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Abstract

We present a new numerical procedure for modelling steady motion of interfaces in
groundwater flow. A modified version of the level set method utilizing a technique from the
method of vanishing viscosity is developed and solved together with the time independent
Navier-Stokes equation. Simulation for steady non-linear seepage flow through porous media
is performed. The discretized-coupled system is solved over a fixed mesh domain. The
resulted numerical scheme allows tackling the front motion faster and simply with less
computation efforts. The Streamline/Upwind technique is used to stabilize the solved-coupled
system of FE-equations over unstructured 2D and 3D FE-meshes. Examples on the
application of the technique for evolving sharp interface under a steady state of seepage flow
in embankment dam are investigated.

1. Introduction

The level set method was recognized as a simple and versatile technique for computing and
modelling motion of interfaces in many areas where multiphase flow are studied [1,8]. The
main idea of using this technique for capturing sharp interfaces is to avoid the sequences of
remeshing the flow domain and to use the one-phase PDE equation to model two-phase flow
[4,5]. These reductions in the number of the needed computation efforts make the level set
method competitive with other tracking methods and provide the technique with simple tools
to relate unbounded number of phase dependent variables to the interface motion and its
position. The level set method is constructed on the base of adding one extra variable and one
extra PDE of the hamiltonian-Jacobi type to the governing flow equation [8]. The PDE has
characteristics of initial value problems and it is simply derived from the definition of the
location of the interface. The location of the interface is defined by the zero level set (at least
Lipschitz continuos) of a smooth function φ(x, t), i.e. { }0),(:)( =∈= t  tnterfacei xx φΩΓ  where



x denotes the geometric position of the interface. The level set function has the following
properties
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Where Ω1 and Ω 2 are the domains of the fluid phases. Hence, the interface can be found by
capturing the zero level set at later time. The motion of the interface is localized by advecting
the level set values of φ(x, t) with the velocity field u [6]. The advection equation is
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where the velocity is arbitrary elsewhere. Actually this is the main difference between the
level set equation and the fast marching method where a stationary boundary value problem is
solved to find the arrival time of the interface that advecting by a positive velocity field (u >
0) [8].

Generally, problems with sharp interface usually preserve discontinuous initial profile at the
interface or in the vicinity of the interface. The discontinuity characteristic gives arise to
numerical instability and reduce the accuracy of the solution for the final location of the
interface. Furthermore, if the dependent phase variables are extremely different, the
coefficients of the produced element matrix exhibit large jumps, which conserve strong
discontinuous characteristics across the interface. However, numerical formulations towards
simulating one phase flow with an external interface (Free surface) are well addressed in the
literature. The one phase model flow based on the fact that the significant difference between
the phase dependent variables make use to neglect the effect of the weaker represented phase
e.g. air- water system. However the extend of the location of the external free surface is still
to be accounted for explicitly. Hence modification algorithm of the mesh during each iteration
and time steps is required, which is not promising technique in case of complex geometry. We
refer to [2, 10] for the application of moving mesh technique.

The main issue in this study is to develop a technique that can handle moving boundary
problems with fast numerical scheme and to produce accurate sharp interface on a fixed mesh
domain. Recently, we simulated 2D and 3D steady seepage flow problems in Rock-fill dams
by utilizing the Interface Capturing technique (ICT) [6, 7]. The ICT is based on the
implementation of the Initial Value Problem (IVB) of the level set method. The
implementation has shown powerful tools to model unbounded number of phases by a unified
phase model. Furthermore, problems involve sharp interface motion that accompanied with
complicated geometry can simply extend from one-dimensional to two- and three-
dimensional flow problems. However, using technique derived from the level set method
(IVB) stipulate a certain stable numerical scheme and solution algorithm. Recently we
addressed a special iterative solver to avoid numerical instability [6, 7]. The main idea was to
normalize the IVB solution of the front by using an artificial time step then to solve the
system by a block like iteration approach. The algorithm used produces a stable and accurate
solution, at the same time the convergence order required definitely large number of iterations
and time steps to reach the tolerance error.



