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A NOTE ON ENERGY CONSERVATION FOR HAMILTONIAN
SYSTEMS USING CONTINUOUS TIME FINITE ELEMENTS

PETER HANSBO

ABSTRACT. In this note we suggest a new approach to ensure energy conservation in
time-continuous finite element methods for nonlinear Hamiltonian problems.

1. INTRODUCTION

In this note, we consider the Hamiltonian problem
(1.1) i+ F'(u) =0

where t € [0,7] and u(t) € R, supplemented with initial conditions for v and u. Our
approach for solving (1.1) numerically works equally well for systems of equations, but for
notational simplicity we choose to work with a scalar problem.

Several authors, e.g., French and Schaeffer [3] and Betsch and Steinmann [1], have pro-
posed the use of the time-continuous Galerkin (CG) method for the approximate solution
of (1.1). The CG method is inherently energy-conserving, but in the case of nonlinear
problems this property hinges on the exact evaluation of integrals and may be lost when
quadrature is used. In [1] this was achieved only in the special case of linear-in-time finite
elements. The general case can be treated either using a Lagrange multiplier technique as
proposed by Hughes, Caughey, and Liu [4], which may not be so useful in case there is
dissipation in the system, or by a special adaptive quadrature rule devised by French and
Schaeffer [3].

In this paper, we propose a third alternative which does not use multipliers and allows
for the use of any quadrature rule (as applied to the nonlinear term).

2. CoNTINUOUS TIME ELEMENTS AND ENERGY CONSERVATION

For solving (1.1) numerically using finite elements, we introduce the space P¥(I,,) of k:th
degree polynomials on I, = (t,,t,+1). On each interval [,, we pose the problem of finding

(U.V) € (P*(1.) x P*(1,,)) N (C2([0, T]) x €°([0,T7))
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such that
tny1
(2.1) / (U%ﬂgﬁ:OV&HW%hL
tn
and
tni1 ,
(2.2) /1 (V+ F'(U)) -ndt =0 ¥ne P (1,).
tn

Since U and V are continuous, the number of unknowns equals the number of equations,
and the problem is uniquely solvable, see, e.g., Eriksson et al. [2].
In particular, by setting n = U and £ = V', we find that

[
UV dt— ——||V t=20
L L LoVl

tnt1 L. tnt1 d
/' VUﬁ+/‘ L eyt —o
b g, dl

from which it follows that the discrete energy E := £||V||?+ F(U) is conserved at discrete
time levels.
The problem from a practical point of view is that since

and

tnt1 .
| P Ui = PU) - FU ),
tn
our chosen quadrature rule must, in order to conserve, also fulfill

Z Wil (Ut:)) Ut;) = F(U(tus1)) — F(U(t)),

where w; are quadrature weights and ¢; are quadrature points. This is not generally the
case (unless suitable modifications of the weights are introduced, cf. French and Schaeffer
[3]). However, we in fact only need to fulfill the relation

/tn+1 VUdt+ (F(U(tps1)) — F(U(t,))) =0

which can be done in a nonlinear iteration algorithm using coordinate transformations.
We have

thi1 ,
(L (V+Pw0nﬁ:0

for all n expressed in a basis spanning P*~1(I,,). We begin by defining an arbitrary nor-
malized basis {¢1, ¢, ... , ¢} for P*=1(1,). One natural choice is

(2.3) {1,27,37%,...  k7"1},
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where 7 =t/(t,4+1 — t,). Next, we change the basis (in each iteration) to {¢1, 2, ... , ¥k}
in such a way that U is explicitly contained in the basis. Since U = >_ ; j¢j, this can be
achieved by simply finding k& corresponding to maxy || and setting

U ifi=F,
o; ifi# k.

If maxy, |ay| << 1, we do not need to modify the basis. Once this is achieved, we can write
(2.2) as

Yi =

F(U(tsr)) = F(U(L,)) i =k,

tnt1 .
(24) 0= / Vo dt + tn+t1
tn / F'(U)pidt ifi#E,

tn
which clearly fulfills energy conservation irrespective of the quadrature rule used for the
integral on the right-hand side. Note that this scheme is also viable in case dissipation is
present; it only introduces exact integration of the crucial term and does not modify the
scheme in the way enforced conservation does (cf. Hughes et al. [4]).

