CHALMERS

FINITE ELEMENT CENTER

PREPRINT 2001-04

A Posteriori Error Estimation of Functionals in
Elliptic Problems: Experiments

Mats G. Larson and A. Jonas Niklasson
- . Chalmers Finite Element Center

<« p CHALMERS UNIVERSITY OF TECHNOLOGY
- Goteborg Sweden 2001






CHALMERS FINITE ELEMENT CENTER

Preprint 2001-04

A Posteriori Error Estimation of Functionals in
Elliptic Problems: Experiments

Mats G. Larson and A. Jonas Niklasson

CHALMERS

Chalmers Finite Flement Center
Chalmers University of Technology
SE—412 96 Goteborg Sweden
Goteborg, January 2001



A Posteriori Error Estimation of Functionals in Elliptic Problems: Experiments
Mats G. Larson and A. Jonas Niklasson

NO 2001-04

ISSN 14044382

Chalmers Finite Element Center
Chalmers University of Technology
SE-412 96 Goteborg

Sweden

Telephone: +46 (0)31 772 1000

Fax: +46 (0)31 772 3595
www.phi.chalmers.se

Printed in Sweden
Chalmers University of Technology
Goteborg, Sweden 2001



A Posteriori Error Estimation of Functionals
in Elliptic Problems: Experiments*

Mats G. Larson T and A. Jonas Niklasson ¥
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Abstract

In many applications the main goal when numerically solving a differential equa-
tion is to calculate a quantity of particular interest rather than the solution itself.
Efficiency can be gained by adapting the numerical method to efficiently approximate
the particular quantity. Such adaption may be based on an a posteriori estimate of
the error in the quantity. The error is estimated in terms of a sum of local contribu-
tions estimated by a local computable residual and a weight which is estimated by
solving an associated dual problem. The success of such a method depends on the
accuracy of the a posteriori estimate and the design of the adaptive mesh refinement
strategy. We examine three different levels of analytical estimates of the residual and
corresponding weights numerically in the case of pointwise error estimates. We also
discuss aspects of implementation of the methodology.

1 Introduction

Adaptive finite element methods for approximation of solutions to differential equations are
a fundamental tool in many areas of engineering and science. An adaptive finite element
method seeks to realize a computational goal with as few computational degrees of freedom
as possible. The computational goal may take the abstract form: compute an approximate
solution wuy, such that the error e = u — uy, where u is the exact solution, satisfies

|A(e)| < tol, (1.1)

where A(e) is a functional of the error and tol is a tolerance provided by the user. The
functional A(e) could represent various quantities of interest in a particular application,
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for instance, the heat flux through a part of the boundary in a heat conduction problem
or the stress intensity factor in an elasticity problem, or a standard norm, such as the L?
or energy norm, of the error in a subdomain or the domain itsef. The computational goal
may have a large impact on the optimal discretization and it is therefore important that
the design of the adaptive algorithm reflects the computational goal.

Such adaptive algorithms are usually based on an a posteriori error estimate which
estimate the error in terms of a residual quantity measuring how well the approximate
solution wuy, satisfies the differential equation and a weight obtained from solving a dual
problem numerically. The a posteriori error estimates for the functional A(e) are based on
a representation formula of the error

IMe)| < (Rr, ), (1.2)

where we sum over the elements 7" in a partion of the computational domain. Ry is the
element contribution to the residual, obtained by inserting the computed solution into the
differential equation. Further ¢ is the solution to an associated dual problem connecting the
residual to the error in the functional. A posteriori error estimates can now be obtained
in a various ways by estimating the right hand side of (1.2). We consider three simple
estimates and investigate the efficiency of these different estimates numerically on several
test cases. The a posteriori error estimates are valid for continuous piecewise polynomial
spaces with variable meshsize and degree of polynomials. See, for instance [1] and [9],
for details on such spaces. Further, it is not difficult to extend the estimates to classical
nonconforming elemnts such as the Crouzeix-Raviart element.

Based on the a posteriori error estimates we design an adaptive method seeking to
realize the desired error control using as few computational degrees of freedom as possi-
ble. Here we restrict our attention to h-adaptivity for continuous piecewise bilinear and
biquadratic polynomials on rectangular elements allowing hanging nodes. In the adaptive
method we solve the dual problem numerically, evaluate the a posteriori error estimates,
and adapt the mesh. This process is repeated until the stopping criteria (1.1) is satisfied.

Two important questions arise:

e How accurate is the a posteriori error estimate 7

e [s the adaptive meshrefinement process and its convergence sensitive to the choice a
posteriori estimate ?

