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Abstract

A finite element analysis is proposed for the static 3D Maxwell’s equations for
magnetic fields, based on a double potential formulation that leads to a general-
ized Poisson model with discontinuous diffusion and non-homogeneous Dirichlet and
Neumann interface and boundary conditions. The finite element method consists of
a piecewise linear Galerkin discretization on a tetrahedral mesh. In the modelling
phase, the computation of the Biot-Savart law is performed by finite volume integra-
tion in case of complex-shaped current-carrying geometries, or mixed semi-numerical
and analytical Urankar’s formulas in case of coil geometries. An adaptive criterion
of mesh refinement is then applied, based on a posteriori estimation of the finite
element error in energy norm. Numerical examples on some magnetostatic cases are
presented for a comparison with other adaptive finite element techniques.
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Thus the partial differential equation
entered theoretical physics as a handmaid,
but has gradually become mistress.

(A. Einstein, “The World as I See It”)

1 Introduction

Mathematical modelling plays an essential role in science and engineering. In most
cases, for a deep understanding of physical phenomena and to find answers to engineer-
ing problems, it is necessary to go beyond experiments and heuristic methods and rather
follow a theoretical approach from above, through a formal representation in terms of a
mathematical model. Many problems can be modelled by systems of functional equations
with given boundary and/or initial conditions. In most cases, such functional equations
are partial or ordinary differential equations, so that evolution models are represented by
initial boundary value problems and stationary models by boundary value problems, both
linear and non-linear [19]. Only pure differential modelling is not, however, sufficient to
explain the complexity of all physical behaviours: in some fields of physics and engineer-
ing, in fact, phenomena and properties need to be formulated by difference, integral or
integro-differential equations. Once the mathematical model has been formulated in such
a way that it has a solution, the interest is then to solve it. Since very seldom an analytical
solution is obtainable, numerical methods take over analytical ones from giving approxi-
mate, computable solutions. The analysis is carried out passing through the following basic
stages: (1) real problem, (2) mathematical model, (3) discrete model, (4) numerical solution.
The computed solution is thus the approximation of the investigated physical properties
in the real problem under consideration.

We here point out the term approximation: no equations describe physical reality ex-
actly, namely the computed solution is subject to error. What we call error is actually
the sum of several independent contributions due to the several phases of modelling, dis-
cretization and computation. Regarding this, an interesting development in Computational
Mathematics is to measure the several contributions of the error, in order to estimate the
accuracy of the numerical solution and suggest criteria to improve it. Later on we will turn
back to this important aspect.

In this general outline of mathematical modelling, we here focus on electromagnetic
models [16, 28]. A vast amount of problems and devices around us are explained by
electromagnetic theories: cathode-ray oscilloscopes, television reception, radar, satellite
communication, microwave devices, mobile communication, optical fiber communication,
remote sensing, radio astronomy, brain scanners, electromagnetic shielding, particle acceler-
ators, MRI systems, electromagnetic compatibility aspects, problems of electro-mechanical
energy conversion, and so on. As known, the fundamental equations in physics govern-
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ing all macroscopic electromagnetic phenomena are Mazwell’s equations, expressed by an
hyperbolic system of first order differential equations. The main task of mathematical
modelling in electromagnetic analysis is then the problem of solving Maxwell’s equations
under given boundary and initial conditions. Analytical solutions of Maxwell’s equations
do exist in fact, obtained mainly by separation of variables and Fourier and Laplace trans-
form methods, but they are based on simple coordinate systems with regular or infinite
boundaries. Such analytical methods require too strict assumptions on the geometry of
the material regions and, somehow, too ideal hypotheses that cannot match the complex
shapes of electromagnetic devices and domains encountered in real life and industrial appli-
cations. We realize, therefore, the importance of numerical tools since analytical methods
do not exist in most of the cases of interest.

As it happens in other engineering fields, various numerical methods can be used to solve
differential models in electromagnetism. Typically, finite element, finite difference, spectral
and boundary element methods are used, or mixed approached based on a combination of
these techniques [37]. Evidently, both theoretical and practical reasons arise in the choice
of the appropriate numerical technique, depending on the nature of the problem (e.g. the
domain geometry, possible a priori known properties of the solution, and so on), but also
on the available resources in terms of time and means. Sometimes, still now, constraints
of low computational time and cost can force to use simpler discretization schemes at low
order (e.g. finite difference methods). Nevertheless, problems on complex-shaped devices,
or requiring high precision, address towards more robust and accurate numerical methods.
Among them, the finite element method (FEM) has recently become a standard computa-
tion technique [30, 50].

The first finite element methods were introduced by R. Courant in 1943, developed in
the successive years for structural analysis applications in aircraft design (elasticity equa-
tions, plate equations, etc.). A solid mathematical background was developed in the 1960s
for elliptic problems, then extended to parabolic and hyperbolic problems later. From then
on, with the coming of automatic computation, this method has had a wide diffusion in
many engineering applications: structural and solid state mechanics, fluid dynamics, nu-
clear engineering, heat conduction, convection-diffusion processes, petroleum engineering,
reaction-diffusion processes, electromagnetism, wave propagation, integration circuits, and
so on. Concerning electromagnetic models, finite element methods are currently utilized
for a vast amount of static, quasi-static and time dependent problems, ranging from high
frequency microwaves used in mobile communication to low frequency occurring in power
energy [29, 34, 42, 45].

Basically, two different approaches can be used: nodal finite elements, typical of scalar
formulations, as well as edge finite elements. The former have been mainly used until
now. The latter [29] were introduced by H. Whitney in the 1950s, but only in recent years
some edge finite element theories (J.C. Nedelec, A. Bossavit, and others) have received an
increasing attention for vector formulations. An advantage of edge elements in a vector
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formulation of electromagnetic problems is that they can model discontinuities of the field
variables in the transition across different material domains, with abrupt changes in elec-
tric conductivity, permittivity or magnetic permeability. The nodal approach, however, is
still preferred for scalar potential formulations (as in our case).

Concerning the shape of elements used in space discretization, most of the earlier finite
element literature had been developed for rectangles in two dimensions and bricks in three
dimensions. Especially for electromagnetic applications, however, there has been recently
an increasing interest towards triangular and tetrahedral meshes, as they handle better
corners and edges occurring in the complex shapes of electromagnetic devices.

Furthermore, an area of increasing interest is given by adaptive finite element meth-
ods [3, 5, 7, 18, 32, 33, 49]. Differently from classical techniques, in adaptive methods an
improvement of the solution accuracy is reached by a local refinement of the mesh, or a
local increase of the polynomial order of the finite element solution, performed only on a
selection on mesh elements having large error indicators. Such indicators are computed
by suitable a posteriori error estimates of the finite element solution obtained according
to different criteria, and measured by known quantities, like the numerical solution, the
data and the mesh size. An adaptive approach allows to reduce in a significant way the
computational cost and time of the finite element calculation on the model.

Following these guidelines, the purpose of this work is to study the efficiency of adap-
tive finite element methods on some three-dimensional magnetostatic problems obtained
from a double potential formulation of static Maxwell’s equations, with a posteriori error
estimation. The idea is carried out through an analysis at more levels, which involve both
modelling and computation aspects. Concerning the modelling phase, a significant and
crucial task is the integration of the Biot-Savart law for the estimation of the magnetic
field due to source currents.

The report is organized as follows.

In Chapter 2 the mathematical background is presented, with a short overview of
Lebesgue and Sobolev spaces used in the variational formulation and finite element anal-
ysis of the magnetostatic models studied in the present work.

Chapter 3 presents an introductory scenario on fundamental mathematical models used
in electromagnetic problems, derived from Maxwell’s equations. Two different mathemati-
cal modelling approaches are discussed: field formulations, based on vector fields E, D, H
and B, or potential formulations, introducing scalar and vector potentials, like V', A, T,
X, and the combination ¢-¢ (considered in the present work).

Chapter 4 describes the general class of boundary value problems to which magnetostatic
models in p-¢ potential formulation belong. The abstract model is an elliptic problem,
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consisting of a generalized Poisson equation with mixed non-homogeneous boundary and
interface conditions of Dirichlet and Neumann type. The variational formulation is then
discussed, and existence and uniqueness of the weak solution is proved by the Lax-Milgram
theorem, with successive finite element discretization by Galerkin method on tetrahedral
mesh.

A formal error analysis is then presented in Chapter 5. Modelling and computational
errors are discussed and, focusing on the computational error due to the finite element
discretization, a priori and a posteriori approaches are explained. A posteriori error esti-
mates are then proved in energy norm, as quantitative indicators of accuracy of the finite
element solution. Geometric techniques of element subdivision for an adaptive refinement
of the mesh, based on these error indicators, are then discussed.

Aspects about implementation are investigated in Chapter 6. A general description
of the algorithm is first provided. The successive sections are then dedicated to explain
possible advantages of object-oriented programming for finite element computations with
some examples of finite element classes, as they have been used in the implementation of
our algorithm.

Finally, numerical results are reported in Chapter 7. Two test cases are proposed,
based on convex and non-convex geometries, involving magnetic soft materials with differ-
ent magnetic permeabilities. Results are discussed for a comparison with the ones already
obtained by finite element methods for the static Maxwell’s equations in field formulation,
e.g the least-squares finite element method, a dual formulation known as ££* method, and
a vector potential formulation by using nodal or edge elements. These methods have been
tested at Chalmers Finite Element Center, an interdisciplinary unit of Chalmers University
of Technology in Go6teborg, Sweden, in cooperation with ABB Corporate Research.



2 Mathematical background

In this section we introduce notations and definitions about Lebesgue and Sobolev
spaces with a short mention to some basic properties and inequalities used in the following.

Notation. Throughout this document, the symbols C, R and N denote the set of com-
plex, real and natural (0 included) numbers, respectively. C is reserved for a real positive
constant, different at each occurrence. For any domain €2 in the Euclidean space R", nota-
tions 89, Q and Q denote the boundary, the closure and the interior part of Q, respectively.

2.1 Lebesgue spaces

Let €2 be an open Lebesgue measurable domain in R™. If 2 is bounded, we assume that
its boundary 0f2 is “sufficiently” regular, i.e. Lipschitz continuous. For any real p > 1, we
denote by L,(S2) the Lebesgue space of order p, i.e. the Banach space of all equivalence
classes of real or complex-valued functions v Lebesgue integrable on {2, in which the p-
powers of |u| are Lebesgue integrable on 2. Denoting by dx = dz1dz, . .. dz,, the standard
norm in L,(€2) is defined as

1/p
el = ([ uPix)™, vue L@, (21)

Functions in L, are not continuous in general but, broadly speaking, they are a sort of
“weak” approximation of continuous functions. This follows from the fact that the set
C(2) is dense in L, ().

Among the Lebesgue spaces, it is known that Ly(€2) is an Hilbert space, by choosing
the inner product

(U, V) () = / uvdx, Yu,v € Ly(Q), (2.2)
Q

whose induced norm coincides with the Lebesgue norm (2.1) for p = 2. In case of real-
valued functions, definition (2.2) and similar ones are given by setting v in place of the
conjugate v. The well-known Cauchy-Schwartz inequality holds, that is

[ (% V) Ly [< ||“||L2(Q)||”||L2(Q)a Vu, v € Ly(2). (2.3)

Relation (2.3) can be seen as a particular case, for p = ¢ = 2, of Hélder’s inequality, which
asserts that for all p > 1, ¢ > 1 such that 1/p+1/¢ =1, if u € L,(Q),v € L,(£2), then
uv € L1(Q) and

||"“)||L1(Q) < ||u||Lp(Q)||v||Lq(Q)‘ (2.4)



We also introduce L, (€2) as the Banach space of all equivalence classes of real or
complex-valued functions u Lebesgue integrable on 2, essentially (i.e. almost everywhere)
bounded on 2. The corresponding norm is defined as

lull. ) = €ss supg |u|=inf{M € R: [u(x)[< M ae. in Q}. (2.5)

Notice that the notation L. (2) is justified by a limit property: for a given function u
Lebesgue integrable on €, if a real ¢ > 1 exists such that [|ul|, o)< +oo then [[u]l, o—
lully. ) as p — co. The inclusion Ly(2) C Ly(f2) for 1 < p < ¢ holds, from Holder’s
inequality, as well as L,(Q2) C Ly (f2) for any p > 1. Moreover, there exists a constant
C > 0 such that

[l @) < CllullL,q), Yu€ Le(Q). (2.6)
For a more extended survey of Lebesgue spaces, see [40].