In this article we have investigated a new solution spectrum. A numerical scheme for a
coupled system of the time independent Navier-Stokes equation and the stationary advection
equation is formulated. The scheme implies the regularization of the advection equation. The
regularization is arisen of a technique derived from the vanishing viscosity method. Then the
SUPG- and the PSPG-type weighting function are used to provide accuracy and stability for
the solved system. We also incorporated into the new method a sort of sharpening algorithm
for the front [6]. Our experience of this technique has shown that the new numerical scheme
is very fast and required less number of iteration to reach the preset tolerance and certainly for
three-dimensional flow problems.

In Section 2 we review the formulation of the stationary level set method and stability of the
solution, The Governing flow equation for porous medium is presented in Section 3. We
provide details about the finite element formulations and solution algorithm for the coupled
system in Section 4. Numerical examples are presented in Section 5 and we end with the
conclusion in Section 6.

2. Stationary version of level set method

The numerical scheme implies the regularization of the advection equation (IVB):
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The theoretical justifications for non-oscillatory discretization of the stationary level set
method arise from the theory of artificial viscosity solutions for the IVB. The viscosity
solution [3] has been applied to a range of Hamilton-Jacobi type PDE, which gives accurate
computer simulations and unique solutions [9].

Our approach was to consider the approximation of the Hamilton-Jacobi PDE for ε > 0:

) (0,  in                             .0 Ttn
t ∈×ℜ=∆−∇⋅+ εε φεφφ u (4)

The idea is that (3) involves a fully nonlinear first – order PDE, while (4) is an initial – value
problem for a quasilinear parabolic PDE, which turns out to have a smooth solution. The term
ε∆ in Eq. (4) is regularizing the Hamilton-Jacobi type PDE. Then it is proved that, where

0ε →  the solution of the level set function φε of Eq. (4) will converge to some sort of week
solution of Eq. (3). This technique is the method of vanishing viscosity.

We refer furthermore to [3] for more details on the existence and the uniqueness and the
motivation for the definition of the viscosity solution. The algorithm adopted here is to solve
Eq. (4) for steady state together with the time independent Navier-Stokes equation and the
compressibility constraint. The SUPG- and PSPG-type weighting function permits the usage
of the same interpolation function over all the unknowns and provides reasonable accuracy to
the solution [11].

Nevertheless, the motivation behind the development of the stationary version of the level set
equation is that equation (3) describe the motion of the fluid interface in ℜn, the solution of
this equation has the characteristics of developing discontinuities. The discontinuities known



as shock wave across the fluid interface where the fluid can undergoes different negative and
positive topological changings. Actually the shocks can arise due to the defined initial profile
of the fluid interface on the finite element field. Particularly these shocks are functions of the
IVB. Now the artificial viscous term added to the stationary level set equation performs as a
an artificial viscosity term,
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The Laplacian of the viscous term acts as a smoothing term and prevent the development of
these undesired shocks. However, as ε > 0 it is simply to show that the solution will remain
smooth for all time [0, T]. Actually, this technique is known nowadays as the perturbation
theory.

On the other hand the smoothing of the initially discontinuous field of the level set function is
simply performed through some built-in interpolation in the numerical formulation. Noting
that the smoothing has nothing to do with the shock or artificial diffusion. Actually the
sharpening and smoothing technique [6] is just a consequence of interpolation for the
discontinuous function by the specified continuous finite element field. Furthermore, it is
convenient to keep the level set function constant in each fluid phase, which is consistence
with mathematical formulation. However, any initial profile can be used for the solution as
well as the interface defined by the zero level set function.

3. Governing equations

The simulations based on solving the unified time independent Navier-Stokes equations of the
incompressible fluids. The non-Darcian flow equation (( ) )

m
B A+ ⋅ u u  is adopted and

incorporated in the momentum equation instead of the convection term ( ⋅ ∇u u ). The power m
is ranged between one and two. In the present formulation the power set to one to assemble a
quadratic inertial term. We refer more to [6] and [7] for the motivation of the incorporation of
the quadratic term in our formulation and particularly for turbulent flow in porous medium.
The momentum conservation equations and the incompressibility constraint can be written in
the following vector form:
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where Ω  denote the space domain, while the time domain t is overall equal to zero. The
symbols u, p and f are the velocity vector, the pressure and the body force due to gravity. The
symbols ρ, µ, and ne are the density, the dynamic viscosity and the porosity of the porous
medium. Whereas ikµ=A and ikĉρ=B  are the Forchheimer parameters. The symbols
ki, ,ĉ  represent the intrinsic permeability of porous medium and the constant of the inertial
effect, respectively [6].