In this paper we study these two questions numerically for an estimate of the pointwise
error for a variety of test cases. It is found that in some cases the accuracy of the a
posteriori estimates can detoriate significantly due to the analytical estimates of the right
hand side in (1.2) because of loss of cancellation. This fact is indeed a serious problem if
the estimate is to be used as a basis for a stopping criterion. For the second question we
found that although different estimates may create visually different meshes no significant
difference was found in the rate of convergence. Thus the adaptive refinement process was



rather stable to different estimates. Similar investigations was presented by Barth and
Larson [2] in the context of compressible fluid flow.

A posteriori error estimates related to ours appears, for instance, in Becker and Ran-
nacher [3], Giles et al [6], and Prudhomme and Oden [8]. Weighted a posteriori error
estimates are natural generalizations of the global norm a posteriori estimates presented
in [5]. For a general introduction to a posteriori error estimates we refer to [4] and [10].

The reminder of this paper is organized as follows: in Section 2 we introduce a model
problem and the finite element method, in Section 3 we derive three a posteriori error
estimates. In section 4 we discuss practical aspects of the implementation of the a posteriori
error estimates, including computation of the residual estimators and weights. We describe
the adaptive algorithm. We also present comparisons of efficiency indices for the different
estimates on several different examples.

2 Model problem and the finite element method

2.1 The model problem

Throughout this work © denotes a bounded domain in R%, d = 1,2, or 3, with boundary
['. We let (-,-) be the scalar product in L? = L?(2) and || - || denotes the corresponding L?
norm. Further H* = H*(2) denote the standard Sobolev spaces.

We consider the following boundary value problem: find u : 2 — R such that

-V O'(U) in (2.1)
-o(u) =g on [y,
u=0 on I'p,

where I' = I'p U Ty is a partion of T, the flux o(u) = AVu with A = A(z) € C*(Q) a
symmetric uniformly positive matrix. Using the notation

a(v,w) = (o(v), Vw), (2.2)
I(v) = (f,v) +/1“ gu ds, (2.3)

for all v,w € V = {v € H' : v=0o0n I'p}, we may formulate the weak version of (2.1):
find u € V such that

a(u,v) =1l(v) forallve V. (2.4)

As is well known, if f € H~' and g € H'/?(T'p) there exist a unique solution in V for
I'p # (0 and a solution in V, which is unique up to a constant, when I'p = (). A basic
example is the Poisson equation obtained by taking A equal to the identity matrix and we
will return to this problem in the numerical examples.



2.2 The finite element method

To define the finite element method we introduce a partion 7, = {T'} of Q, with piecewise
constant mesh functions h defined by hlr = diam(7). We let V;, C V be a space of
continuous piecewise polynomials of degree p defined on 7, where p is allowed to be
different at each element 7". The degree of polynomials on each element is defined to be
the maximal degree so that we have complete set of polynomials. Note that there are
several different families of spaces which satisfy this condition, see Szabo and Babuska [9],
and Ainsworth and Senior [1], for details on the construction and implementation of such
spaces. The standard finite element method reads: find u; € V), such that

a(up,v) =1l(v) for all v € V. (2.5)

Note that the meshsize and the degree of polynomials used are allowed to vary throughout
the domain.

3 A posteriori error estimation

3.1 Error representation by duality

We shall now derive an estimate for the error A(u) — A(uyp,) in a given linear functional A(-).
To derive a representation formula for the error in the functional we introduce the dual
problem

a(v,¢) = A(v) forallve V. (3.1)

Setting v = u — up, =: e in (3.1) we obtain:
AMu) — Aup) = Ae) (3.2)
= ale; 9) (3.3)
= a(e,¢ —79) (3.4)
=1l(¢—7¢) — a(un, ¢ — 1Y) (3.5)
=Y (f+V-o(u), ¢ —7¢)r (3.6)

TET,

+ (9 — on(un), ® — md)orary — (On(un) — Onp(Un),  — Td)or\rs
where we used Galerkin orthogonality (2.5) to insert an interpolant 7¢ € V), of ¢ in equality
(3.5), and split the integral into a sum of integrals over the elements, and integrated
by parts to obtain (3.6). The flux o, (us) is a numerical approximation of the true
flux oy, (u), which we choose to be the average o, 4(us) = (0n(u)) + on(uy))/2, where
vE(z) = limg_0,550 v(z + sn), for z € IT.

