
writing (4.32) through (4.35): that the integration do not change the ordering is a severe re-

striction. The same holds true for taking the O ( D ot ot vo=2 (sioéjoq/"o)/A) , 0, Jo0, V0 = 0,1

and O(Zil+h+ul:3(sildjlfy”l)/A), i1, j1,v1 = 0, 1,2, 3, terms out of the integrals involved.
It is not obvious that the integration do not change the ordering since o, itself contains the
smallness parameters €, and . The situation again depends upon the rate of fall-off of
the scattering kernel from its peaks in energy and direction. For exponential fall-off the re-
lations (4.32)-(4.35) are correctly ordered, but for algebraic fall-off the order of one or more
of these terms may be larger than indicated. This observation again places a restriction on
the scattering kernel for the Fokker-Planck differential operator to be an asymptotic limit
of the exact integral operator.

As we pointed out earlier, in the equation (4.29), the dominant part of in and out
scattering term; o (E, Q)Y (F, Q) has cancelled out. Further, a positivity assumption for
7.(E,Q), defined in (4.28), is included. In the resulting Fokker-Planck equation, the
convective terms in energy and direction are of the same order: O(¢/A) = O(§/A) =
O(v/A) = O(1); likewise the diffusion terms in energy and direction variables; are of order
O(e?/A) = O(e) and O(6?/A) = O(v?*/A) = O(e), respectively. In this setting all the
involved differential operators are correctly ordered which is not the case in the zeroth
moment expansion.

5. THE FOKKER-PLANCK DEVELOPMENT IN ANISOTROPIC MEDIA

The studies in previous sections are indicating that the surface harmonics expansion,
because of their symmetry structure, are not suitable for problems considered on anisotropic
media. Any effort in this direction must start by expanding the scattering kernel o, and
such an expansion corresponding to (2.2), for the isotropic case, i.e,

0s(E' = B, - Q) = ConnYun (- ),

would read as

(5.1) 05(B' = E,Q = Q) = Cm " Yoo (Q) Yo (),

in anisotropic case. Dealing with these new coefficients C™" would lead to both lengthy
and cumbersome formalism than those of Sections 3 and 4. It appears, however, that in
this case for asymptotic treatment of the scattering kernel &4 a direct approach is more
appropriate. Below we shall use the same scalings as (4.1) and (4.5) with the fast variables
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introduced in (4.2)-(4.4) and write the integral on the right hand side of (1.1) as

2
/ dE’ / dV o) =— / dE' / dp' (1 2)1/2 / dy'
S2 0

-E ,p-p X —x
(E’ i =X 5 )¢(E’,u',x’)
5 (1=w)/ 1/2 (2m—=x)/7
S d&/ (1= s on?) Tan [ e
—E/e 1-u /(5 =X/

os(E + &, &+ 0m,m; X + 7 QOY(E + €6, i+ 6n, x + (),

where, as in (4.7), in the second equality, we changed the integration variables from E’ and
Q' to the fast variables £, and (. Thus we define

~ ) o0 (1—p)/o 2m—x)/7 ~
(5.3) K= (TV / de / dn / dC)}"(r),
—E/e (=1-p)/6 =X/
where
(5.4)

N /
F(r) = (1 — (u+ 572)2)1 265(1*7 + &, & 1+ 0m,m X + ¢, QU (E + €€, i+ dn, x +7C).

Taylor expanding F about £ = § = v = 0; and as in Section 4, carrying up to quadratic
terms in smallness parameters yields

(5.5) F) = (T} Fr) + 0 Y2 €099) F(amy + (1~ )r),
i+j+r=3
where {T}%"Ifx is defined by (4.11), 0 < a < 1 and
(56) ﬁ(rﬂ) = (1 — )1/2A (E g My 105 X5 C)lb(E,,U,, X)
Now by the same argument as in Section 4, (on the change of lower integration limit
for £ : —E/e - —oo — 0), and also using the angular and cross-term differentiation
counterparts of (4.12), we finally have that
(5.7)
K =5,(E, Q) (E,Q) + i[n (B, Q)y(E Q)} o [RQ(E Q)p(E Q)]
S bl ? aE ? 8E2 bl
+ Dlsum,0uE.0)] + 2 [ 0ue,0)] + 2 [nE06E )]
au Y a 2 Y aX Y Y
0? 0? 0?
+ 5 [T (B, )| + gra [U(E, (B, D] + 5o [V(E.2v(E,9)]
82 z(sg o
+8u8X[W(E’Q)¢( o) +o( > ) idr=0123

t+j+v=3
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Note that in (5.7) for the highly forward peaked scattering with (u — ') = O(), we have
that

