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MULTI-ADAPTIVE GALERKIN METHODS FOR ODES I:
THEORY & ALGORITHMS

ANDERS LOGG

ABSTRACT. We present multi-adaptive versions of the standard continuous and discon-
tinuous Galerkin methods for ODEs. Taking adaptivity one step further, we allow for
individual time-steps, order and quadrature, so that in particular each individual compo-
nent has its own time-step sequence. This paper contains a description of the methods,
an analysis of their basic properties, a priori and a posteriori error estimates, adaptive
algorithms for time-stepping and global error control, iterative solution methods for the
discrete equations, together with basic features of the implementation Tanganyika. In
the accompanying paper [31], we present numerical results for a variety of applications,
including chemical reaction problems, the Lorenz system and the Solar System.

1. INTRODUCTION

In this paper, we present present multi-adaptive Galerkin methods for initial value prob-
lems for systems of ordinary differential equations (ODEs) of the form

(1.1) {3((8 = ?J:(Ejﬁ(t),t), t e (0,7],

where v : [0,7] — RY, f : RY x (0,7] — R" is a given bounded function that is Lipschitz-
continuous in u, ug € RY is a given initial condition and 7' > 0 a given final time. We
use the term multi-adaptivity to describe methods with individual time-stepping for the
different components u;(t) of the solution vector u(t) = (u;(t)), including (%) time-step
length, (i) order and (4ii) quadrature, all chosen adaptively in a computational feed-back
process. In the companion paper [31], we apply the multi-adaptive methods to a variety
of problems, to illustrate the potential of multi-adaptivity.

The ODE (1.1) models a very large class of problems, covering many areas of appli-
cations. Often different solution components have different time-scales, and thus ask for
individual time-steps. A prime example to be studied in detail below is our own Solar
System, where the Moon orbits around Earth once every month, whereas the period of
Pluto is 250 years. In numerical simulations of the Solar System, the time-steps needed to
track the orbit of the Moon accurately are thus much less than those required for Pluto,
the difference in time-scales being roughly a factor 3,000.

Date: April 27, 2001.
Key words and phrases. Multi-adaptivity, individual time-steps, local time-steps, ODE, continuous
Galerkin, discontinuous Galerkin, global error control, adaptivity, mcgq, mdgq.
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2 ANDERS LOGG

Surprisingly, individual time-stepping for ODEs has received little attention in the large
literature on numerical methods for ODEs; see e.g. [5, 22, 23, 4, 39]. For specific applica-
tions, such as the n-body problem, methods with individual time-stepping have been used,
see e.g. the paper [7] by Dawson and Kirby and the references therein, [33, 2, 6], or [28],
but a general methodology has been lacking. Our aim is to fill this gap.

The methods presented in this paper fall within the general framework of adaptive
Galerkin methods based on piecewise polynomial approximation (finite element methods)
for differential equations, including the continuous Galerkin method c¢G(q) of order 2¢, and
the discontinuous Galerkin method dG(q) of order 2g + 1; more precisely, we extend the
cG(q) and dG(g) methods to their multi-adaptive analogues mcG(q) and mdG(q). Earlier
work on adaptive error control for the ¢G(q) and dG(g) methods include [8, 17, 25, 19, 18,
20]. The techniques for error analysis used in these references, developed by Johnson and
coworkers, see e.g. [12, 13, 11, 14, 15, 16], and [9] in particular, naturally carries over to
the multi-adaptive methods.

2. KEY FEATURES

We summarize the key features of our work on the mcG(g) and mdG(g) methods as
follows:

2.1. Individual time-steps and order. To discretize (1.1), we introduce for each com-
ponent, i = 1,..., N, a partition of the time-interval (0,7] into M; subintervals, I;; =
(tij—1,tij], 7 =1,..., M;, and we seek an approximate solution U(t) = (U;(t)) such that
U;(t) is a polynomial of degree g;; on every local interval I;;. Each individual component
U;(t) thus has its own sequence of time-steps, {k;; };M:’l The entire collection of individual
time-intervals {I;;} may be organized into a sequence of time-slabs, collecting the time-
intervals between certain synchronized time-levels common to all components, as illustrated
in Figure 1.

Figure 1: Individual time-discretizations for different components.
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2.2. Global error control. Our goal is to compute an approximation U(T) of the exact
solution u(7T) at final time T within a given tolerance TOL > 0, using a minimal amount
of computational work. This goal includes an aspect of reliability (the error should be less
than the tolerance) and an aspect of efficiency (minimal computational work). To measure
the error we choose a norm, such as the Euclidean norm || - || on R", or more generally
some other quantity of interest (see [34]).