Introducing the element residual Rr(uy) € H™(T) by

(R (un),v)r = (f + V- o(un), v)r (3.7)

+ (g - Un(uh), U)aanN - (Un(uh) - Un,h(uh)a U)aT\r,



for all v € H'(T), we finally obtain the error representation formula

Au) — AMup) = Z (Rr(up), ¢ — ). (3.8)
TETh
3.2 Error estimates

Starting from (3.8) and estimating the right hand side using the triangle inequality fol-
lowed by the Cauchy-Schwarz inequality on an element level we obtain the following three
estimates of the error

M) = | 3 (Br(un), 6 = 70)r (3.9

TETy,

< Y |(Rr(un), ¢ — )7 (3.10)
TETh

< Y Re(un) - Wr(9). (3.11)
TET

Here Ry (up) and the weight Wy (¢) are estimates of the residual and the local interpolation
error in the solution ¢ to the dual problem defined by

_ If +V - o(un)llr
R (un) = [hng — o (un)loznry + bllown(un) — an(uh)uaT\J o 312)

_ ¢ — 7T
Wr(¢) = |:h1||q5 — 78|lorary + h’1||(/§ _ 7T¢||6T\F:| . (3.13)

Note that the first estimate (3.9) is an identity, the second (3.10) does not admit cancel-
lation between different elements, and in the third (3.11) cancellation on an element level
is also excluded.

Remark 3.1 In several works on a posteriori error estimates, for instance, [3] and [4], an
interpolation error estimate is used to estimate the weight Wr(¢) by ch®|@|r 4, for suitable
«. Here the constant c is in general unknown and the computation of ||z, is probably
not simpler than actually trying to directly compute an approximation of the local inter-
polation error ||¢ — w¢||7. Therefore we have chosen to avoid using the interpolation error
estimate.

Finally, we introduce some convenient notation. We denote the element indicators (or
contributions) El.,i = 1,2, 3, corresponding to estimates (3.9-3.11) by

Ep = (Rr(un), ¢ — 7d)r, (3.14)
Ej = [(Rr(up), ¢ — 7], (3.15)
Ef = Rer(un) - Wr(9). (3.16)



(3.9-3.11) by

Note that the last two indicators are positive and may thus be used as a basis for an
adaptive refinement algorithm. Furthermore, for brevity, we denote the global estimates

E'=) Ej. (3.17)
TeTy,
4 Numerical results

4.1 Test problem

In this section we consider the following model problem

—Au=f in{, 4.1
u=0 onl,

(4.2)
where Q = [0,1] x [0,1], ' = I'p Further f is chosen so that the exact solution of (4.1) is
given by

U(.Z‘, y) = sin 7z Sin ’n’ye_(T/R)z

with 7 = /(z — 0.5)2 + (y — 0.5)2 and R = 0.1, or

(4.3)

u(z,y) = sin mma sin nmy,

given by

(4.4)
for various integer values of m and n. We consider an a posteriori estimate of the error in
a local average centred at a given point (zg,yy) of the solution, i.e., A(e) = (e, ) with 1

w — Ce_(T/R)4’
with 7 =

(4.5)
V(@ —x0)2 + (y — )2, R = 0.05, and the constant c is chosen such that
Jo¥dz = 1. For each test case we calculate and plot: (1) the three error estimates
E*, (2) the efficiency indices,

| E
I'=|—

Y

(&

(4.6)
i =1,2,3, (3) the final refined mesh, and (4) the base 10 logarithm of the quotient of the
element indicators

E3
lo —L,
of estimates three and two.

(4.7)



The finite element method uses tensor product elements on rectangles allowing hanging
nodes, see [1]. In order to eliminate questions on the accuracy of the solution to the dual
problem we actually solve the dual problem using polynomials of degree two orders higher
than the primal problem on the same mesh as we solve the primal problem. Of course this
is not a practical scheme but here our focus is to explore properties and limitations of the
analytical estimates. The interpolant 7m¢ is the usual Lagrange nodal interpolant. That
sufficient accuracy in the dual problem is obtained is clear from the fact that the efficiency
index I' for the first estimate E' is very close to one in all computations.

4.2 Adaptive algorithm

The adaptive algorithm seeks to realize the stopping criterion
|EY| < tol, (4.8)

for a given tolerance tol. The refinement of the mesh is based either on EZ or E3 and aims
at reducing the global residual E’ by a factor v, with 0 < v < 1, i.e.,

E' . <~E., (4.9)

new

with ¢ = 2 or 3. To determine how many elements to refine we assume that the element
contributions satisfies EZT ~ crhy", for constants ¢y, ar and hy the size of T. Under
this assumption we have Ej, ., = Ef ,,27*7. The constant a; can be estimated using
a least squares fit from values on previous meshes. Given a; we can estimate the effect
of refinement of an element can and we can simply start by refining elements with large
residuals until we expect E’_, < vE?,; to hold. In addition, if an element has three refined

neighbors the element is refined and, furthermore, only one hanging node on each edge is
allowed.

4.3 Conclusions

Our numerical results presented below, Figures 1-10, indicate that:

e The use of analytical estimates in the a posteriori estimates can create bad accuracy.
Note that there are no unknown constants in the experiments and thus the loss in
accuracy is only a consequence of the analytical estimates.

e The element indicators (or contributions) are very sensitive to the indicator used,
i.e., there are large local differences between FZ and E3.

e The adaptive meshrefinement algorithm creates meshes which are visually different
when based on different indicators but the convergence of the goal functional is not
very different.