2.2 Sobolev spaces

A finite element analysis requires a further assumption of regularity on Lo-functions.
Regarding this, for each m € N, we define the Sobolev spaces of order m as

H™Q)={u € Ly() : D € Ly(N), Va: |a|< m} (2.7)
for any multi-index o = (a1, aa, ... p) € N* with |a|= )" | o, where the derivatives

olely,
D%y = 2.8
U= Gaig, 002, . O, (2.8)

are intended in the sense of distributions [22]. H™(2) is an Hilbert space with the inner
product

(U, V) grm () = Z /D”‘uD”‘E dx, VYu,ve H™(Q), (2.9)
0

lal<m

whose induced norm is

1/2
Ny = (D2 1D°ullly) s Vue H(Q). (2.10)

\al<m
Further, an important seminorm is defined as
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1/2
[ [ gy = (Z ||Dau||§2m)) . Yue H™(Q). (2.11)

al=m

Immediately we have H™(Q)) C H™'(Q) for m = 1,2, ..., with

lllgm-1(0) < N wllgmq),  Vu € H™(). (2.12)

Concerning continuity properties, we first denote by C7*(§2) the space of real or complex-
valued functions on €2 whose classical derivatives up to order m are continuous and bounded.
This is a Banach space, equipped with the norm

”“”cgn(ﬁ) = Z sup | Du(x)|, Vu € Cm(9). (2.13)
la|<m xeN

Then, inclusion Cj*(2) € H™(2) holds for all m = 0, 1,2, .... On the other hand, functions
in H™(Q2) are not continuous in general. By the so-called Sobolev embedding theorem it is
possible to prove, nevertheless, that “good” properties of regularity are satisfied when m
is sufficiently high. In particular, in one dimension all H!-functions are continuous; in two
and three dimensions H?-functions are continuous, while H!-functions are not in general.
Precisely, if m > n/2 then H™(Q) C C?(Q) and there exists a constant C' > 0 such that

lullcom) < Cllullgmy, Vo e H™(S). (2.14)
More generally, if £ € N and m > n/2 + k then there exists a constant C' > 0 such that
[ D%ull, ) < Cllullgmy, Yu € H™(S), (2.15)
for all @ € N™ such that |« |< k.
For a finite element formulation of second order boundary value problems, as in our case,
a “weak” regularity on the first derivative of the functions is required by applying Green’s
theorem [37]. Thus, H'(Q) turns out to be the fundamental setting for our problems.
Suppose now that the domain 2 is bounded. Differently from Ls-functions, for any
' C 99 the restriction yu = ul. of a function u € H*(Q) is well-defined, in the sense
intended by the well-known trace theorem [22]. The function yu belongs to Ly(T") and is

called the trace of u on I'. Regarding this, the most classical trace inequality asserts that
there exists a constant C' > 0 depending only on €2 such that

l7ullp,my < Cllullpg),  Yu€ HY(Q), (2.16)
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where the definition of the spaces L,(I") with corresponding norms || - ||, ) is given anal-
ogously to (2.1), using I' as integration domain.

We denote by D(f2) the space of infinitely differentiable functions with compact support
in €, i.e. assuming non-zero values only on some compact subset of 2. An important
subspace in H*(Q) is then H(Q2), which is defined as the closure of D(2) in H'(2). It can
be shown that

HLQ) = {u e H'(Q) : ul,, = 0}. (2.17)

H; () turns out to be the natural space associated to finite element solutions of second
order boundary value problems with boundary conditions all of Dirichlet type. Coherently,
the space

Hor(Q) ={ue H(Q): ulp =0} (2.18)

can be introduced for I' C 09, as a natural setting when both Dirichlet and Neumann (or
Robin) boundary conditions are present, the former given on I'. Note that in H}(2) the
seminorm || u ||23(Q) = || Vul|,,(q), obtained from (2.11) for m =1, is a norm equivalent to
the Sobolev norm (2.10) (and analogously for Hy (). Norms || - [[}1 () and || - ||, are
related to each other through the following Poincaré’s inequality: if € is bounded, there
exists a constant C' > 0 depending on €2 such that

lullpy) < CllVUllpy@), Vo€ Hy (). (2.19)

Immediately, an inequality analogous to (2.19) holds again when considering at the left
hand side ||u|| ;1 q) instead of ||ul|,,q)-

In boundary value problems functions have to be assigned as data over parts of domain
boundaries. Thus, it makes sense to introduce the space

HY?2M)={v:T'=R (or C) : Jue H(Q): u|r=1}, (2.20)

belonging to a more general family of Sobolev spaces H"(£2) for r € R, which can be defined
by Fourier transform [22], consistently with definition (2.7) when r = m € N. HY?(T") is
an Hilbert space, endowed with the norm

||U||H1/2(r) = inf ||u||H1(Q)a VUEHI/Q(F)- (2.21)
weHL(Q)
u|lp=v

When working with spaces H"(2) having real order 7, an useful inequality is given by
the following interpolation theorem: if €2 is bounded and r;, 7o are real numbers such that
r1 < T9, then there exists a constant C > 0 such that
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-8 9 r
oy < Cllwllie @l ullm @)y Yo € H™?(Q) (2:22)
where r = (1 — 0)ry + 01y, for any 0 < 6 < 1.

Further generalizations can be done. First, similarly to definition (2.7), generalized
Sobolev spaces of order m, denoted by W™P(Q), can be introduced in connection with
spaces L,(€2). W™P(Q) are Banach spaces in which elements are L,-functions whose deriva-
tives up to order m are L,-functions, so that H™(Q) = W™2?(Q).

Still considering the case p = 2, when differential models involve not scalar but vector
functions having d components, spaces H™({2;R?) or H™(£2;C%) can be naturally intro-
duced to describe a H™-regularity for each component. Besides, for vector differential
equations using divergence of curl operators, spaces like H(div;2), or H(curl;2) can be
used, requiring a Lo-regularity on the divergence or the curl of the functions, respectively.
In the framework of electromagnetic models, for instance, the last two turn out to be suit-
able settings for the finite element solution of problems defined by Maxwell’s equations
when a field formulation is used (see Chapter 3).

Furthermore, functional spaces for time dependent functions could be introduced as nat-
ural settings for finite element methods solving initial boundary value problems. Let [0, T
be the time interval and let V' (€2) denote a suitable Banach or Hilbert space of functions
defined almost everywhere on 2 and sufficiently regular (in a weak sense). Then, it can be
convenient to introduce spaces like C°([0,T]; V()), requiring continuity on variable ¢, or
“weaker” spaces like the time dependent Lebesgque space Lo(0,T;V(2)) and the time de-
pendent Sobolev space H'(0,T;V()), and analogously H™(0,T;V(€)). The space V(Q)
can be, for instance, Ly(2) or H(S).

In [22, 38] a detailed analysis on Sobolev spaces and their generalizations is presented,
together with an extended survey of mathematical topics related to partial differential
equations. A general overview of several methods for the numerical solution of differential
problems can be found in [37]. Finite element methods on a large class of problems are pre-
sented in [30]. As concerns finite element methods for elliptic problems, considered in the
present work, a classical reference is [17]. In particular, finite element modelling focusing
on electromagnetic problems is presented in [29, 42, 45] and, from a rigorous mathematical
point of view, in [34].
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3 Field and potential equations in electromagnetism

3.1 Maxwell’s equations

The fundamental equations describing electromagnetic phenomena are the well-known
Mazwell’s equations. For all space points, in the general time dependent case they can be
written as

0B
E+—— = 1
VXE+—-=0 (3.1)
oD
H-—=17J 2
V x 5 : (3.2)

called Faraday-Henry’s and Mazwell-Ampere’s law respectively, together with

V-D=p (3.3)
V-B=0, (3.4)

called Gauss’s and magnetic Gauss’s law, where E is the electric field intensity, D is the
electric flux density, H is the magnetic field intensity, B is the magnetic flux density, J is
the electric current density, and p is the electric charge volume density. In the international
system SI the following measure units are used: [E|=volts/meter, [D]=coulombs/meter?,
[H]=amperes/meter, [B]=webers/meter?, [J|=amperes/meter? and [p]=coulombs/meter?.

Maxwell’s equations can also be written in integral form, as

fE-dﬁ:— 9B is=0 (3.5)
]y s Ot
fH-dé=/(J+a—D)-d5=0 (3.6)
; s ot

D-dS:/pdr (3.7)
N Q
fB-dS:O (3.8)
o0

for any open surface S C R?® with boundary curve S = +, and for any open domain
Q) C R? having boundary surface 92. Equations (3.5) and (3.6) have been obtained by
integration over S of the curl equations (3.1) and (3.2) using Stoke’s theorem, while (3.7)
and (3.8) follow from the divergence equations (3.3) and (3.4) by volume integration over
Q, applying the divergence theorem. In (3.7) the contribution Q = [, pdr represents the
total charge stored in 2. In the following we deal with Maxwell’s equations in their differ-
ential form.
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Generally, Maxwell’s equations are considered together with the fundamental relation
(equation of continuity)

dp

V. J+—-=0, 3.9

5 (3-9)

which specifies the conservation of charge. Only three of the five equations (3.1)-(3.4) and

(3.9) are independent. Generally they are assumed to be Faraday-Henry’s law, Maxwell-

Ampere’s law and the equation of continuity, since Gauss’ s law both in the electric and
in the magnetic form can be derived from them.

Maxwell’s equations become a definite system of equations when constitutive relations
describing the macroscopic properties of the materials are considered. For a simple medium
they are

J=0E+1J; (3.10)
D =¢E (3.11)
B = uH, (3.12)

where J; is the imposed source current density, o is the electric conductivity, € is the
electric permittivity and p is the magnetic permeability of the medium. The constitutive
parameters o, € and p are tensors for anisotropic media, scalars for isotropic media and
they are functions of space for inhomogeneous media. Besides, for lossy media they are
complex-valued.

Depending on the properties of the considered material, the permeability 4 in equation
(3.12) can also be function of H. If not, i.e. B and H are linearly related, the material is
called linear. For permanent magnets equation (3.12) assumes the modified form

B = u(H - H,), (3.13)

where H, is the coercive field intensity (i.e. the reverse magnetic field intensity that has to
be applied to reduce magnetization to zero). In most cases, it is assumed that the relation
between B and H is linear even for a permanent magnet. Generally, definitions € = €,¢
and p1 = p, 1o are used, with reference to the corresponding permeability yo = 47 10~ "H/m
(henry/meter) and permittivity e = 1/(ciuo) &~ 10°?/(367)F/m (farad/meter, where ¢,
is the speed of light) in free space. pu, and €, are dimensionless values associated to the
material, called relative permittivity and relative permeability.

Electrostatic/magnetostatic case

When the field quantities do not vary with time, electric and magnetic properties de-
couple from each others and Maxwell’s equations reduce to two independent systems:
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VxE=0 (3.14)

V-D= P,

in the electrostatic case, and
VxH=1J] (3.15)
V-B=0,

in the magnetostatic case. The static equation of continuity

V-J=0 (3.16)

is an immediate consequence of the first relation in (3.15). In the present work some mag-
netostatic problems derived from (3.15) will be studied.

Quasi-static case

In the time dependent case, if the time variation is sufficiently slow we can neglect the
displacement current 0D /0t in (3.2). This hypothesis leads to the so-called quasi-static
approzimation. Differently from the static case, nevertheless, the variation of the magnetic
flux density B is not negligible and Faraday-Henry’s equation (3.1) remains unchanged
as in the general time-dependent case. Analogously to static situations, equation (3.16)
holds. The quasi-static assumption is valid for problems in which frequencies are low or,
more precisely, when the size of the structure is small compared with the electromagnetic
wavelength associated to the highest frequency component occurring in the problem.

3.2 Boundary and interface conditions

Maxwell’s equations form a system of partial differential equations with many solutions.
In order to find the actual solution of the problem under consideration, we have to specify
boundary conditions associated to the space domain, together with initial values in the time
dependent case. In addition, interface conditions between materials have to be considered,
describing the transmission of fields from one material to the other. Given two contiguous
media ¢ and j, corresponding to the disjoint domains €2; and €2;, such that 0€2; N 0Q2; =
';; # 0, the transmission conditions at I';; can be expressed as

nx(E,-E;)=0

n X (HZ — H]) = Jsurf

n- (Dz - D]) = Psurf

n-(B;—B;) =0,
where n is the unit vector normal to I';; pointing from €; into €2;, and the quantities pgy, s

and Jg,-; are the surface charge density and the surface electric current density, respec-
tively. The first two conditions give information about the tangential component of the
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fields E and H: the former is continuous, the latter is discontinuous if surface currents
exist. The last two conditions describe the normal component of D and B, respectively
discontinuous if surface charges exist, and continuous.

Of these four conditions only two are independent, for instance (3.17) and (3.18). The
condition (3.17) for the tangential component of E is equivalent to the condition (3.20) for
the normal component of B, while the condition (3.18) for the tangential component of H
corresponds to (3.19) for the normal component of D. In the quasi-static approximation,
where V - J = 0, also the condition

has to be considered, describing the continuity of the normal component of the current
density at the interface I';;. Some special cases can be considered.
Interface between two lossless media

In this case no surface currents and no free surface charges exist at the interface, and
conditions become homogeneous:

nx (BE;—E;) =0 (3.22)
nx (H;—H,)=0 (3.23)
n-(D;—D;) =0 (3.24)
n-(B; - B)) =0, (3.25)

describing continuity at I';; for all the components E;, H;, D,, and B,,.

Interface between a dielectric and a perfect conductor

The above conditions can be reduced to a special case when one of the two media
approximates a perfect conductor, i.e. has conductivity o — oo. Since in the time-varying
case a perfect conductor cannot sustain any field in its interior, equations (3.17)-(3.20)
become

nxE=0 (3.26)
nxH=J,,;, (3.27)
n-D=p,;, (3.28)
n-B=0, (3.29)

where E;, H, D and B are the fields exterior to the conductor and n is the normal unit
vector pointing away from the conductor.
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Boundary conditions

Given a bounded material domain €2, conditions at the boundary I' = 02 have to be
modelled considering that what is mathematically a “boundary” is nothing but an interface
with an external medium whose electromagnetic status is already known. This means that
fields or their normal or tangential components are given data on the several parts of
['. Boundary data have, of course, to be assigned in a consistent way so that they are
compatible with each other. A choice, coherently with (3.17)-(3.20), is to assume the
following quantities as known:

nxE or n-B onl} (3.30)
nxH or n-D only, (3.31)

where I'y C ' and I'y C T are such that I’y Uy =T, e. g. by giving equation (3.26) or
(3.29) on I'y, and (3.27) or (3.28) on I'y. In case of unbounded domains, a formal approach
would be to consider limit conditions at infinite distances, nevertheless any modelling for
computational purposes (e.g. finite element methods) requires necessarily an approxima-
tion of the infinite geometry with a finite one, by introduction of fictitious boundaries at
“sufficiently” big distances.