We model in this paper a problem with a liquid-gas interaction. Hence, we have fluid l and
fluid g with densities lρ  and gρ  and viscosities lµ  and gµ . The gas here is the atmospheric
air that has a sufficiently low density. The free surface function φ (Level Set function) serves
as a marker identifying the water and the gas domain.

We combined the two-phase variables in the flow domains by the following
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where the evolution of the sharp interface is governed by the stationary level set equation (5)
in Section 2. Actually the equations (7) and (5) constitute the law for the fluid system. The
accuracy of modeling this law is depending on the accuracy of locating and prorogating the
front between the level set functions of the flow domains.

The system of equation above is completed with an appropriate set of boundary conditions, an
initial guess for the velocity field with divergence-free conditions and the initial guess of the
level set profile in the flow domains.

4. Numerical formulation

We consider in this section the stabilized FE-formulation for the time independent
incompressible Navier-Stokes equations and the stationary level set equation. From Section 3,
we have Eq. (6) and Eq. (5) with the boundary conditions uu =  and σσ =⋅ n  on Γ .
Whereas Γ  is the boundary of the domain Ω . Then, if uh, ph and φh are the discretized solution
belonging to the appropriate solution space, the stabilized Galerkin formulations of (6) and (5)
is to find uh, ph and φh such that,
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for all weighting functions qh, wh and ψh belonging to the appropriate specified function
spaces. While Gh is the boundary conditions associated with the momentum equation. The
terms τSUPG, τPSPG are the stabilization parameters that depend on the mesh size and the
velocity field [7]. The final coupled system of finite element equations becomes,
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where the indexes i,j = 1, 2, 3 and Φ~,~,~   i pu are the nodal values. The coefficient matrices in
the system (10) has the following properties,
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Where in each element the velocity, pressure and φ fields are approximated by,
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Where ϕ, ψ and ϑ are appropriate basis functions for the approximation. In the
implementation below we chose ϕ = ψ = ϑ. We observe that the equation (10) is non-linear
and unsymmetric.



We further notice that equation (10) is coupled implicitly to the other field of equation by the
non-linear terms ∑++ iiiii u SED )(  in the diagonal. While it is related implicitly to the
system of equations above by the density ρ, viscosity µ and porosity ne of the flow domain.
This will be accounted for in the numerical solution with the regularization, which motivate
the formulation of the viscosity solution. .
Normally, equation (5) usually stipulate special numerical scheme to avoid nonphysical
oscillations in the vicinity of the fluid interface. However, we are not interesting in the
accuracy of the level set function, but we make use the sign of φ. Hence, the main point in
present problem is to keep the position of the zero level set of φ accurate enough for the
velocity field and the pressure computations. This is achieved by the stabilization of the finite
element formulation.

Since the system is nonlinear, we have to solve it iteratively by a coupled solver. We notice
that the regularization is changed adaptively through the iterative solution. Hence, the term ε∆
is turned to be very small in effect when the solution is converged. The solution algorithm is
described in the Fig. 1.
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Fig. 1. Flow chart of the solution algorithm

The numerical scheme is implemented in a C++ code based on the PETSC [8] libraries. The
implementation makes use heavily of the Object-Oriented Programming technique (OOP).
We create a Non-linear solver based Newton-Raphson method with the GMRES diagonal
precondition technique [11] for the coupled system. The solver is recognized as a class in
C++. We can reuse the code for modeling problems that handle two-phase flows we also have
the intention to generalize the implementation of the stationary level set method for tracking
sharp interfaces in many industrial applications. Using the PETSC libraries, it is simply to
implement the general Non-linear solver for the coupled system for higher dimensional
problem. Hence, the solver can be simply used for 2D and 3D problems.