3. NUMERICAL EXAMPLE

Consider a pendulum of unit mass attached to a mass-free rigid rod of unit length under
the action of normalized gravity. The equation describing the motion of this pendulum
can be written

% <%u2 4 F(u)) =0 with F(u) =1— cos(u),

which can be formulated as
(3.1) i + sin(u) = 0,
supplemented by initial conditions. We thus have that
F(u(tnir)) — F(u(tn)) = cos(u(tn)) — cos(u(tni1)).
Reformulating (3.1) as

du u —v
E—l—f(u):(), were u = {U}’f {sin(u)}’

we can linearize around a known state ug, u = ug + 8, to obtain

doé / dUQ
- S~ — [ 20
G+ 3 = (G0 g
which defines a Newton method for this problem: on each time interval I,, = (¢,,t,+1) and
for i = 0,1,... until convergence, set uy = u(t,), solve
doé

- + f(u;) - 6 = —r(u;), and let u;, = u; + 6,
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where r(u) := du/dt + f(u), 6(t,) =0, and
Filu) = [ coso(u) _O1 } '
Using the basis (2.3) for the approximation of § and u, we let § ~ Ba and
u~U=[UV]' =Bb
where

0 (701 0 902 e O Spm ’

and a and b are vectors, each containing 2m coefficients. Note in particular that the two
first components of a are zero by construction of the basis and the fact that 6(¢,) = 0.
This motivates the introduction of the matrix

B _ ®2 0 P3 0 . ©Om 0
red 0 (%2 0 Y3 ... 0 Om

and the corresponding vector a,.q. With this notation, we can formulate the Newton
scheme as to recursively find a,.q such that

tnt1 - T . tnt1 - T
</ Bred (Bred + fl<Uz) Bred> dt) Ared = —/ Bredr(Ui) dt,
tn tn

where B is the modified B ensuring conservation. We write this problem as
Sared - fv

and the solution is updated by U, ;1 = U; + Beqared-
To ensure energy conservation, we can thus formulate the following algorithm.

1. Iterate a few times in the Newton using the conservative basis (in the first iteration,
this can be chosen as (2.3)).

2. Find the expression of the current value of U in the basis (2.3), i.e., find the set {a;},
by solving the problem

tnt1 tni1 i
/ gbiZgbjajdt:/ G;Udt, i=23,...
tn tn

j22

3. Replace the basis function ¢ by the current value of U in Ered, using the recipe
described in the previous Section, and after setting up f, modify position 2k to

(F)o — — ( /tt+ OV dt + cos(U(t,)) — cos(U(th))) .

4. Repeat from 1 until convergence.
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Since S has to be set up anew in each iteration irrespective of whether we change the basis
or not, the additional cost is low.

We solve the problem using a first and a second order polynomial approximation on
the interval T = [0, 16], using twenty equally distributed time-steps. The accuracy of
the numerical integration has to be sufficient for the integration of the “mass matrix”

corresponding to
tnt1 =T .
/ BI‘edBred dt;
tn

so we choose one-point Gaussian integration in the linear case and two-point Gaussian
integration in the second degree polynomial case.

5.1

5
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Fi1GURE 2. Linear polynomial solution and energy using the proposed method

In Fig. 1 we show the solution and the (interpolated) energy using a linear polynomial
approximation without energy conservation, and in Fig. 2 we show the corresponding
solution using the proposed method. Here, clearly, the conservation at the nodes is advan-
tageous.

In Fig. 3 the solution and the (interpolated) energy using a second degree polynomial
approximation without energy conservation is shown, and in Fig. 4 we find the correspond-
ing solution using the proposed method. Here, we note that overshoots and undershoots
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FiGURE 4. Second degree polynomial solution and energy using the pro-
posed method

will still appear if the solution is plotted as a second degree polynomial; conservation is
restricted to the discrete time levels.

4. CONCLUDING REMARKS

The basic continuous space-time finite element method only conserves energy exactly
at discrete time-levels in case the numerical integration is (sufficiently) exact, which may
be difficult to decide beforehand for nonlinear Hamiltonian problems. We have suggested
a simple modification of the method which ensures energy conservation at discrete time-
levels. In future work, we will make a more detailed study of the performance of the present
approach compared with the different alternative methods proposed in the literature, in
the case of vectorial Hamiltonian problems.
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