3.3 Scalar and vector potentials

Until now, electromagnetic equations have been considered in the form of first order
differential equations involving the vectors E, H, D and B. When an electromagnetic
problem is described by these vector fields, it is said that a field formulation is used. In
field formulations, the constitutive relations (3.10)-(3.13) allow to express equations in
terms of only two field quantities, e.g. E and B, or E and H.

A different approach can be to convert a first order differential problem involving two
field quantities into a second order problem involving only one field quantity. This is made
possible by introducing proper scalar or vector potentials. In such a case, it is said that a
potential formulation is used. Several formulations can be given, in which potentials can
be defined separately or combined together in different regions of the domain, according to
the nature of the problem and the topological properties of such regions. Some potential
formulations are mentioned in the following.

Scalar electric potential and vector magnetic potential

Owing to the magnetic Gauss’s law, the vector field B is solenoidal (zero divergence) in
the whole simply connected space. It is then possible to express it in terms of a wvector
magnetic potential, i.e. a differentiable vector function A such that

B=V xA. (3.32)
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Then, from Faraday’s law and definition (3.32), it follows that

0A
Vx (E+—-)=0, (3.33)
ot
again considered in the whole space. Since irrotational fields on simply connected domains
are conservative, we can introduce a scalar electric potential V', defined as

0A
—-VV=E+ — 3.34
which is the generalization of the classical relation E = —VV used in the static case.

Electrostatic problems can then be studied by solving V' in the electric Poisson’s equation
V- (eVV) = —p, (3.35)
derived from Gauss’s law when applying the static definition of V.

In general, neither A nor V' are uniquely defined. It is known from Helmhotz’s theorem
that the definition of one vector requires the specification of both its curl and its divergence,
therefore a further condition on the divergence of A has to be imposed (gauging). This
gauge condition is chosen so that proper terms vanish in the formulation of Maxwell’s
equations by the vector potential A. For static problems, the simplest condition is the
so-called Coulomb gauge

V-A=0, (3.36)

which makes A and V well-defined up to an additive constant. Rewriting the static
Maxwell-Ampere’s equation by definition (3.32), and using gauge (3.36), we get the vector
Poisson’s equation

VA = —ud (3.37)

for magnetostatic problems. For time dependent problems, a more convenient choice is the
so-called Lorentz gauge expressed by

ov
A = —pe— :
\Y4 pear (3.38)

which reduces to the Coulomb gauge for the static case. See [16] or [44] for details about
gauging and the corresponding expressions of the time dependent Maxwell’s equations in
terms of potentials A and V. A formulation by the vector A is appropriate for 2D problems,
because A is orthogonal to the domain, e.g. A = A, i for problems defined on the zy-plane.
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Vector electric potential and scalar magnetic potential

As alternative to the A-V formulation, in the quasi-static case it is possible to introduce
other scalar and vector potentials. Since the current density J is solenoidal in space, there
exists in fact a vector T, called vector electric potential, such that

J=VxT. (3.39)

Therefore, substituting (3.39) in Maxwell-Ampere’s law, we have
V x (H-T) =0, (3.40)

so that a scalar magnetic potential x can be introduced with definition

H=T- Vy. (3.41)

Field equations can then be expressed in terms of T by considering Faraday-Henry’s law
and the magnetic Gauss’s law, the constitutive relations J-E and B-H, and definitions
(3.39) and (3.41). As a result, we get

1 0 1
V x (;V x T) + ME(T —Vx) =V x (;Js) (3.42)

and
V- (T-Vx)=0. (3.43)

Note that T and x are not unique and, analogously to A, a gauge condition has to be
specified. Possible gauges for T are the Coulomb gauge, requiring zero divergence for T,
or the Lorentz gauge

V.- T= a,u%, (3.44)

or the condition

T-u=0, (3.45)
where u is an arbitrary vector field that does not have closed field lines [45].

In both the A-V and T-y formulations, boundary and interface conditions (3.30)-(3.31)
and (3.17)-(3.20) have to be expressed in terms of the scalar and vector potentials [44].

Further formulations of Maxwell’s equations could be introduced in terms of potential
quantities and mixed approaches could be considered in different parts of the domain. In
the next section, we present an alternative formulation based on the notion of two different
scalar magnetic potentials, as it has been used in the present work to describe some 3D
magnetostatic models.
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3.4 Scalar potentials for magnetostatic problems

In three-dimensional static problems, A and T present a full vector form that is not
very efficient in most cases. Similarly to the electrostatic case where a V-formulation is
generally used for 3D models, in magnetostatic problems it is convenient to introduce two
suitable scalar magnetic potentials ¢ and ¢, which are defined separately in two different
regions of the domain, depending whether regions contain currents or not.

From Helmhotz’s theorem the magnetic field intensity H can be always partitioned as

H=H,+H,, (3.46)

where H; is solenoidal and represents the magnetic field intensity due to prescribed source
currents, while H,, is irrotational and describes the magnetic field intensity due to induced
magnetization in materials. It is possible then to define a scalar potential ¢, called reduced
magnetic potential, such that

in which the source field H; can be computed using the Biot-Savart law. Given a source
current density J, defined on a conductor domain €, called source region, such law tells
that the resulting field Hy, = H,(r) is given by

1 1
Hi=— [ J; —) dr’ 3.48
47r/9s ><V(|r—r’|) r (3.48)
or, equivalently,
1 r—r
=— [ Jyx ——— dr A4
H,(r) 47/95 X\r—r'\?’ r (3.49)

where r is an arbitrary point in space (called field point) and r’ is any point in €2, (called
source point). An overview of various techniques for the computation of the Biot-Savart
law is presented in [44]. For simple current-carrying geometries like bars and coils with
polygonal cross section, etc., analytical expressions have been derived by L.U. Urankar
[46, 47, 48]. Some of these numerical or semi-analytical techniques have been implemented
on test cases studied in Chapter 7. See details in [27].

Under these premises, considering the magnetic Gauss’s law and the constitutive rela-
tions (3.12) and (3.13), the following magnetic Poisson’s equation follows

V- (IUVQO) =-V-uH + V- uH;, (350)
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in which also permanent magnets with coercive field H. have been modelled.

For static and quasi-static problems, it is possible to introduce another scalar potential
on simply connected domains where no source regions (), are present. Since V x H = 0
on such domains, a scalar potential ¢ can be introduced such that

H=-V¢, (3.51)

called total magnetic potential. On regions with no source currents, we get then the equa-
tion

V- (uV¢) =~V - uH,, (3.52)
which reduces to Laplace’s equation when there are no permanent magnets.

Given a domain 2 with source regions (2, C (2, instead of considering only the potential
©, an alternative approach could be to use both ¢ and ¢. If the topology of the domain
makes it possible, the idea is to partition 2 in two parts: a subdomain €,.; such that
Qs C Qpeq, where the reduced potential ¢ and then (3.50) will be used, and a simply con-
nected subdomain €;,;, where the total potential ¢ and (3.52) will be used. In this section,
for brevity, €, is called the total domain and €2,.4 the reduced domain. The advantage
of such double potential formulation, differently from a complete formulation in ¢, lies in
the reduction of some cancellation errors that would occur in the reduced domain when
computing the total field H by (3.47), especially for large permeabilities p.

Boundary and interface conditions have then to be expressed in terms of the two poten-
tials ¢ and ¢. By convection, we first assume that possible permanent magnet regions are
contained in the total domain. Let I'; = 0€0,.4N 02 be the interface between the reduced
and the total domain. From (3.20), using the definitions of ¢ and ¢ and the constitutive
relations between B and H, we get the first total/reduced interface condition

(Mrede - utotv¢) n = (,Ufrest + ,UltotHc) ‘n on FI) (353)

where n is the normal unit vector at I';, whose direction can be arbitrarily chosen. To
obtain the second interface condition, we rewrite (3.18) in terms of ¢ and ¢ and have

V(e —¢) —H,] xn =0, (3.54)

hence
V(ipg—¢)-t=H;-t on I'y, (3.55)
where t is the unit tangent vector at I';. We first assume that I'; is connected. Then, fixed

arbitrarily a point ry € I';, we integrate over any piecewise regular path ~[rq,r] C I'; for
any point r € I';, and get the second total/reduced interface condition
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o(r) = p(r) — /r H,-dr only, (3.56)

where it is assumed ¢(ry) = ¢(rp). Condition (3.56) describes a jump of discontinuity
between total and reduced potential values at the interface, due to the source field. If
I'; is disconnected, a condition like (3.56) has to be repeated on each single connected
component.

When permanent magnets are considered in the total domain, interface conditions be-
tween permanent and soft materials have also to be included. If €2; C {2, is a soft material
with permeability p; adjacent to a permanent magnet 2y C ),y With permeability o, the
interface conditions become

(11 — po)Vep-n = poH, - m (3.57)
by = O, on I'ys, (3.58)

with T'yp = 01 N 0, where ¢y and @(9) denote the values (or limit values) of ¢ on I';;
from the sides of {2; and ()5 respectively. In the simpler case in which both €2; and {2
are soft materials, relations similar to (3.57) and (3.58) hold, now with H, = 0, so that
also the first condition becomes homogeneous. Possible interface conditions between two
soft materials in the reduced domain are expressed in analogous way, by changing ¢ with ¢.

In a similar way, boundary conditions are obtained. We call I'y and I'p the parts of
I' = 0 on which, respectively, the normal and tangential components of the magnetic

field are assigned (one of the two can be empty) and suppose that the reduced domain €2,..4
intersects the boundary. Then, we get the non-homogeneous Neumann condition

Vo-n=H;-n only,e, (3.59)

where I'y,eq = OSeq N 'y, when it is non-empty. Besides, if I'pyeq = Qpea N I'p is
non-empty and connected, we get the non-homogeneous Dirichlet condition

o) = [ Hoedr () =0 on o (3.60)
ra

where ry € I'p,eq is a point fixed arbitrarily. If I'p,.q is disconnected, a condition like
(3.60) has to be given on each single connected component. Similarly, we consider now the
total domain {2;,; when it intersects the boundary. The Neumann condition takes the form

Mot Vo -0 = —pH.-m on L'w tot, (3-61)

with ['n ot = 0Q4er N I'y, when it is non-empty. If I'p ;0 = e N ['p is non-empty and
connected, we get a non-homogeneous constant Dirichlet condition. In particular, when
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Figure 1: A two-dimensional domain with total and reduced regions

Iptot ULt Ul D 1eq is connected and condition (3.60) is imposed on T' D red, fOr consistency
we have to fix the condition

ro
b(r) = / H,-dr on Tp . (3.62)
ra
In the other cases, one may specify

¢(r) = ¢(rp) on T'pya, (3.63)

where rp is a point fixed arbitrarily in I'p 4., assuming for instance ¢(rg) = 0. See in
Figure 1 a possible 2D schematic representation of the domain, in the simpler case in
which both I'yy and I'p are connected.

Section 4.4 presents the complete analytical form of a 3D boundary value problem
obtained from the above double potential formulation, to describe magnetostatic models
composed of soft magnetic materials with imposed currents. For a more detailed overview
of electromagnetic fields and potentials, see [16, 28] and [44, 45].
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4 The model: definition and finite element analysis

4.1 The abstract model

Let us first introduce in its abstract framework the class of boundary value problems
studied in the present paper.

Let ©Q; C R? and Q, C R? be two open, disjoint, bounded and connected domains,
Lebesgue measurable with Lipschitz continuous boundaries 0€2; and 9¢);. We assume they
are adjacent, i.e. the set I'r = 02 N 082 is a non-empty surface (called interface). Let us

denote by 2 = €y U Qs the open global domain. We here consider the following class of
second order boundary-interface value problems:

-V - (aVu)=f in Q

U = Ug +d on I'y

a1Vu1 -ny + OfQVU/Q ‘No =P On F[ (41)
U= Up onl'p

aVu-n=gq on 'y,

where I'p C ' and I'; C T" are parts of the boundary I' = 0¥, such that I'p UT'y =T.

Problem (4.1) is a generalized Poisson model with mixed non-homogeneous Dirichlet-
Neumann boundary and interface conditions in the unknown v = u(z,y,2). n; and n
denote the normal unit vectors at I'; and I' pointing towards the exterior of the domains
Q;, 1 = 1,2, and € respectively, while u; and «; denote the values (or limit values) on I';
of the functions v and « from the sides of each €2;, i« = 1,2. The (real-valued) functions
a = afz,y,z) and f = f(z,y,z) defined on Q, d = d(z,y,2) and p = p(x,y,z) on T,
qg=q(z,y,z) on I'y and u = up(z,y, 2) on ['p are given data satisfying certain regularity
properties. For the following, we assume that the diffusion coefficient o = a(z,y, 2) is
a positive bounded function on 2, Lipschitz continuous over each €2;, so that the linear
Poisson operator Lu = —V - (@Vu) in (4.1) is uniformly elliptic on €. Further, we assume
that (4.1) has a unique solution.

Our intention, in this Chapter, is to derive a variational formulation of problem (4.1)
for a finite element analysis, to be applied to some 3D magnetostatic models that can be
viewed as particular cases of (4.1).