5. Numerical examples

2D Embankment dam with sloping sides: The 2D numerical example implemented in our
code is shown in Fig. 2. The dimensions of the dam and the hydrostatic water levels applied at
upstream and downstream boundaries are specified in meters. The flow domain is
homogenous with isotropic characteristics. No heterogeneous feature is assumed. The 2D
computations are performed for a triangulation FE -mesh with a linear interpolation over all
the unknowns. The initial guess of the interface profile is taken as a straight line between the
upstream and the downstream hydrostatic pressure. The first computation is performed with
coarse triangulated mesh with 3-nodes (see Fig. 4a), then we refined the mesh globally in the
flow domain (see Fig. 4b,c). The ratio of the densities and the viscosities are (1000) and
(100), respectively. The porosity ratio is 1.28 and the permeability tensor is 0.002 m/s. The
flow is subjected to the gravity acceleration (g = 9.81m/s2). The zero level set is interpolated
on the triangulation to produce the correct position of the interface at steady state and the exit
critical point at the seepage face. Fig. 4 show the FE-SLS (Stationary Level Set Method)
solutions of the flow domain.

  L= 1.0m

h= 0.50m

H= 0.80m

Fig. 3. free surface flow problem in earth-fill dam with sloping sides



Fig. 4. FE-SLS solutions for the pressure distribution, the velocity field, the interface
                 with the zero level set

The element size h is reduced from 0.1 to 0.05 then 0.0033 in the simulations, which resulted
in mesh of 121, 441 and 961 nodes, and 200, 800, 1800 triangulated linear elements,
respectively. We notice further that the convergence rate is nonlinear.

We notice that the refined mesh produced sharper presentation of the zero level set and the
convergence order is greater than coarse mesh. Furthermore, the number of iteration required
to converge to the prescribed tolerance is reduced on finer mesh.

3D Embankment dam with sloping side: We extend the 2D problem to a 3D-flow problem.
This simply performed by adding a new dimension to the stationary level set equation in our
C++ classes. An additional set of boundary condition is prescribed to compensate with
investigated flow problem. The same fluid properties and porous medium characteristics are
specified as previously in 2D simulations. The three-dimensional domain is discretized by tri-
linear tetrahedron mesh. A polynomial plane hydrostatic pressure prescribed on the upstream
and downstream boundaries. The discretized domain resulted into 6000 (4-nodes) elements of
1331 nodes. The size of the meshes is varied between 0.1 and 0.0025. The order of
convergence is also of second degree. The number of degree of freedom computed is 6655.
The flow domain is shown in Fig. 5.

(a) (b

(c)



Fig. 5. 3D flow problem in embankment dam with sloping sides

The FE-SLSM solution for the 3D problem is shown in Fig.6.

Fig. 6. FE-SLS solutions, the velocity field, surfaces of the level set, pressure distribution
              surfaces

6. Conclusions
We have developed a new and faster numerical framework for capturing sharp interfaces in
groundwater flow. The numerical method implements a modified version of the level set
method. This modified version is developed utilizing a technique from the vanishing viscosity
method. The modified level set equation is a stationary version for capturing steady motion of

Surface of the Level set function

Pressure distribution surfaces

3D embankment dam

W = 1.0m



sharp interfaces. The stationary version solved together with the conservation momentum
equation for incompressible time independent equations over a fixed mesh domain. The mesh
is refined globally in the flow domain to improve the accuracy of the fluid interface solution.
Our C++ code used heavily the object-oriented programming techniques. This technique
provides a very fast simulator for problems involve motion in two-phase domain. The
technique is tested through simulations of 2D and 3D nonlinear seepage flows in embankment
dam. These test examples associated with available quantitative and qualitative feature, and
treated well in the literature. We have also discussed numerical instabilities and the
nonphysical oscillations that arise in these flow problems.

The scope of the present numerical method is to make a faster numerical framework in
comparison with recently solved time dependent version of the level set method [6, 7]. The
stationary version is simply implemented and can be used for possible industrial applications.
The method can easily generalized for more complicated mathematical models.
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