The mathematical basis of global error control in ||-|| for mcG(g) is an error representation
of the form

T
2.1 U@) ) = [ (o) ar
where R = (R;) = R(U,t) = U(t) — f(U(t),t) is the residual vector of the approximate
solution U(t), ¢(t) is the solution of an associated linearized dual problem, and (-, -) is the
RY scalar product.

Using the Galerkin orthogonality, the error representation can be converted into an error
bound of e.g. the form

22 [UT) = u(T)] < 3 Si(T) i k()OI R0,

where the {S;(T)}Y, are stability factors for the different components, depending on the
dual solution ¢(t), and where k;(t) = k;j, gi(t) = ¢;; for t € I;;. The error bound may take
different forms depending on how fOT(R, ¢) dt is bounded in terms of R and .

By solving the dual problem numerically, the individual stability factors S;(7') may be
determined approximately, and thus the right-hand side of (2.2) may be evaluated. The
adaptive algorithm seeks to satisfy the stopping criterion

N
) (\ED) | p.
(2.3) le Si(T) gax ki(t)"|Rq(1)] < TOL,

with maximal time-steps k = (k;(t)).

2.3. Tterative methods. Both mcG(g) and mdG(q) give rise to systems of nonlinear
algebraic equations, coupling the values of U(t) over each time-slab. Solving these systems
with full Newton may be quite heavy, and we have instead successfully used diagonal
Newton methods of more explicit nature.

2.4. Implementation of higher-order methods. We have implemented mcG(g) and
mdG(q) in C++ for arbitrary ¢, which in practice means 2¢ < 50. The implementa-
tion, Tanganyika, is described in more detail below, and is publicly (GPL) available for
Linux/Unix [32].
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2.5. Applications. We have applied mcG(g) and mdG(q) to a variety of problems to
illustrate their potential, see [31] for a detailed presentation. (See also [30] and [29].) We
discuss here briefly two key problems, the Lorenz system and the Solar System, posing
fundamental questions concerning limits of computability and predictability.

For the Lorenz system, which has exponentially increasing stability factors, with S;(50) ~
10%, we compare c¢G(q) methods with 1 < ¢ < 15, using double precision. We find that
c¢G(15) computes accurately on [0, 48], while cG(1) reaches only 7' = 25. Using MATLAB’s
ode45, we reach 7' = 39. In this case the machine precision sets the limit and a high-order
method with large time-steps is the winner.

For the Solar System, including the Sun, the Moon, and the nine planets, we compute
limits of predictability depending on errors in given data, such as initial position, velocity,
and the gravitational constant. We find that, assuming initial data is known to five digits,
the position of the Moon can be accurately predicted only a few years ahead, and that the
position of Mercury can be accurately predicted on the order of 500 years. We also study
special events, such as a large comet passing close to Earth, which exhibits interesting
stability features, among other things.

In both cases we solve the dual problem and collect extensive information on the stability
features of the systems.

3. COMPARISON WITH STANDARD ODE CODES

Standard ODE codes use time-steps which are variable in time but the same for all
components, and the time-steps are adaptively chosen by keeping the “local error” below
a given local error tolerance set by the user. The global error connects to the local error
through an estimate, corresponding to (2.2), of the form

(3.1) {global error} < S max{local error},

where S is a stability factor. Standard codes do not compute S, which means that the
connection between the global error and the local error is left to be determined by the
clever user, typically by computing with a couple of different tolerances.

Comparing the adaptive error control of standard ODE codes with the error control
presented in this thesis, an essential difference is thus the technique to estimate the global
error: by clever trial-and-error or, as we prefer, by solving the dual problem and computing
the stability factors. Both approaches carry extra costs and what is best may be debated,
see e.g. [34] for a comparison.

However, expanding the scope to multi-adaptivity with individual stability factors for the
different components, trial-and-error becomes very difficult or impossible, and the methods
for adaptive time-stepping and error control presented in this thesis based on solving the
dual problem, seem to bring clear advantages in efficiency and reliability.

For a presentation of the traditional approach to error estimation in ODE codes, we refer
to [3], where the following rather pessimistic view is presented: Here we just note that a
precise error bound is often unknown and not really needed. We take the opposite view:
global error control is always needed and often possible to obtain at a reasonable cost. We
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hope that multi-adaptivity will bring new life to the discussion on efficient and reliable
error control for ODEs.

4. MULTI-ADAPTIVE GALERKIN

In this section we present the multi-adaptive Galerkin methods, mcG(g) and mdG(g),
based on the discretization presented in Section 2.1.

4.1. The mcG(g) method. The mcG(q) method for (1.1) reads: Find U € V with U(0) =
ug, such that

(4.1) /OT(U,U) it = /OT(f(U, 3,v) dt Vo € W,

where
(42) V = {UGC([OgT])/Uz|[”€,PqU(IZ]), j:17"'7Mi, ’i:l’_.',N}’

W = {’UIUZ"]UGP(]U_I(IU), jzl,...,Mi, izl,...,N},

and where P?(I) denotes the linear space of polynomials of degree < q on I. The trial
functions in V' are thus continuous piecewise polynomials, locally of degree g;;, and the test
functions in W are discontinuous piecewise polynomials that are locally of degree ¢;; — 1.