4.2 Variational formulation

Under weak conditions of regularity for f,d, p,q and up, we derive a variational formu-
lation of model (4.1). Let us assume f € Ly(Q), p € Ly(T'7), ¢ € Lo(Ty), d € HY?(Ty)
and up € H'/?(I'p). We obtain then the weak form of (4.1) by a formal procedure similar
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to the one applied to the classical Poisson model with no interfaces [37], considering both
domains ©; and €. Thus, we multiply the differential equation in (4.1) by an arbitrary
v € Hyr, () and integrate over each €;, i = 1,2. Then, we apply Green’s theorem to the
two integral equalities and split the corresponding surface integrals over 0€); in the several
parts of I'p, 'y and I'; defined by the relation

Finally, using Neumann conditions both at the interface and the boundary and summing
up the two equalities, we get the following weak form for problem (4.1):

(variational formulation) Find u = u(z,y,2) € Ls(Q), where u|o,= u; € H*(Q;) for
1=1,2, such that

/ aVu - Vodx = / fo dx+/ qu dS +/ pv dS, Vv € Hyr, (), (4.3)
Q Q I'n Iy

and such that u =up on T'p and u; = uy +d on [y (in the sense of trace).

In this model with interfaces, the solution v = u(z,y, z) belongs to Ls(£2) but not to
H'(Q), because of the presence of a non-zero jump function d on I'; in the first interface
condition of (4.1). Thus, as a natural setting for our weak solution it makes sense to
introduce the following piecewise Sobolev space

HY(21,9) = {w € Ly(Q) : w|g,€ H'(),i = 1,2}. (4.4)

Denoting by w; = w|q,, for « = 1,2, the component functions of any w € H(Q2;,Qy), the
definition

w00 =llwi |21 @) + lwe |7 @2) (4-5)
can be then chosen as a natural norm. Coherently, we introduce the subspace H&F o (821,99)

of functions w € H'(Q4,) whose trace yw on I'p vanishes. Similarly to spaces Hg(€2)
and Hjr (Q), for each w € Hyp (Q1,) it is easy to prove that the definition

Nl onon=lwillag, @+ lwsllag, @ (46)

is another norm for Hjp (€;,€2) together with the induced norm from (4.5), with w; as
component functions of w on €;, ¢+ =1, 2.

In (4.3), differently from the solution u € H'(€,,), the test functions v belong to
Hjr, () € H'(Q), so that their trace yv is well-defined in I'; and I'. Similarly to models
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without any interface conditions, it can be shown immediately that (4.3) is equivalent to
the weak formulation of a model with Dirichlet boundary conditions that are homogeneous
on I'p and such that no jumps exist at the interface I';. Regarding this, let us consider
the substitution

w=1ii+ip, (4.7)
where @p is an extension of up on Q such that ap € H'(Q1,Qy) and the component

functions %p; on 2y and tpo on €y satisfy the condition @ip; = @po + d on I';. Then, it
results % € Hyp (€). Now we introduce the bilinear form

a(w,v) = / aVw-Vodx  Vw,v e Hyp (), (4.8)
0

and, for a fixed function g Lebesgue measurable on a surface S C 012, the following notation
of linear functional

<P, U>g= / ovdS  VveHjp (). (4.9)
S

Then, denoting by (-, -)q the usual Lo-scalar product on §2, from (4.3) we get the following
(equivalent variational formulation) Find @ € Hyp () such that
a(@,v) = b(v) Vv € Hyr, (Q), (4.10)

where a is given by (4.8) and

b(v) = (f,v)a — (aVip, Vv)o+ <q,v>r, + <p,v>r,, (4.11)
with <gq,->r, and <p,->r, given by (4.9).
The advantage of this equivalent formulation is that now the sought weak solution van-
ishes on I'p like the test functions v, and its component functions #; satisfy the condition
17 = U on I';. The non-zero value at the Dirichlet boundary and the discontinuity at the

interface have been transferred to a known function 4p.

Good properties hold for a and b. First, a is symmetric and continuous, i.e.

(a(w,0)[< 1 [wlluy, @llvlag, @ Vv € Hip, (@), (4.12)

0,

as it follows from the Cauchy-Schwartz inequality, by taking C; =|| «||r, (here, equal to
maxgq ). Then, due to the uniform ellipticity, we have
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a(v,v) > Cy ||v ”?{(}’FD(Q) Vv € Hyr,(9) (4.13)

with 02 = ming « (in such a case, it is said that a is coercive on fI1 1)). Besides, the
? O,FD Y
linear operator b is COHtiIlllOllS, i.e.

b()[< Cs vl @ Vv € Hor,(Q), (4.14)

as it follows from the boundedness property of the functionals (f,v)q, (aVip, Vv)q,
<gq,v>r, and <p,v>r,, using Cauchy-Schwartz and Poincaré’s inequalities, with C5 > 0
depending on «, f, p, ¢, Up, 21 and Qy. Thus, from the Lax-Milgram theorem [22, 37],
there exists a unique weak solution for the variational problem (4.10), as well as (4.3).

To conclude, property (4.13) guarantees that a(v,v) > 0, for each v € Hjp () (the
property holds also in a larger space, like H'(Q2)). We can therefore introduce the equivalent
norm

1/2
aVuv-Vu dx) , (4.15)

ol = Vafoo) = [

Q

which will be used many times in the following, called energy norm.

4.3 Finite element discretization

For a finite element discretization of the variational equation (4.3), let T, = {7} be a
conformal 3D triangulation of €2, i.e. a partition of {2 in open triangular subdomains 7
pairwise disjoint or having either a vertex, an edge or a face in common, such that Q = [ J7.
Let us suppose that 7}, is also constrained at the interface I'y, i.e. each element is disjoint
from I'; or has a vertex, an edge or a face lying on it. The index h, called mesh size,
measures the pointwise size of the elements in the triangulation, and has to satisfy some
regularity properties. Typically, h is defined as the piecewise constant positive function
such that h|,= diam(r) for any element 7, i.e. it equals the longest edge of 7. Weaker
assumptions for & can however be suggested. For instance, defining h, = diam(7) for each
7 € Ty, C. Johnson and K. Eriksson require in [21] that:

1) h € CY(Q), it is positive and there exists v > 0 such that
|Vh(x)|<v, VzeQ (4.16)
2) there exists a constant ¢; > 0 such that
e h? < /dx, V1 € Tj; (4.17)
3) there exists a constant ¢y > 0 such that
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coh, < h(x) < h;, Vzer, V7 €T (4.18)

By means of these conditions it is required to have a sufficiently “good” mesh, that is: 1)
sufficiently uniform with a not too large variation in size among the elements, 2) with not
too sharp angles in the elements, and 3) whose element shapes are not too far from the
equilateral one. In [11] and [15] it is explained how the quality of the element shapes in
the triangulation can affect the convergence of finite element solutions.

We can now turn to the discretization of (4.10), by using a continuous Galerkin finite
element method. Let V)’ C Hyp (€) be the finite-dimensional space of continuous func-
tions piecewise defined on 2, vanishing on I'p, that are continuous polynomials of order r
over each element in 7). Then, by definition, the Galerkin finite element solution satisfies
the variational form (4.10) for test functions considered in this finite-dimensional space,
i.e. the following problem:

(discrete variational formulation) Find 1, € V}| such that
a(ﬂh, Uh) = b(?}h) V?Jh € Vhr, (419)
where a and b are defined by (4.8) and (4.11).

The discrete model Au = b is then derived in a similar manner to models without
interface. It is sufficient to impose the discrete condition (4.19) on test functions v, be-
longing to the same finite-dimensional basis in V;” used for the finite representation of the
discrete solution. The basis functions are chosen so that a local compact support property
holds (e.g. in the piecewise linear case, the well-known hat-functions can be used). To-
gether with the interior sources and the boundary conditions, in our case a contribution
from the interface conditions has to be included in the right hand side b. If a piecewise
linear Galerkin method is applied, for instance, the number of degrees of freedom for the
linear system is the number n of the interior and Neumann boundary nodes defined by
the triangulation 7}, with interface nodes included (called free nodes). In the definition
of the discrete model, the interface condition u; = uy + d is inserted into the structure
of the linear system, in order to compute directly the finite element approximation wu, of
the solution u, instead of @,. In the unknown vector u = (U, Uy, - ,U,), the generic
component U; = uy(x;, ¥i, z;) represents the value of the finite element solution u, at the
1-th free node of 7},. The components of u on nodes belonging to I'; are associated either
to the function u; or to usy, by arbitrary convention, as the value of the other one is derived
immediately from the knowledge of the jump d.

Owing to the uniform ellipticity of the form a(u,v), the stiffness matrix is non-singular,
symmetric, positive definite and, due to the local support property, sparse. Therefore,
the linear system is generally solved by iterative methods, e.g. Krylov subspace methods.
Suitable preconditioners B can be applied in order to reduce from x(A) to x(BA) the
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Figure 2: A two-dimensional projection of the model domain

condition number of the stiffness matrix, which would otherwise grow as the mesh size
becomes finer. In [13] X. Cai and K. Samuelsson suggest some methods, like additive
Schwartz methods and multigrid techniques, that can be used as possible preconditioners
for the stiffness matrix. Aspects about the implementation of the discrete model (4.19), in
our specific applications for magnetostatic problems, will be described in Chapter 6.

4.4 A magnetostatic problem

The electromagnetic model studied in the present work is a particular case of the gen-
eral boundary value problem (4.1) for special values of the data functions f,d, p,q and up
related to magnetic properties.

In the following, when omitted, it is always intended that all material regions, all bound-
aries and interfaces satisfy the“good” properties of regularity specified in Section 4.1. The
intention is now to investigate the behaviour of magnetic fields in static conditions in
a region of space containing prescribed currents. Let Q C R3? be the region of interest
with boundary I', composed of materials that are soft media, all linear, homogeneous and
isotropic, so that the magnetic permeability p is a piecewise constant positive function, i.e.
constant on each material. Let us suppose that there exists a conductor domain €2, C €2
where a current flows with density J,. Let us partition the domain in two material re-
gions §2; and {2, such that 2, contains ); and {2; is simply connected, and denote by
['; = 0921 N0y the interface between them. Each of the domains €2; can be composed of
several materials.

According to the double potential formulation presented in Section 3.4, we can now
write Maxwell’s equations in terms of a total magnetic potential ¢ on {2; and a reduced
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potential ¢ on €y, related to the magnetic field by (3.51) and (3.47). The governing dif-
ferential equations are thus Poisson’s equations (3.52) and (3.50) for ¢ on €2; and ¢ on €y
respectively, in which H, vanishes since there are no permanent magnets.

To set boundary conditions, we partition I' in two (assumed connected) parts 'y and
['p such that I'y UT'p = T', depending on where normal and tangential components of
the magnetic field are known. We introduce the partial boundaries I'y; = I'ny N 0€y,
FD,l = FD N 691 and PN72 = FN N 692, PD’Q = PD N 8Q2 on which (361)—(362) and
(3.59)-(3.60) are respectively assigned. Considering in I'; the interface conditions (3.53)
and (3.56), we have finally the following differential boundary value problem on :

( —V - (Vo) =0 on {4
=V - (V) = =V - (u2H,) on €2,
¢(r) = p(r) — [} H,-dr, ¢(ro) = ¢(ro) on I}

) piVo -ny + ppVe -ng = ppH, - ny on I' (4.20)
¢(r) = [ H, - dr onTp; '
p(r) = [0 Hy-dr, ¢(ra) =0 onpo
V¢-n1:0 on FN,l

. Vo -n; =H;-ny on PN,2

in the unknowns ¢ and ¢ on their respective domains €2; and {25, where rq € I'; and
ry € I'py are fixed arbitrarily. Figure 2 shows a schematic 2D version of the model do-
main. In (4.20) H represents the source magnetic field intensity due to J, which can be
computed using the Biot-Savart law (3.48), as described in [27].

Since problem (4.20) belongs to the class (4.1) with data f,d,p, ¢ and up related to H;
by differentiation or line integration, we can therefore use the weak formulation (4.3) for a
finite element solution by Galerkin discretization, according to the discrete form (4.19).

Once the potentials ¢ and ¢ have been computed by solution of model (4.20), and
consequently the fields H and B are known, global quantities of physical interest can be
then estimated, for example the magnetic energy. Given a material domain D C R3,
assuming that B is linearly related to H, the total magnetic energy stored in D due to H
is

WZE/B-HdXZE//j,H2dX. (4.21)
2Jp 2Jp

In Chapter 7, model (4.20) will be applied to some test cases and magnetic energies on
material domains will be the reference global quantities computed from our FEM solution,
in order to compare their values with the ones estimated by other finite element methods.
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5 Error estimation and adaptivity

5.1 Types of error

Broadly speaking, differential models can be written in the general form A(u) = g,
where A is a differential operator, g represents data and u is the solution. In the represen-
tation of a physical problem by a computable mathematical form we introduce, however,
perturbations and approximations. Generally, the operator A is modelled by A and the
datum g is approximated by g. Therefore, if U is the exact solution of the approximated
model A(u) = g the difference eyy = u — U represents what we can call the modelling
error. Then, depending on the discretization method and the computation algorithm, we
also have to take into consideration the computational error ec = u — U where U is the
approximated solution of A(u) = g. The total error is thus the sum of both the modelling
and computational errors:

e=u—U=(u—-u)+U+U)=-enm+ec. (5.1)

In this work, we intend to investigate the computational error, dominant part of the
error when the computational model A(u) =7 is a “sufficiently” good approximation of
the exact model A(u) = g. Here, the approximated solution U is intended to be the finite
element solution wu; of the variational form (4.3), obtained by solving the discrete form
(4.19). A future task for a global error analysis will be then to investigate other error
contributions. In our model, which involves several steps of modelling and computation,
the sources of “perturbation” arise in fact in modelling of data at more levels (computation
of Hj, discretization of H, - n for the Neumann conditions, quadrature of [ Hj - dr for the
Dirichlet conditions) as well as numerical computation (Galerkin finite element discretiza-
tion, linear system solution).