2w
(5.8) s(E, Q) / dE'/ d,u/ dx'(1 — p®)Y20,(E, E'; i, 115X, %),

is of the same order as o(FE, (), defined in (2.1), with the corresponding variable weight
function (1 — p/*)'/? replaced by the constant (1 — p2)'/?. Further we have that for k = 1,2,

k
/dE’E E') /du/ dx' (1 — )P0y (E,E's i, 1 x, X') = 0(%),
0
1 ! o 1/2 / ! ! &*
/dE/duu—u / dx'(1 = ) GS(E,E;u,u;x,x)=0(Z),
-1 0

2w &
TelE, ) = E/O dEI/Id/"/O dx' (X' = )" (1= 1) Pay(B, EB's p, i x, X)), = 0(%).

??‘I»—l

Ri(E, Q) =

Similarly the cross-differentiating terms, which we did not retain in Section 4, are now

1

)

U(E,Q)=/OoodE'(E E')/ dy' (1 —u)/%dx'( — 1) oy (B, B i s x, X)) = O(Z>

! ! ! €
V(EaQ)Z/ dE'(E - E/du/ ax (X = )1 = ) 0, (B, B's g ' . X) = O( 3 ),
0

2
o
Wiz = ["am [ a7 o 00 - 08 Bk = 0 (),
0 —1 0

The main features of this simple derivation are as follows:

(i) Here we have not omitted the cross-differentiation terms.

(ii) In scaling back from the fast variables to the original ones, we have used (4.16)-(4.17)
rather than (4.3)-(4.4), (the latter one is more natural in our case). We may motivate our
choice of fast variables assuming either a “detailed balance” of the type (2.6) or a periodicity
assumption of the form

14+2u 2r—=2x _ 1 2r
[ [ Faga ~ [ an [ Fay
—142u 2x -1 0

Otherwise, to derive a result similar to (5.7) a formalism, (as that of Section 4 leading to
(4.27)), involving the integration limits in angle would be necessary. Now the emerge of
convection-diffusion operators and their orderings, in all velocity components, is evident.
Hence inserting K of (5.7) into (5.2) for the right hand side of the transport equation
we obtain the corresponding Fokker-Planck operator containing also cross-differentiation
terms. The details are similar to the corresponding parts in Section 4 and therefore are
omitted.
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6. CONCLUSION

In our derivation of the Fokker-Planck operator we have obtained diffusion both in
angle and energy. Diffusion terms are now correctly ordered (of O(¢2/A) = O(e) and
O((62++%)/A) = O(¢) in energy and angle, respectively) compared to the zeroth moment
studies where the angular diffusion term is obtained from a Sturm-Liouville eigenvalue
problem satisfied by surface harmonics:

(6.1) )2 ()2 o+ )] Va0 = 0
N 5,u /J’ 5,u 1_/1/2 8X2 n\n nm :U’7X -
where the eigenvalues n(n + 1) = P/ (1) being first order derivatives in Taylor expansions
have the first order coefficients resulting to diffusion of O(6/A) = O(e).

As a result of assuming “highly forward peaked” scattering we obtained our Fokker-
Planck limits in Sections 4 and 5. The same treatment is not applicable, e.g., to the
Henyey-Greenstein kernel

os(E")
27

Here ¢ is the Dirac delta-function, and f = (g + 2r(0,9))/2, with g being the generating
function for the Legendre polynomials:

(6.2) oy (E',B,Q - Q) = F(Q-Q)8(E - B).

1
1 — 2rw + r2)1/2

(6.3) g(r,w) := ( = ZT"Pn(w), w=0-Q,

(6.4) flr,w) = L—r - i (M)rnpn(w).

2(1 — 2rw + r2)3/2

. From (6.4) we can see, in terms of a scaled variable, that the rate of algebraic fall off of this
kernel from its peak, (as r — 1), at w = Q- Q ~ 1 is O(A3/?), with A = (1 —w)/(1 —7)2
This fall off rate is too weak and therefore the Henyey-Greenstein scattering kernel does
not possess a Fokker-Plank asymptotic limit, see [22] for further discussion.