Based on these observations we propose that an adaptive mesh refinement algorithm is
based on EZ while the stopping criterion is based on E'. Mesh refinement could also be
based on E3. However, we believe it may actually be more efficient to calculate E? instead
of E3.



4.4 Future work

To turn these techniques into a mainstream tool used in engineering computations and in
commercial finite element software an efficient and sufficiently accurate way of calculating
the local contributions E} needs to be developed. This is a challenging problem since the
orthogonality properties of the Galerkin method implies that one needs a rather accurate
solution to the dual problem to calculate E}.. For work in this direction we refer to Larson
and Samuelsson [7], where adaptive meshrefinement and solution of the primal and dual
problems are combined in a multigrid method.
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Figure 1: u = sinmasinmye /%’ r = \/(x — 0.5)2+ (y — 0.5)2, R = 0.1. The error is
measured in (zg, o) = (0.5,0.5), p =1, and the adaptive algorithm is based on EZ.
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Figure 2: u = sinmxsinmye "/®’ 1 = \/(x —0.5)2 + (y — 0.5)2, R = 0.1. The error is
measured in (zg,yo) = (0.5,0.5), p =1, and the adaptive algorithm is based on E3.
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Figure 3: u = sinmxsinmye "/®’ 1 = \/(x — 0.5)2 + (y — 0.5)2, R = 0.1. The error is
measured in (zg,yo) = (0.5,0.5), p = 2, and the adaptive algorithm is based on EZ.
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Figure 4: u = sinmxsinmye /B’ r = \/(x — 0.5)2 + (y — 0.5)2, R = 0.1. The error is
measured in (zg,y0) = (0.5,0.5), p = 2, and the adaptive algorithm is based on estimate
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(a) The error. (b) The efficiency indices.
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Figure 5: u = sinmxsinmye /B’ r = \/(x — 0.5)2 + (y — 0.5)2, R = 0.1. The error is
measured in (zg,yo) = (0.5,0.4), p =1, and the adaptive algorithm is based on EZ.
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Figure 6: u = sinmxsinmye /B’ r = \/(x — 0.5)2 + (y — 0.5)2, R = 0.1. The error is
measured in (zg,yo) = (0.5,0.4), p = 2, and the adaptive algorithm is based on EZ.

14



le]
|EY
|E2|
|E3|
o
1
| HEEE ++++++ HEEE !
0.8 H R sz iR
T :J‘r i e HH
0.6 T
i M
> 0 SiiEaEn
04 i
H i 2
g .
0.2 :
e mw :
i i
O 0 L 1 L 1 L 1 L 1 L
0 02 04 06 08 1 0 02 04 06 08 1
x x
(c) The final mesh. (d) log(E3./E2).

Figure 7: u = sinmxsin7y. The error is measured in (z¢,yo) = (0.4,0.4), p = 1, and the
adaptive algorithm is based on EZ.

15



0.8

0.6 H F T FE

02k gEase

(c¢) The final mesh.

Figure 8: u = sinmx sin7y. The error is measured in (z¢,yo) = (0.4,0.4), p = 2, and the

adaptive algorithm is based on EZ.

It

16

25

17
13

0.8

0.6

0.4

0.2

—O Il
[ N 12
5 g8
ol (CERSiSiw\= =) S SS
10° 10 10*
N
(b) The efficiency indices.
.. .
i |
i . u
'm 5.
T O
-. Ly 1
L ) [ .
- - o u
.J | o n | u
n
| |
0 02 04 06 08 1

(d) log,g (E%’/E?r’)

2.34
212
1.89
1.66
1.44
121
0.99
0.76
0.53
0.31



10°@& S 65069

10° 10° 10'
N
(a) The error. (b) The efficiency indices.
1 1 w
T R
P h e e
0.8 FHHer e o 4.93
A FE 4.50
nne 4.07
0.6 i - 3.63
- i . 3.20
0.4 225 P L 2.77
' : ‘ﬁﬁ i%
B .
0.2 Ha B ++++ £ 1.47
) J%Jr H H X; i J? i 1.04
Fh +§++ I i 8
0 s
0 02 04 06 08 1 1
x
(c) The final mesh. (d) log(E3./E2).

Figure 9: u = sin4nx sin 4ry. The error is measured in (zg, yo) = (0.4,0.4), p =1, and the
adaptive algorithm is based on EZ.
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Figure 10: u = sin4nx sin4ny. The error is measured in (zg,yo) = (0.4,0.4), p = 2, and

the adaptive algorithm is based on E?.
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