Consider now the finite element error
e=1u—Up, (5.2)

where u is the exact solution of a certain model and uy, is the finite element solution. Error
estimates of (5.2) provide a measure of the accuracy and stability of the finite element
solution. They can be given in two forms, as a prior: and a posteriori estimates.

A priori error estimates for (5.2) are expressed in terms of the exact solution, so that
they can give information about regularity properties of the exact solution and the order
of convergence of the finite element method. Differently from the former, a posteriori es-
timates are expressed in terms of data, mesh size and finite element solution, i.e. they are
defined by quantities that are all computable. The latter turn out to be useful to suggest
operative criteria to improve the solution accuracy by successive steps of finite element
calculation in a feed-back process resorting to known or previously computed information.
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In this case, no a priori information of the exact solution are required.

In an adaptive finite element method, a posteriori error estimates are used inside a
computational procedure that constructs a finite element discretization for a given problem
according to two basic objectives [21]:

(a) the error of the approximate solution lies within a given tolerance;
(b) the finite element solution is obtained by a (nearly) minimal number of degrees of
freedom.

By condition (a) we require that the method is reliable, and by condition (b) that it is also
efficient.

The basic idea behind an adaptive finite element algorithm is the following. If a global
a posteriori error estimate is lower than a given tolerance, the finite element solution
is considered accurate (and the algorithm stops). Otherwise, local error indicators are
computed on mesh entities (elements, nodes, or edges/faces) for a “local” improvement
of the solution accuracy by refinement/correction of selected entities on which the error
indicator results large. Regarding this, we can distinguish essentially three refinement
approaches:

- h-refinement, decrease of the element size;
- p-refinement, increase of the order in the polynomial representation of the solution;
- r-refinement, movement/correction of node positions.

Once the refinement procedure has been performed on the mesh, a successive and more
accurate finite element solution is then computed using the new definition of the degrees
of freedom. In the present paper we deal with h-refinement techniques and in Section 5.3
we will describe how they have been applied to finite element meshes.

Many authors (I. Babuska, W.C. Rheimboldt, R.E. Bank, A. Weiser, O.C. Zienkiewicz,
C. Johnson, R. Verfurth, J.E. Flaherty, and some others) have studied adaptive finite el-
ement methods according to a posteriori error indicators estimated by different criteria.
See references [3, 5, 7, 18, 20, 21, 31, 32, 33, 49| and, for a more complete list, the ones
quoted in [18, 23, 49].

Among the ones above mentioned, the first a posteriori error estimator has been sug-
gested by Babuska and Bank in the 80’s. In that case the error was computed from the
solution of ”"perturbed” local variational problems, where residual quantities appeared as
data for the error model. This idea has been used recently for static electromagnetic
models in [2; 25], and for eddy current problems in [23]. Differently from Babuska’s, in
Johnson’s approach error estimates are provided as upper bounds of the error in proper
norms (|| e||z,, ||ell=, ||€]le, etc.), related to residual quantities occurring at the interior
and the boundary of the elements, up to proper constants. Basically these error estimates
are obtained by using the orthogonality properties of the Galerkin method together with
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standard finite element interpolation estimates, and they require an estimation of stability
factors, which can be obtained by solving dual problems associated to the initial one.

According to these guidelines, in the next section we extend some arguments proposed
in [18, 21] for classical Poisson problems, to prove some a posteriori estimates of (5.2)
for the finite element solution of model (4.20). Aiming at this, we consider the abstract
framework presented in Chapter 4.

5.2 A posteriori error estimation

Under the hypotheses and notations introduced in Section 4.2, we have seen that the
model problem (4.1) can always be associated to a variational form (4.10) with the bilinear
form a and the linear functional b defined in (4.8) and (4.11), which is equivalent to (4.3).
Let therefore u be the exact solution of (4.3), obtained from the solution @ of (4.10) and
relation (4.7). Similarly, let u;, be the discrete solution, computed from the Galerkin finite
element solution 4, of (4.19) and the definition

Up = Up + Up,n, (5.3)
where @p, is the projection of p in the finite-dimensional space V.. C H 1y, Q) of
functions that are continuous on 2; and €25, piecewise defined polynomials of order r over

each element in T}. As regards u and uy in the original models, we use the same bilinear
form a as defined in (4.8), and introduce a functional g obtained from b in (4.11) such that

g() = (f,v)a+ <q,v>py + <p,v>r,, Yv€E H&FD(Q). (5.4)
By construction, we know that u satisfies (4.3), i.e.
a(u,v) = g(v), Yo € H&FD (Q), (5.5)

together with the non-homogeneous Dirichlet conditions on I'p and I';, and uy, satisfies the
discrete form

a(up,vp) = g(vp), Vo, € V. (5.6)
Under these premises, from (5.5) and (5.6) it follows:
Proposition. The finite element error (5.2) satisfies the “orthogonality” property
ale,vp) =0, Yo, € V. (5.7)
In €2 we now introduce the following residual
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r=-V-(aVu)— f, (5.8)

associated to the functional
<r,v>= a(up,v) — (f,v)o— <q,v>ry — <p,v>r, (5.9)
for each v € Hyp (). Then

Lemma. For all v € Hyy (Q), vy € V), it holds:

<r,uv>= —al(e,v),
<r,vp>=0, (5.10)
<r,v>=<Tr,U —UR> .

Proof. The first one follows immediately from the linearity of a, the second one from
(5.6) and the third one as a corollary, due to the linearity of <r,->.

Given the triangulation T}, = {7}, let F be the set of faces of all elements 7 € T},. In
the following, for any face f € F between a tetrahedron 7';’ and its adjacent 7, and any

(NS LZ(E U ﬁ), we denote by ¢ and ¢, the limit values of ¢/ on f from the two sides

of 7';“ and 7, respectively, and by [¥] s the jump of ¢ across f in the direction of the unit
vector n normal to f, defined by

Uf = lim Y(x+m), ¥ = lim Y(x—tn), Vxef,

t—0—

[W], = ¥F —¢5. (5.11)
Now it is possible to demonstrate the following a posteriori error estimate for (5.2):

Theorem 5.1. The energy norm of the Galerkin finite element error (5.2) in the

variational problem (4.3) satisfies the following property: there ezists a constant C > 0 for
which

lellen < CIAR 4,0, (5.12)

where h = h(z) and R = R(z) are the functions piecewise defined on each element T such
that

h|,=h, (5.13)
R|. =|-V-(aVuy) — f| +h7"/*Meas(r)~"/? &,,

T

with h, = diam(7), and
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Sy = - ([aVup - n] — p) HLQ(amFI) (5.14)

+ || n-[aVuy - n] ||L2(af\(rur,)) + | aVu,-n—g¢q ||L2(67-DFN)’

where {n; }ren, s a family of positive real numbers chosen in such a way that 0 <n, <1
for all T € Ty, with 0y, +n,, =1 4f 7; and 7; are adjacent.

Proof. The demonstration is based on the elementwise decomposition of the integrals
defining a and g by the triangulation 7},. First, we write

<p,v>r,= Z/ pv dS, (5.15)

feF Il
define
a-(u,v) = /aVu -Vudx, YveHjp (), (5.16)
and consider the set decomposition
or=@rnTp)u@rnly)u@rnTu(or\ (Culy)). (5.17)

Then, we have

<r,u>= Z (aT(uh,v) - (f,v), — <q,v>3mFN) — z<p,v>anI

TET) feEF
= Z ((=V - (aVuy) — f,v), + <adu,/0n — q, V>4 0y
’TETh
+ <a8uh/6n,v>37\r) — Z <D,V>rnr,
feF
= ((=V - (aVuy) = f,v), + <aVup-n—q,0>5.r, ) (5.18)
’TETh
+ Z (<[aVuy -]y — p,v>sp, + <[aVuy - n]f,v>f\(rur1))
jeF

= ((=V - (aVup) = f,v), + <aVu,-n—q,v>45.r,
’TETh
+ <n,([aVun 1] = p),v>5 o, + <me[aVun -0l v>50 o)

where {1, }.er, is a set of weights chosen so that 0 < 7, < 1 for all 7 € Ty, and ., +7,, =1
if 7, and 7; are adjacent. Considering now the third relation in (5.10), the Cauchy-Schwartz
inequality and the monotony property for integrals, we obtain
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[<ru>| < Z (||—V (aVun) = [ ll,mllv = vnllp,m

TET
+ laVup -n—gq ||L2(amrN)|| U — Uh ||L2(a’7’) (5.19)
+ |77 ([aVuy - n] — p) ||L2(6TOF1)||U — Un ||L2(67)

+ || m-[@Vuy - n] ||L2(6T\(FUFI))|| U= Un ||L2(67'))'
Two fundamental inequalities have then to be used on elements 7 and their boundary (see

[18, 43]). The first one is a local version of the trace inequality (2.16): given a function
w € H'(7) there exists a constant C, > 0 such that

| w ||L2(aT) < CTaO(h’:l/ZH w ||L2(T) + hip” Vw ||L2(T))- (5.20)

The second one is a classical result from interpolation theory: denoted by €2, the union
of the closure of elements adjacent to any element 7, for any function w € H'(€),) there
exists a constant C;; > 0 for which

| D™ (w — mhw) 1) < Cra hi ™| DYw [PAESE (5.21)

for m = 0,1, [ = 1,2, where m,w is the nodal interpolant of w at nodes of €2, with
DOy = w and DWw = Vw. In particular, it follows

| v—mpv ||L2(T) < Crihe| Vo ||L2(QT) (5.22)

| V(v —my) ||L2(T) < Cral| Vo ||L2(QT)7
hence

10— 700 lla(ory < Cra A1 V0 [y (5.23)

with C, o = 2C;(C; 1. We substitute the first inequality of (5.22) and (5.23) in (5.19), and
resume all the constants to obtain

[<r,v>|<CY Z (h7|| =V-(@Vun) = fllp,ey + h? (Nl ns[@Vun-n) 2o 0r\rurn)

’TETh

+ |- ([aVup-n] = p) ||L2(amr,) + [[aVup-n —g ||L2(amFN))) | Vv ”LQ(QT) (5.24)

for a constant C® > 0. Then, we consider the monotony property for the integration
domains €2, C €2, the upper bound

n n 1/2
Zaigkcn(Za?) C Va; >0, i=1,2,...,n, (5.25)
=1

=1
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which holds for some constants k,, > 0, as well as the bounds a? + b? < (a + b)2<2a? + 2b?
for all a, b > 0. After some rearrangement, by introduction of the global notations (5.13)
and (5.14), we get

<1, 0>[< CONRR] o) | VO 1,y 0 (5-26)
for the constant C() = /2 £,C(?. Then, we choose v = e and use the equality
2
[<r,e>|=|lellgq (5.27)

obtained from the first equation in (5.10). To conclude, we consider the equivalence between
norms ||ellg o and || Vell,, . In particular, from

Wmin| Ve |70 < lellzq (5.28)

we get the upper bound in Ly-norm
Vel iy < C [[AR]| 1y (5.29)
with C = C™ /ain. On the other hand, from
2 2
amaznve”Lz(Q) 2 ||€||£,Q (5.30)

relation (5.12) finally holds, by choosing C = C™M | /ttmaz/Cmin- Q.E.D.

The above estimation on () shows that the energy norm of the finite element error de-
pends on the residual at the interior of elements, in a proportional way to the mesh size h.,
as well as the residual at the inter-element jump of the normal derivative of the solution,
in a proportional way to hy 2,

For the numerical computation of (5.12) two important aspects have to be considered.
The first one concerns the weights 7, appearing in the pairwise contributions across element
faces. Although an infinite number of values can be assigned to them, it is convenient to
define them in such a way that the corresponding terms in the upper bound (5.12) become
as small as possible. The simplest choice is to take n, = 1/2, i.e. to consider an equidis-
tribution of the error contribution due to jumps of the normal derivative. A better choice,
however, is to define a different weight from element to element, taking into account the
geometry of the problem domain, the possible discontinuity of the diffusion coefficient o
across elements, as well as local behaviours of the finite element solution (e.g. gradients,
etc.). Regarding this, a possible non-uniform definition of the weights 7, is suggested in
the following Theorem 5.2.

38



The second (crucial) aspect is to provide an appropriate estimation of the constants C
and C. The proof of Theorem 5.1 suggests how to compute them, by their relation with
the constants appearing in the trace and interpolation inequalities (5.20) and (5.21). Nev-
ertheless, such estimates would be too large. A sharper estimation than (5.12) is rather
obtained by separating the contributions of the interior residuals and the jumps of the
normal derivative across the element faces with introduction of two different constants,
instead of one, resorting to few modifications in the previous demonstration.

Taking into account these two practical difficulties, a finer error estimation is then sug-
gested by modification of the global general upper bound (5.12), as follows.

Theorem 5.2. The energy norm of the Galerkin finite element error (5.2) in the
variational problem (4.3) satisfies the following property: there exist two constants Cy > 0
and Cy > 0 for which

2
lellzq = lla'? V(u—ua) 1,00 (531)
<3 (G lla™ P he(~V - (V) - ]}
>~ 1 T h La(7)
TET)
\_1/2,1/2 2
+C( > I+ o) haVuy mlp ],
fe(or\(Tury))
N 1/2 2
+ > @ +a) Ph (Vs - nl; =),
fE(@TﬂI‘I)
_ 1/2 2
+ > l@wy (O‘V“h‘n_Q)||L2(f)))’
fe(@rnT'y)

where h, and hy denote the element and face sizes, defined by h, = diam(r) and h; =
diam(f) for each face f in T, for 7 € T, and where ot and o~ denote the limit values of
« at each face f of T from its interior and exterior respectively, according to notation (5.11).