Another point of concern is the vulnerability of assuming simple homogenization made
by transferring the velocity dependence of the mean free path A to the cross-sections.
Similar assumption can lead to significant error in the asymptotic study of the screened
Rutherford pencil beam problems, (see [23]), with hetrogeneities and the forward peaked
scattering kernel defined by

k(1 +k)
(6.5) oo(w) = (14 2k — w)?’

w=0Q-Q,

where k is the screening parameter.

In summary:

(i) A necessary but not sufficient condition for equations (4.19) and (5.7) to lead to
Fokker-Planck asymptotic limit of equations (3.8) and (1.1), respectively, is that the scat-
tering kernel be peaked in both angle and energy.
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(ii) The additional sufficient condition is that this peaking be either exponential or
strongly algebraic.

This conclusion is in common for both anisotropic media and higher moments expansion
of isotropic media cases of this paper, as well as the “zeroth moment” expansion of the
isotropic media case studied by Pomraning [22].

[1]
[2]
[3]
[4]

[5]
[6]

[7]

REFERENCES

D. Anistratov, An asymptotic analysis of the Fokker-Planck limit of a general spatial moment method
for the transport equation, Transport Theory Statist. Phys. 28 (1999), no. 7, 679-708.

A. A. Arsen’ev and O. E. Buryak, On the connection between a solution of Boltzmann equation and
a solution of the Landau-Fokker-Planck equation, Math. USSR Sbornik 69 (1991), no. 2, 465-478.
M. Asadzadeh, Streamline diffusion methods for Fermi and Fokker-Planck equations, Transport The-
ory Statist. Phys. 26 (1997), no. 3, 319-340.

M. Asadzadeh, Characteristic methods for Fokker-Planck and Fermi pencil beam equations, in Rarefied
Gas Dynamics, eds. R. Brun, R. Campargue, R. Gatignol and J.- C. Lengrand, (Cépaduus), 2 (1999),
202-212.

M. Asadzadeh, A posteriori error estimates Fokker-Planck and Fermi pencil beam equations, Math.
Models Meth. Appl. Sci. 10 (2000), no. 5, 737-769.

M. Asadzadeh and A. Sopasakis, On Fully Discrete Schemes for the Fermi Pencil-Beam FEqua-
tion, (2000), Preprint 2000-48, Department of Mathematics, Chalmers University of Technology and
Goteborg University.

C. Borgers, E. W. Larsen and M. L. Adams, The Asymptotic Diffusion Limit of a Linear Discontinuous
Discretization of a Two-Dimensional Linear Transport Equation, J. Comp. Phys., 98 (1992), no. 2,
285-300.

C. Borgers and E. W. Larsen, Asymptotic Derivation of the Fermi Pencil-Beam Approximation, Nucl.
Sci. Eng., 123 (1996), 343-357.

C. Borgers and E. W. Larsen, On the accuracy of the Fokker-Planck and Fermi pencil beam equations
for charged particle transport, Med. Phys., 23 (1996), no. 10, 1749-1759.

C. Cercignani, The Boltzmann Equation and its Applications, Springer-Verlag, New York, 1975.

S. Chandrasekhar, Radiative Transfer, Dover, New York, 1960.

P. Degond and B. Lucquin-Desreux, The Fokker-Planck asymptotics of the Boltzmann collision oper-
ator in the Coulomb case, Math. Models Meth. Appl. Sci. 2 (1992), no. 2, 167-189.

J. J. Duderstadt and W. R. Marin, Transport Theory, Wiley, New York, 1979.

G. B. Folland, Fourier Analysis and its Applications, Wadsworth, Belmont, CA, 1992.

G. A. Hagedorn, Molecular Propagation through Electron Energy Level Crossings, Memories AMS,
1994, no. 536.

S. S. Holland, Applied Analysis by the Hilbert Space Methods, Dekker, New York, 1990.

D. Jette, Electron dose calculations using multiple-scattering theory. A new theory of multiple-
scatteringe, Med. Phys., 23 (1996), 459-476.

B. Lapeyre, E. Pardoux and R. Sentis, Méthodes de Monte-Carlo pour les équations de transport et
de diffusion, Springer, Paris, New York, 1998.