Proof. The demonstration is similar to the one of Theorem 5.1. The fundamental
difference consists in the specification of the weights n, and in a different definition of the
constant factors. Again, we compute < r,v >. In the last right hand side of equation
(5.18) we can divide and multiply by a!/? the addends referred to 7 and 87 N Ty, and
multiply and divide by hs/> the addends referred to Or N Ty, &7 NT; and o7 \ (Tuly).
Then, we define the weights 7, introduced in Theorem 5.1 so that

at

I 5.32
at+a’ (5:32)

"77'|f:

for each face f of element 7. If we split in two factors the contributions of 7, by the
substitution
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Ny =n;Vat (5.33)

with 77|, = Va®/(a* + a”), equation (5.19) takes the modified form

<rw>1< Y0 (1020 = v) iy ™=V - (@Vun) = £) 0

TETY,
+ [l 2h 2 (0 — up) ||L2 (or) ( la~?h(aVuy -0 — g) ||L2(BTDFN) (5.34)

+ | U*hl/Q([avuh -n| —p) ||L2(amr, + | n*hl/Q[aVuh -1 ||L2(aT\(rurI))) )
From (5.22) and (5.23) we obtain the inequalities

| O‘I/Q(U — ThY) ||L2(’T) < éf,lh7|| Vv ”LQ(QT) (5.35)

| &' /2h 2 (v — myo) ooy < Crall Vv Iz0.)

~ 1/2 ~ 1/2 . . P _
where C;; = CT,1an{ax,¢ and C, 9 = C’T,QaH{aX,T, with @max, maximum diffusion value on 7.
We now consider the upper bound

Vot < 1
at+a-  Vat+a’

and split the boundary contributions on each element along the single faces. If we denote
by hy = diam(f) the size of each face f, for any tetrahedron 7 € T}, there exists a constant
k7 > 0 depending on the geometry of the tetrahedron such that h, < k. hy for any face f
of 7. Thus, summarizing all elemental constants CT 1 and x, in a global C, as well as 07—2
and x, in a Cg, we obtain

(5.36)

<ru>[ < 3G a7 2he (=¥ - (@Vun) = £) | (5.37)

TETh

+Co( Y et + o) h eV mll,,

fe(@T\(I'UI'p))
+ 4 o) V2Rl .nl; —
+ Y et +a) (Ve nl =),
fE(GTﬂFI)
— 1/2
+ > e @V n=q)ll, ) ) V0l
fE(BTﬂFN)

as a modification of (5.24). Again, we choose v = e, apply equality (5.27) and consider
bounds (5.28) and (5.30). Taking here || e ||7 o instead of || e || o and using inequality
(5.25), we finally obtain estimation (5.31) for suitable constants C; > 0 and Cy > 0 related
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to C? and C? respectively. Q.E.D.

Giving a more detailed information than the general bound (5.12), estimation (5.31)
shows that the elemental contribution of the error due to the interior residual is inversely
proportional to «!/? and proportional to the element size, while the local contributions
on the element boundary take into account the discontinuity of diffusion across the faces,
inversely proportional to (o™ + oz_)l/ ? and proportional to the square root of the face sizes.

In the particular case without any interfaces, (5.31) coincides with the error estimate
introduced by X. Cai and K. Samuelsson in [13]. This represents the indicator that has
been used in the present work for adaptive refinement purposes, since a numerical esti-
mation of the constants C; and C, has already been derived in [13] both in the 2D and
3D case. These estimates result in fact sharper than the large constants obtained from
the trace and interpolation inequalities. The suggested values are C; = 0.1, Cy = 0.15 for
triangles and C; = 0.07, Cy = 0.55 for tetrahedra (used here). In the next section we will
describe the algorithm of adaptive h-refinement applied to our model.

To conclude, alternative approaches of a posteriori error estimation could be proposed,
depending on which quantity is considered for measuring the error on it. Here, we have
focused mainly on the pure error of the potential, in order to evaluate directly the accuracy
of the Galerkin finite element solution of the discrete form (4.19) associated to model (4.1).
An alternative criterion could be to estimate the error on the “energy” defined by

& :/ Vul? dx — /\Vuh|2 dx (5.38)
D

or, better in our case with diffusion oo = p, by

&= / w [Vul? dx — /u \Vup? dx, (5.39)
D

for certain domains D C R? contained in  or €;, 1 = 1,2, related to physical materials
of the model. In the magnetostatic problem (4.20), in fact, the latter definition is related
to a “physical” quantity, i.e. the magnetic energy (4.21), by means of definitions (3.47)
and (3.51). This approach would be efficient for models derived by field formulations, as
it has been tested in [8, 10]. As concerns scalar potential formulations, the new definition
of error seems appropriate for domains where only total potentials are introduced, like in
electrostatic models, or in magnetostatic models having permanent magnets but not source
currents. In our case, the error £, does not coincide completely with the effective error of
the physical magnetic energy because of a double potential formulation that has recourse
necessarily to a reduced potential ¢ in a part of the domain containing currents. In this
case, in fact, also the contribution of the source field H; has to be taken into account in
the estimation of the magnetic energy.
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5.3 Adaptive mesh refinement

To construct an adaptive finite element solution based on refinement of the mesh, we
have to specify a criterion of selection of the mesh entities to be refined, together with
a geometric technique of refinement. First, the prior requirement is that an a posteriori
estimation of the finite element error has been provided in a suitable norm || - ||, depending
on the problem and the finite element formulation. Then, as quantitative information from
which to generate the adaptive procedure, we can consider:

(a) a global relative error indicator, to be measured on the overall domain;

(b) local absolute error estimates in norm, to be computed for each element of the mesh.

The global indicator (a) is computed from local data (b), once the norm of the finite ele-
ment solution has been estimated. Depending on the magnitude of the local absolute error
values, we then decide whether the solution is enough accurate or an adaptive refinement
procedure has to be applied on the mesh entities for a successive and more accurate finite
element solution on the refined mesh.

For our problem (4.20), we consider the a posteriori error estimation (5.31) in energy
norm. Given a finite element triangulation 7}, we assume as local absolute error estimates
each of the addends appearing at the right hand side of (5.31), in the following denoted by

efm for each 7 € T},. Thus, the quantity
\/ ZTET G%L T
y=->r (5.40)

E =
lun g

is assumed as a definition of global relative error indicator on €2, where u; is the finite
element solution on T), and |||, denotes the energy norm on €. Then, if (5.40) is lower
than a prescribed tolerance, the finite element solution is considered “accurate” and the
algorithm stops. Otherwise, an adaptive refinement procedure is called, consisting of edge
subdivision depending on the magnitude of the local error indicators.

Formally, in order to decide which elements need to be refined and how much, i.e. how
many edges in the element have to be split, we first consider the maximum local error
indicator

€onae = max{e, . (5.41)

maz TETY

Then, fixed a value ¢ such that 0 < 6§ < 1, called factor of refinement, we set the N + 2
levels

bo=0;  b=6"" i=1,2,..., N+1, (5.42)

max?

where N is the number of edges (e.g. N = 6, in case of tetrahedra). Hence, a refinement
criterion can be the following:
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(a) edge bisection (b) centroid (c) Bank bisection

Figure 3: Classical refinement techniques for triangles
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(a) edge bisection (b) centroid (c) Bank bisection (d) face bisection

Figure 4: Classical refinement techniques for tetrahedra

Vrely:
find j € {0,1,..., N} such that b; < €, . < bj1;

split the element T along j edges.
In this procedure, the elements 7 having €2 < b; are not considered for refinement.

Splitting an edge means adding a new node at the midpoint of the edge. When an
element needs to be refined according to the algorithm, with subdivision of j edges, the
longest j edges are split. When 7 > 1 more than one way can then exist to generate the
derived elements from the initial one, considering the added nodes. The choice about which
faces generate the derived tetrahedra (i.e. how added nodes connect old and new nodes
in the original tetrahedron) is done in such a way that their shape is kept “close” to the
equilateral geometry, consistently with the shape quality of old tetrahedron. This is done
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in order to avoid degenerations in element shapes that could not guarantee convergence of
the finite element solution. In the case j = 1, two tetrahedra are generated from one (using
the classical edge bisection method, as shown in Figure 4.a), while in the case j = 6 eight
tetrahedra are generated from one (e.g. obtained by the so-called Bank bisection method,
as shown in Figure 4.c). In the refinement of the elements, moreover, further transition
elements could need to be refined in order to guarantee that the new mesh is con formal.
The procedure of mesh refinement has been developed by K. Samuelsson at Chalmers Fi-
nite Element Center of Chalmers University of Technology. For a detailed description of
Samuelsson’s refinement technique, see [13, 41].

Figures 3 and 4 show several classical refinement techniques used in adaptive finite
element methods for 2D and 3D triangulations. The idea of methods based on edge bi-
section (Figures 3.a and 4.a) and Bank bisection (Figures 3.c and 4.c), for instance, is
very popular. As a short mention of alternative subdivision criteria, in the 2D case (3D,
respectively) a centroid method (Figures 3.b., or 4.b for the 3D case) could be applied, in
which three (four, respectively) elements are derived from the original one by connection
of its vertices with the barycenter of the figure. For 3D meshes, moreover, the so-called
face bisection method (Figure 4.d) could be considered, with generation of three tetrahedra
from one by connection of the vertices with the barycenter of the largest face. The last
two methods can, however, lead to shape degenerations and generally require techniques
of mesh regularization, like edge/face swapping, Delaunay triangulation, or movement of
nodes (e.g. Laplacian smoothing), in order to correct the shape of the new elements and
make it closer to the equilateral one. See [15] for a more extended overview of these tech-
niques, or [11, 25, 39].
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Figure 5: Flow-chart of the main algorithm
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6 Implementation issues

6.1 The algorithm

The solution of the boundary value problem (4.20) has been implemented in C++
language on a Unix Sun-Solaris platform. Some advantages in the utilization of an object-
oriented code for mathematical programming, especially for finite element applications, are
explained in Section 6.2. The structure of the main algorithm can be represented by the
flow-chart depicted in Figure 5. In this section, we briefly comment the main parts of the
program.

Preprocessing

In the initial phase, a geometry, a starting (tetrahedral) mesh and physical parameters
of the problem are set. The software Pro/ENGINEER has been used as a CAD tool for
the construction of the domain geometry by parametric curves and surfaces in NURBS
representation, exporting models in IGES format. In the preprocessing phase, typical
finite element information are stored:

e node information: number of nodes, global node numbers and corresponding Carte-
sian coordinates;

e clement information: number of elements, number of vertices per element (in case of
mixed elements), global element numbers, connectivity matrix element-local nodes,
type of material;

e material information: physical parameters associated to the materials (in our model:
source current density, relative magnetic permeabilities, and possible coercive field
intensity when permanent magnets exist).

Dirichlet and Neumann boundary surfaces are specified, as well as the definition of total
or reduced potential on the several material domains. Mesh information are connected to
the NURBS geometry.

Modelling of source data

First, the algorithm requires the estimation of quantities appearing as data in problem
(4.20). In the following, we shortly describe the main modelling steps.

o Computation of the field H, due to J, by estimation of Biot-Savart’s integral. Two
different techniques are used, depending on shape properties of source regions, i.e.
current-carrying conductors. For complex geometries, a finite volume approximation
is considered, by choosing as volumes the finite elements located in the current-
carrying conductors. This technique requires a triangulation that is constrained to
the shape of the conductors. A composite 3D Gauss-Legendre quadrature is then
applied with an appropriate order on each conductor volume. When the source
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regions are circular coils with rectangular cross section, a semi-analytical procedure
can be used instead, based on modified Urankar’s formulas [47], expressed in terms
of elementary functions, Jacobian elliptic functions and elliptic integrals of the first,
second and third kind [1, 12, 35]. In the last method, the numerical contribution
consists of elliptic integral estimations, here performed by Carlson’s algorithm [14,
36], and quadrature of one-dimensional Urankar’s integrals when points are in special
limit positions on which Carlson’s algorithm cannot be applied. Details about these
techniques are described in [27].

e FEstimation of values for the Neumann condition. Such data are easily obtained by
computation of the variational expression associated to the normal derivative of H
on all the surface faces of the interface and the Neumann boundary. Nodal values
are then obtained by summation of the various contributions on the surface faces to
which each node belongs.

e FEstimation of values for the Dirichlet condition. Such values are obtained by numeri-
cal estimation of line integrals [ H-dr on all the nodes of the surfaces at the interface
and the Dirichlet boundary. The integration lines are approximated by polygonals
composed of segments (edges of tetrahedra) or arcs (projected onto surfaces from the
edges) on the interface or the Dirichlet boundary (called trees). Depending on the
shape complexity of such surfaces, numerical line integration is then done by (a) 1-
point quadrature rule over each edge, or (b) higher order Gauss-Legendre integration
over each edge or projected arc.

In more general models, the contribution V - (uH;) appearing at the right hand side of
Poisson’s equation has to be considered inside domains with reduced potential definition.
In our assumptions, this term vanishes since materials have constant magnetic permeabil-
ity and H; is solenoidal.

Finite element discretization

The piecewise linear Galerkin discretization described in Section 4.3 has been applied.
With respect to classical Poisson models, here we have to consider an additional step: the
treatment of the condition of potential jump at the interface between domains in total
potential and domains in reduced potential.

According to our double potential formulation, at the interface between regions of dif-
ferent potential we have to set either a total or reduced definition for the potential. Once
fixed this convention, during the loop over all elements in the global FE assembly phase,
nodal potential unknowns at the interface, whose elements have a definition (reduced, to-
tal) that is opposite to the one chosen at the interface, have to be rewritten in terms of the
latter. Therefore, nodes of such interface elements have an extra contribution at the right
hand side of the discrete model, derived from the associated potential jump, given by the
corresponding line integral [ Hj - dr multiplied by the corresponding stiffness coefficients.
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Differently from the former, no additional contribution due to potential jump has to be
added at the right hand side for the elements located in regions whose potential definition
is the same as the one set at the interface.

For implementation purposes, in order to reduce the error perturbation, it is suggested
to choose as potential definition at the interface the same used in the domain having larger
diffusion (i.e. higher relative magnetic permeability). In such a way, the lower diffusion
coefficients of the adjacent materials give raise to lower amplification factors in the mod-
elling error due to line integral computations.

Solution of the linear system

As a linear solver for the sparse, positive definite and symmetric FE system, the SLES
module from the PETSc software package (version 2.0.28, from Argonne National Labo-
ratory) has been utilized. PETSc is a numerical library typically used for linear algebra
routines, it is designed to be particularly efficient in supporting parallel computations and
includes a storage format for sparse matrices [4]. The default method of solution in the
SLES kernel is a GMRES method with an incomplete ILU factorization, but many other
Krylov subspace iterative methods are provided, e.g. conjugate gradient solvers, together
with various preconditioning methods.

Computation of fields and magnetic energies

From the solution vector giving nodal information about potentials, a nodal representa-
tion of the field H is easily obtained using definitions (3.47) and (3.51), with H previously
computed on the nodes in the domain with reduced potential. Since piecewise linear ele-
ments have been used, a weighted averaging of the computed potential gradients, piecewise
constant, is done on neighbour elements. Magnetic energies have then been computed by
numerical integration of (4.21), on each of the material domains of the model.

Error estimation and adaptive refinement

The accuracy of the finite element solution is improved by successive iterations of mesh
refinement. Depending on user’s initial choice, the refinement can be uniform, i.e. all
elements are refined, or adaptive, i.e. only selected elements are refined.

In the adaptive approach the choice of which elements have to be refined is done ac-
cording to the a posteriori error estimate in energy norm given in (5.31), computed from
the finite element solution on the current mesh, data and element/face sizes. Elements of
the mesh with large error indicators are then marked for refinement, according to criteria
and subdivision techniques described in Section 5.3.

Since we are working with curved geometries, both in the adaptive and in the uniform
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Figure 6: Projection of nodes onto curves

refinement, when elements of the old grid have faces/edges on boundaries or interfaces
it is necessary to perform projections that move the new nodes onto the curved bound-
aries/interfaces. For the two-dimensional case, see Figure 6.

6.2 Object-oriented programming

The advantage of using an object-oriented programming language, e.g. C++, lies mainly
in the possibility of working with classes, as complex objects having an autonomous inter-
nal representation of data and functions [6].

A consequence of this approach by classes is modularity. Especially when complex prob-
lems require to be handled by simpler subproblems, or need to be extended, parts of the
code (modules) can be written separately by several programmers, possibly developed at
a higher level of generality. These modules can be then easily grouped together inside
a unique code for the purposes of the specific problem under consideration. To use an
instance of an existing class inside a code, what is required to the programmer is simply
to know that the class NameClass exists and that has a certain public or private func-
tion .NameFunction(varl,var2,--- jvarN) serving for a certain purpose. No knowledge
about the internal representation of the class is required. Once declared and defined in its
member data and functions as independent modulus, the class becomes a new high level
type available to the programmers working on specific problems.

Moreover, in the framework of programming for mathematical purposes, the level of
abstraction of object-oriented languages allows to handle equations and symbolic entities
by a formal process and a code representation that appears very similar to the mathe-
matical formalization. As examples, we can consider in its abstraction instances of a class
Equation, as well as objects of type Point, Line or Plane for computations in Euclidean
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geometry, algebraic structures of type Group, Ring, etc., Gaussian integration methods by
a class GaussQuadrature in which the number of nodes/weights is specified as a parameter,
and so on.

6.3 Classes for finite element methods

Especially for finite element methods, the object-oriented philosophy seems to be par-
ticularly efficient when manipulating entities as differential equations in their variational
form, as well as meshes, elements, basis functions, etc. Several possibilities in the choice
of these classes arise. Here, we focus on the ideas that have been used in our model and
its finite element solution.

Classes for equations.

First, the kernel of the model lies in the variational form of a partial or ordinary differen-
tial equation. The model (4.1), and therefore (4.20), comes from the generalized Poisson’s
equation —V - (aVu) = f for which the simplest weak formulation is

/aVu -Vudx = /a(auwavw + Ou, 0vy + 0u,0v,)dx = /fv dx (6.1)

in case of homogeneous Dirichlet boundary conditions, without any interfaces. For mixed
boundary/interface conditions, we have seen in Section 4.2 how surface integral (3D case)
or line integrals (2D case) have to be added, according to (4.3). We can therefore implement
a class PoissonEquation, in which a function returns the elemental left hand side of (6.1)
in the form

alpha * (u.xO*v.xQ+u.yO*u.yO+u.zO*v.z() ),
and a function returns the right hand side in the form
f x v,

with an evident resemblance to the above symbolic formalization. The variational equation
is computed on each element of the mesh, therefore it makes sense to define an abstract
superclass Equation to connect the specific equation (here, PoissonEquation) with each
element and the corresponding basis functions. Observe that the member functions of
Equation are valid for all the models, while the peculiar form of the equation is imple-
mented in specific subclasses EquationType derived from it, e.g. PoissonEquation in our
case.

Classes for grids.

The classes handling FEM meshes on arbitrary domains have been implemented at
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Chalmers Finite Element Center by K. Samuelsson (see Section 5.3), and it has been pos-
sible to easily encapsulate them in the specific code written for our applications. According
to Samuelsson’s idea, a mesh can be seen as an instance grid of an abstract class Grid
where, as an example, functions like

nElms=grid.getNoElms () ;
nNodes=grid.getNoNodes();

for (i=0; i<3; i++) x[i]l=grid.getCoor(iNode,i);
matType=grid.getMaterialType (iElm) ;

return the number nElms of elements, the number nNodes of nodes, the coordinates
(x[0],x[1],x[2]) of the node whose global number is iNode, and the material iden-
tifier matType of the element iElm, respectively.

When a mesh has to be considered inside a hierarchy of several meshes on the same
domain, as it is required for mesh refinement strategies, it is useful to derive a GridFeHier
object as a subclass of Grid. The purpose of this subclass is to keep track of the rela-
tionships among entities referred to a grid (e.g. elements, faces, edges, nodes) and other
entities corresponding to another instance of grid derived from the former by refinement or,
vice versa, from which the former is derived. In our case, the uniform refinement procedure
to be applied to an instance gridFE of hierarchic class GridFeHier is simply called by

gridFE.refineUniformly(&newgridFE, iMethod);,

while the adaptive procedure is called by
gridFE.refine (&newgridFE, vecMarkedElms) ;.

In both the refinement procedures the new mesh is newgridFE, generated from the original
mesh gridFE. In the uniform procedure, the parameter iMethod is an identifier that spec-
ifies which subdivision technique has to be considered inside a list of various refinement
methods implemented for 2D and 3D meshes. In the adaptive refinement routine, the in-
formation about which elements refine, and how much each one, is contained in the vector
vecMarkedElms. Such vector associates to each global number of element in gridFE the
number of edges that have to be split, according to the technique described in Section 5.3.

A class GridSurfaceTriangulation is also considered to connect mesh information
with the geometry, i.e. the NURBS curves and surfaces representing boundaries and in-
terfaces of the model. Once established such connection, any refinement procedure will be
performed in accordance with the curved shape of boundaries and interfaces, by projections
of the nodes located on the boundary/interface edges or faces onto such curves/surfaces
(as shown previously, in Figure 6).

To conclude with mesh information, a class NeighborFE is defined, containing infor-
mation about adjacencies of entities in the mesh, i.e. which are the elements having a
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node in common, the elements adjacent to an element or the nodes adjacent to a node.
Finally, a class FEcomp allows geometric operations on elements, triangles and tetrahedra,
like computation of lengths, areas, volumes, normals, barycenters, etc.

Classes for elements.

The elements can be seen as instances of a class Element (nVertices,nBasisFunctions),
where nNodes and nBasisFunctions represent the number of vertices (3 for triangles, 4 for
tetrahedra) and the number of basis functions (3 or 6 for linear or quadratic triangles, 4 or
10 for linear or quadratic tetrahedra, and so on), respectively. The definition of the basis
functions and the calculation of their first derivative (as required for the weak form of sec-
ond order differential problems) can be implemented as useful member functions defining
the nature of derived classes, like ElementTetLin from Element (4,4), ElementTetQuad
from Element (4,10), and analogously for triangles, or for higher order finite element meth-
ods.

During the loop over all elements in the global finite element assembly, the current
index iE1lm of element has first to be associated to an Element template, and successively
it is geometrically located in its space position by means of a mapping from the reference
element, described by the following code:

elm.update (iElm, grid);
mapper .maplsoparametric(quad, elm);.

Here mapper is an instance of the class Mapper that performs the coordinate transformation
from the reference element onto the current element. The type of Gaussian integration is
specified by an instance quad of the class GaussQuadrature.

Some more independent classes can be considered for further information. For instance,
NurbsCurve and NurbsSurface can be designed to perform geometric operations on curves
and surfaces defined by NURBS parametric representation, while a class Sparse is used to
handle matrices having a sparse structure.

In the next Chapter, we finally conclude our discussion with the analysis of numerical
results obtained on some magnetostatic cases.
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Figure 7: Axial section of the domain in Problem 1 (dimensions in meters)

7 Applications and numerical examples

7.1 Problem 1

The first problem is an axisymmetric model that describe a typical electromagnet. The
model consists of three material domains. A cylindrical core of ferromagnetic material
(e.g. iron) is inserted in a toroidal copper winding with azimuthal width 27 and rectan-
gular cross section. The ferromagnetic medium and the coil are immersed in a cylindrical
box containing air with perfectly conducting surfaces. Geometry and dimensions of the
materials are described in Figure 7.

As data for the problem, we assign the relative magnetic permeabilities p, je = 10%,
Hrcoit = Prair = 1 for ferromagnetic material, coil and air, respectively. A constant sta-
tionary current flows in the coil with density magnitude J;, = 100 A/m?, i.e. total intensity
1 A.
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Figure 8: Isopotential lines in the total and reduced domains of Problem 1

In our double potential definition, the scalar potential is assumed to be total inside the
iron core, which is simply connected, and reduced in air and inside the coil. Since the mag-
netic permeability is much higher inside iron, the potential has been defined total on its
boundary (interface for the model). A Neumann condition has been imposed on the outer
boundary, specifying a value of potential at one point in order to guarantee the uniqueness
of solution.

The line integral computations have been performed by considering, point by point,
the average of estimates over trees generated by initial points located in symmetric posi-
tions and sufficiently distant from each others. Since here the ferromagnetic medium has
a simple convex shape, the integration lines can be simply approximated by polygonals
composed of element edges lying on the interface and the boundary (if Dirichlet conditions
are specified). Over each edge a 1-point quadrature rule can be applied. As expected,
the mesh quality has affected the precision of the line integral computations, becoming
the more accurate as the triangulation becomes finer, since by mesh refinement polygonals
converge towards curves of the interface and the (possible) Dirichlet boundary. For a fur-
ther improvement in the accuracy of line integral computations, also higher order methods
have been considered, e.g. a composite one-dimensional Gauss-Legendre quadrature on
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Figure 9: Magnetic field streamlines in Problem 1

each edge, by using 2-4-6 Gaussian points/weights. Tests have been completed by consid-
ering arcs instead of segments, through projection of edges onto the curved surfaces of the
interface and the possible Dirichlet boundary.

Figure 8 shows the isopotential section lines along any plane containing the symmetry
axis, respectively for the total and the reduced potential. Figure 9 shows the streamlines of
the magnetic field intensity H. Notice the tangential discontinuity of the field streamlines
at the interface between ferromagnetic material and air, due to magnetization effects.
Most of the magnetic flux is concentrated around the ferromagnetic medium, while the
flux density in air is found to be very low.

Table 1 reports the estimated values of the magnetic energy on air, iron, coil and global
domain, according to definition (4.21). Values are given in comparison with the energy
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FEM || Reference LS LL* G. Edge G. Nodal
2D azisym. field B dual vector U potential A potentials ¢rp
Elms — 505 710 970 767 895 106 728 338
Weir || 9.089-1077 | 8.967-10"7 | 8.947-10" |9.027-10"" | 9.100-10" 7
Wye | 4.731:10710 | 4.885-1071° | 4.537-10710 | 4.681-107'° || 4.766-10 '
We 3.614-107% | 3.333-107% | 3.494-10=% | 3.575-10"% || 3.578-1078
Wie || 9.455-1077 | 9.305-10=7 | 9.301-10~" | 9.389-10~" | 9.462-10~7

Table 1: Values of magnetic energies in Problem 1 (in Joule)

estimates computed by other FEM techniques, by considering in all cases a piecewise lin-
ear discretization. Our results, by adaptive Galerkin finite element solution in terms of
potentials ¢ — ¢, appear in the last column. The values here reported have been obtained
by choosing g = 0 = 0.5 as refinement factors on the coil and the air/iron region (called,
for brevity, non-source region) respectively.