E. W. Larsen and J. B. Keller, Asymptotic solution of neutron transport problems for small mean free
paths, J. Math. Phys. 15 (1974), no. 1, 75-81.

J. Lehner and G. M. Wing, On the Spectrum of an Unsymmetric Operator Arising in the Transport
Theory of Neutrons, Comm. Pure Appl. Math., 8 (1955), no. 2, 235-244.

J. Mika, Neutron Transport with Anisotropic Scattering, Nucl. Sci. Eng.,11 (1961), 415-427.

G. C. Pomraning, The Fokker-Planck operator as an asymptotic limit, Math. Models Methods Appl.
Sci. 2 (1992), no. 1, 21-36.



THE FOKKER-PLACK OPERATOR IN ANISOTROPIC MEDIA 19

[23] G. C. Pomraning, The Screened Rutherford Pencil Beam Problem with Hetrogeneities, Nucl. Sci. Eng.,
136 (2000), 1-14.

[24] B. Su and G. C. Pomraning, A spatial and angular moment analysis of the monoenergetic pencil beam
problem, Ann. Nucl. Energy, 24 (1997), no. 16, 1349-1371.

[25] M. M. R. Williams, Mathematical Methods in Particle Transport Theory, Butterworths, London, 1971.

[26] M. M. R. Williams, Transport theory in anisotropic media, Math. Proc. Camb. Phil. Soc., 84 (1978),
549-567.

[27] R. Zelazny, A. Kuszell and J. Mika, Solution of the one-velocity Boltzmann equation with the first
order scattering of neutrons in plane geometry, Ann. Phys., 16 (1961), 69-78.



20

MOHAMMAD ASADZADEH



2000-01

2000-02

2000-03

2000-04

2000-05

200006

2000-07

2000-08

2000-09

2000-10

200011

2000-12

2000-13

2001-01

2001-02

2001-03

Chalmers Finite Element Center Preprints

Adaptive Finite Element Methods for the Unsteady Mazwell’s Equations
Johan Hoffman

A Multi-Adaptive ODE-Solver

Anders Logg

Multi- Adaptive Error Control for ODEs

Anders Logg

Dynamic Computational Subgrid Modeling (Licentiate Thesis)

Johan Hoffman

Least-Squares Finite Element Methods for Electromagnetic Applications (Li-
centiate Thesis)

Rickard Bergstrém

Discontinuous Galerkin Methods for Incompressible and Nearly Incompressible
FElasticity by Nitsche’s Method

Peter Hansbo and Mats G. Larson

A Discountinuous Galerkin Method for the Plate Equation

Peter Hansbo and Mats G. Larson

Conservation Properties for the Continuous and Discontinuous Galerkin Meth-
ods

Mats G. Larson and A. Jonas Niklasson

Discontinuous Galerkin and the Crouzeiz-Raviart element: Application to elas-
ticity

Peter Hansbo and Mats G. Larson

Pointwise A Posteriori Error Analysis for an Adaptive Penalty Finite Element
Method for the Obstacle Problem

Donald A. French, Stig Larson and Ricardo H. Nochetto

Global and Localised A Posteriori Error Analysis in the Mazimum Norm for
Finite Element Approzimations of a Convection-Diffusion Problem

Mats Boman

A Posteriori Error Analysis in the Mazimum Norm for a Penalty Finite FEle-
ment Method for the Time-Dependent Obstacle Problem

Mats Boman

A Posteriori Error Analysis in the Maximum Norm for Finite Element Ap-
prozimations of a Time-Dependent Convection-Diffusion Problem

Mats Boman

A Simple Nonconforming Bilinear Element for the Elasticity Problem

Peter Hansbo and Mats G. Larson

The LL* Finite Element Method and Multigrid for the Magnetostatic Problem
Rickard Bergstrém, Mats G. Larson, and Klas Samuelsson

The Fokker-Planck Operator as an Asymptotic Limit in Anisotropic Media
Mohammad Asadzadeh

These preprints can be obtained from

www.phi.chalmers.se/preprints



22 MOHAMMAD ASADZADEH

DEPARTMENT OF MATHEMATICS, CHALMERS UNIVERSITY OF TECHNOLOGY AND GOTEBORG UNI-
VERSITY, SE-412 96, GOTEBORG, SWEDEN
FE-mail address: mohammad@math.chalmers.se