As regards the other techniques, column 1 of Table 1 reports the reference values pro-
vided by ABB Corporate Research, from solution of the equivalent 2D problem due to
axial symmetry, while values reported in columns 2, 3 and 4 are computed respectively by
using methods (a), (b) and (c), described in the following:

(a) least-squares finite element solution by field formulation in terms of vector B [8, 9];

(b) finite element solution via the LL£* method, i.e. by a “dual” formulation in term of a
vector U, such that B = ML*U, for a symmetric positive definite bounded operator
M and an adjoint operator L* associated to the field equations [10];

(c) Galerkin finite element solution by potential formulation in terms of vector A, using
edge elements [9].

Methods (a) and (c) are classical finite element approaches well-known from the litera-
ture, while method (b) is a more recent technique, whose application to static Maxwell’s
equations is currently being studied by M.G. Larson, K. Samuelsson and R. Bergstrom
at Chalmers Finite Element Center. These methods have been accompanied by adaptive
techniques of mesh refinement, with criteria based on estimation of suitable residual quan-
tities or error bounds (see details in Chapter 2 of [9], and Chapter 3 of [10]). Among them,
we point out the a posteriori error estimation in the adaptive LL£* method, based on a
derivation of proper upper bounds for the finite element error of U in energy norm, by
means of interior residuals and inter-element fluxes. Similarly to our approach, a formal
argument of elementwise decomposition has been used, here for a different formulation.

Values confirm the better convergence, for the same order of polynomial approximation,
of the Galerkin solution in our double potential formulation with respect to a solution by

the least-squares method, or the ££* method. In this model having a simple geometry,
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N.nodes | N.elms | Wur | Wiron | Weoir Wiot
8115 | 42346 || 0.0270 | 0.1264 | 0.3369 || 0.0132
10296 | 53875 || 0.0142 | 0.0801 | 0.2071 || 0.0058
18715 | 100579 || 0.0077 | 0.0286 | 0.1087 || 0.0033
31667 | 172247 || 0.0039 | 0.0196 | 0.0394 || 0.0022
67351 | 370707 || 0.0022 | 0.0056 | 0.0254 | 0.0012
82544 | 454421 || 0.0018 | 0.0015 | 0.0166 || 0.0011

Table 2: Values of relative errors in magnetic energy (cfr. Figure 10)

values result even slightly better than the ones obtained from a Galerkin solution of the
problem in vector potential formulation using linear edge elements. Besides, a fair accuracy
in our method is reached at a sufficiently low number of degrees of freedom. As an example,
if we choose refinement factors ds = 0.3 and d5 = 0.5 in source and non-source regions,
respectively, the following magnetic energy values are obtained: W,;, = 9.107-1077 J,
Wie = 4.790-1071° J, W, = 3.561-107% J, with a total energy Wi, = 9.467-1077 J,
corresponding to a mesh composed of 75179 nodes and 415849 elements.

Figure 10 describes the behaviour of the relative error in the magnetic energies, strongly
decreasing as the number of elements increases, using the technique of adaptive mesh re-
finement described in Chapter 5. The corresponding error values are reported in Table 2.
Here, refinement factors s = oy = 0.6 have been considered in both source and non-source
regions. Figure 11 shows the slower decrease of relative errors when an uniform refinement
is applied, instead of our adaptive scheme, with superposition in scale of the corresponding
relative error curves estimated by adaptive refinement. The convergence of the solution
is accompanied by a monotonic decrease of the relative a posteriori error (5.40) at each
successive refinement iteration.

The adaptive refinement procedure, when applied, leads to a stronger refinement near
the interface, especially close to the corners of the ferromagnetic medium, as it is evident
from Figure 12, which shows a detail of the initial and the refined mesh at the top of
iron. The second mesh of Figure 12 has been obtained after 4 refinement iterations, con-
sidering the same refinement factors corresponding to the error trend depicted in Figure 10.

Results show that the convergence in the current-carrying conductor is slower than the
one in air or inside the ferromagnetic core. This is due to a contribution of the modelling
error, owing to the computation method of the Biot-Savart law. Such error contribution
has been proved to be larger in regions inside or near the conductor. See in [27] how the
particular choice of the integration method of the Biot-Savart law can affect accuracy and
computational time in the evaluation of H; and, therefore, of the magnetic energy val-
ues. The data reported here have been computed by resorting to Urankar’s semi-analytical
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Figure 12: Detail of initial and adaptively refined mesh at the interface (Problem 1)

method, as its results are (especially close to the coil) generally more accurate than a finite
volume integration and, above all, particularly fast. Concerning finite volume integration
techniques, test have been done by considering a composite Gauss-Legendre quadrature,
applied to each tetrahedron inside the coil, choosing 1-4-12 point rules on each element.
In this case, it has been observed that accuracy is more sensitive to the size of integration
volumes than to the quadrature order applied to each volume.

7.2 Problem 2

The second problem is an axisymmetric model, as in the previous case, but a more
complex, non-convex geometry is provided. The material configuration consists of a fer-
romagnetic medium having a typical revolved C-shape whose central trunk is surrounded
by the same toroidal copper coil as in Problem 1, immersed in the same cylindrical box
of air having perfectly conducting boundaries. Geometry and dimensions are described in
Figure 13.

The problem has been solved by considering two different ratios between the diffusive
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Figure 13: Axial section of the domain in Problem 2 (dimensions in meters)

coefficients. For the ferromagnetic medium, it has been assumed ;. ;e = 100 or p s = 10*
and, for coil and air, prcoit = freir = 1. Again, we consider a stationary current with
constant density magnitude J; = 100 A/m?.

Figure 14 shows the field streamlines in the case j, s = 100. This configuration, like all
C-shaped geometries, is characterized by a significant potential difference in the air gap,
i.e. the channel separating ferromagnetic components, the higher it is the thinner the gap
is, and the higher the ferromagnetic permeability is. Notice in Figure 14 the curvature
inflection of the field streamlines in the air region between the coil and the gap of the
ferromagnetic medium.

In this case, due to the non-convex geometry of the ferromagnetic domain, equipped
with corners and edges, a particular care is required in the computation of the line inte-
grals defining the jumps between potentials at the interface, or values of a possible Dirichlet
boundary condition. A possible way to increase the accuracy of such line integral com-
putations is too avoid “too long” trees, as it would occur in this case. Aiming at this, a
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Figure 14: Magnetic field streamlines in Problem 2 (case p,, o = 100)

partition of the interface in several surface regions has been considered. Thus, line integrals
have been computed on each part, with estimation of their values along paths connecting
a starting point in one region with another in a successive region. Finally, partial trees on
single regions have been assembled into global trees covering the overall interface, node by
node. Similar procedures are suggested for complex-shaped models, as they are frequently
encountered in real electromagnetic devices. As in Problem 1, integration lines are polyg-
onals along planes, or unions of elementary arcs by edge projection along curved surfaces.
Then, a numerical integration has been performed over each segment/arc by using a 2-4-6
point linear/curvilinear Gauss-Legendre quadrature.

Tables 3 and 4 report estimates of the magnetic energies in air, ferromagnetic medium,
coil and global domain, in the two cases p re = 100 and pu, so = 10* respectively. Results
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Figure 16: Convergence of the magnetic energy in Problem 2 (case p,,r. = 10%)
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FEM || Reference G. Edge G. Nodal G. Nodal
2D azisym. potential A potential A potentials ¢p—p
Elms — 819 922 959 231 810 662
Wor || 1.025-10 © | 1.025-10 © | 1.114-10 © || 1.019-10 ©
Wye || 3.564-107% | 3.517-107°% | 2.785-107° | 3.591-107°
Wey 3.596-107% | 3.529-107% | 4.079-1078 || 3.564-10~%
Wioe || 4.625-107° | 4.577-10° | 3.940-107° || 4.646-10~°

Table 3: Values of magnetic energies in Problem 2 (case i, re = 100)

FEM || Reference | G.Edge | G.Nodal G. Nodal
2D azxisym. potential A potential A potentials ¢p—
Elms — 536 963 189 887 (Q) 527 046
Weair || 2.609-1075 | 2.558-107° | 2.645-107° || 2.655-107°
W | 1.524-107% | 1.525-10~% | 1.270-10~¢ || 1.506-10~°
Wew 6.500-1078 | 6.361-107% | 6.522-10~% || 6.367-1078
Wiy || 2.768-10-° | 2.717-10-° | 2.779-10-° | 2.812-10~°

Table 4: Values of magnetic energies in Problem 2 (case p,,r. = 10%)

obtained by our ¢ — ¢ formulation are described in the last column. The values that appear
in the first table have been computed by choosing 65 = 0.5 and 65 = 0.65 as refinement
factors in the source and non-source regions, while factors ds = 0.5 and dy = 0.71 have
been considered in the second table. Again, results are given in comparison with energy
estimates computed by other finite element techniques. First, column 1 reports the refer-
ence values from ABB Corporate Research. Columns 2 reports results obtained from an
adaptive Galerkin finite element solution in vector potential formulation, using linear edge
elements. An adaptive Galerkin solution has been used also to estimate values in column
3, still in vector potential formulation, but in this case nodal elements have been used,
linear in case p, o = 100, and quadratic in case ji, fo = 10%.

Details about results obtained from the vector potential formulation via edge and nodal
elements, together with further tables, are reported in [9]. Differently from Table 1 for
Problem 1, values obtained from least-squares finite element solution are not reported
here, since they do not result enough accurate for this complex-shaped geometry, even
when considering quadratic elements. The L£L£* method is currently under investigation
for this type of non-convex configuration, and results are not yet available. When a high
ferromagnetic permeability is considered, e.g. ur . = 10*, at least a quadratic approxima-
tion is required in a vector potential formulation solved by nodal elements, to reach a fair
accuracy. As concerns our double scalar potential formulation, even in this case results
confirm a good accuracy, comparable to the one reached by edge elements, well-known to
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be particularly efficient for vector formulations.

Figures 15 and 16 depict the decreasing trend of the relative error in the magnetic ener-
gies for an increasing number of elements when mesh refinement occurs in adaptive way. In
Figure 15, refinement factors dg = 0.7 and 6y = 0.8 have been considered in the source and
non-source regions, while in Figure 16 respectively factors ds = 0.5 and dy = 0.725 have
been used. Notice that in these examples a sharper refinement has been required inside the
source conductor. Although a small refinement factor ds has the relative error decreased
very fastly inside the source region, we observe in all cases a lower accuracy of error values
inside the coil with respect to values in air and inside the ferromagnetic material, owing
to the above mentioned modelling error in the computation of the Biot-Savart law.
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8 Conclusions and future work

An adaptive finite element solution of a class of three-dimensional magnetostatic prob-
lems has been proposed, obtained from a scalar potential ¢ — ¢ formulation of static
Maxwell’s equations. The resulting boundary value problem is a generalized Poisson model
with mixed non-homogeneous boundary and interface conditions of Dirichlet and Neumann
type. The finite element discretization consists of a piecewise linear Galerkin method on
tetrahedral mesh (Chapter 4). A posteriori estimates of the finite element error have been
proved in energy norm, to provide criteria for an adaptive strategy of hA-refinement of the
mesh (Chapter 5).

Results (Chapter 7) on test cases and comparisons with other finite element techniques,
show an higher accuracy of our adaptive finite element solution via ¢ — ¢ formulation,
with respect to adaptive finite element methods based on formulations by fields (e.g. least-
squares techniques) or dual vectors (e.g. the LL£* method), for the same order of polynomial
approximation. Besides, our adaptive scheme produces more accurate results than an adap-
tive Galerkin solution via vector potential formulation using nodal elements, for the same
order. Finally, the quality of results is comparable to the one resulting from an adaptive
Galerkin solution in vector potential formulation when edge elements are considered, for
the same order, these latter being well-known for their efficiency in finite element vector
solutions.

A fundamental modelling aspect is the estimation of the magnetic field due to imposed
currents, by computation of the Biot-Savart law whose accuracy affects particularly the
final accuracy in results. For coil geometries, the Biot-Savart law has been computed
resorting to Urankar’s semi-analytical method, with estimation of elliptic integrals. For
complex-shaped current-carrying regions, a finite volume integration has been considered,
consisting of a composite Gauss-Legendre quadrature over all elements inside the source
conductors. Besides, the accuracy of results is also influenced by the accuracy of the nu-
merical integration scheme used for computing line integrals defining values of Dirichlet
boundary conditions or jumps of discontinuity at the interface between potentials, due to
the source magnetic field.

The several aspects of modelling and computation involved in the present work suggest
many tasks for future work. Concerning computation, higher order Galerkin finite element
methods should be considered. Multigrid tecniques could be applied as preconditioners for
the finite element solution, by using the hierarchy of nested refined grids. Concerning a
posteriori error analysis, since estimates here have been defined for the error of the finite
element solution, i.e. at potential level, it appears interesting as a successive stage to
measure the error associated to the energy norm of the potential, since it is related to the
magnetic energy. Besides, for a more complete error analysis, estimates for the modelling
error should be considered, mainly the error due to the computation of the Biot-Savart law
and the estimation of line integrals on Dirichlet surfaces. Such modelling error contribu-
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tions could be taken into account, together with the a posteriori finite element error, for
a modified strategy of mesh refinement, aiming at an improvement of results especially in
regions close to coil.

Finally, for an analysis of a complete magnetostatic case, a generalization of our model

should be considered with introduction of permanent magnets, so that the contribution of
the coercive field H, is also taken into account.
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