Noting that the test functions are discontinuous, we can rewrite the global problem
(4.1) as a number of successive local problems for each component: For i = 1,..., N,
j=1,..., M, find Ui|Iij € P (IZ]) with Uz’(ti,j—l) given, such that

(4.3) / U dt = fi(U, v dt Vv € PU1(T;).
I I

We notice the presence of the vector U(t) = (Uy(t),...,Un(t)) in the local problem for
U; on I;;. If thus component U (t) couples to component U, (t) through f, this means
that in order to solve the local problem for component U, (t) we need to know the values
of component U,, () and vice versa. The solution is thus implicitly defined by (4.3).

Making an Ansatz for every component U;(t) on every local interval [;; in terms of a
nodal basis for P%i(1;;) (see the Appendix), we can rewrite (4.3) as

(4.4 Eim = G0+ [ wlt 1 0) KOO dt, m= 1,
where {&;jm}9 ) are the nodal degrees of freedom for U;(t) on the interval I;;, {wl%] 1. C
Pa1(0,1) are corresponding polynomial weight functions and 7;; maps I;; to (0,1]: 7;;(¢) =
(t—tij—1)/(tij —tij—1). Here we assume that the solution is expressed in terms of a nodal
basis with the end-points included, so that by the continuity requirement &;jo = & j 1,4, ;_,-

Finally, evaluating the integral in (4.4) using nodal quadrature, we obtain a fully discrete
scheme in the form of an implicit Runge-Kutta method: Fori=1,... N, j =1,..., M;,
find {&jm}nig, with &jo given by the continuity requirement, such that

qij

(45) G = o+ kg > wltd) £ (5 60), 7 60), m =1, g,

n=0
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for certain weights {w%]n}, and certain nodal points {SL?L]} (see the Appendix).

4.2. The mdG(q) method. The mdG(g) method in local form, corresponding to (4.3),
reads: Fori=1,...,N,j=1,..., M;, find U, € P% (I;;), such that

(4.6) [Uilij—1v(tij-1) /Uudt_/ fi(U, Y dt Vv € P (1),

where [] denotes the jump, i.e. [v];; = v(t;) — v(t;;), and the initial condition is specified
fori=1,...,N by U;(07) = u;(0). On a global level, the trial and test spaces are given
by

(4.7) V=W={v:uvly € P¥y),j=1,...,M;, i=1,...,N}.

Making an Ansatz for the solution in terms of some nodal basis, we get, as for the
continuous method, the following explicit version of (4.6) on every local interval:

(4.8) Eom = €5y + / W99 (5 (6)) Fi(U),0) dt, m=0,....q5,

ij
or, applying nodal quadrature,

qij

(4.9) Sijm = &ijo + Kij quw i( ( (s 73]]))a7i;1(5[r?“]))a m=0,...,qj,

where the weight functions, the nodal points and the weights are not the same as for the
continuous method.

4.3. The multi-adaptive mcG(¢)-mdG(g) method. The discussion above for the two
methods extends naturally to using different methods for different components. Some of
the components could therefore be solved for using the mcG(g) method, while for others
we use the mdG(g) method. We can even change methods between different intervals.

Although the formulation thus includes adaptive orders and methods, as well as adaptive
time-steps, our focus will be mainly on adaptive time-steps.

4.4. Choosing basis functions and quadrature. What remains in order to implement
the two methods specified by (4.5) and (4.9), is to choose basis functions and quadrature.
For simplicity and efficiency reasons, it is desirable to let the nodal points for the nodal basis
coincide with the quadrature points. It turns out that for both methods, the mcG(g) and
the mdG(q) methods, this is possible to achieve in a natural way. We thus choose the ¢+ 1
Lobatto quadrature points for the meG(g) method, i.e. the zeros of xP;(x) — P,_1(z), where
P, is the ¢:th-order Legendre polynomial on the interval; and for the mdG(g) method, we
choose the Radau quadrature points, i.e. the zeros of P, + P,y on the interval (with time
reversed so as to include the right end-point). See the Appendix for a detailed discussion
on this subject. The resulting methods are related to the implicit Runge-Kutta methods
referred to as Lobatto and Radau methods, see e.g. [4].
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5. BASIC PROPERTIES OF THE MULTI-ADAPTIVE GALERKIN METHODS

In this section we examine some basic properties of the multi-adaptive methods, includ-
ing order, energy conservation and monotonicity.

5.1. Order. The standard ¢G(q) and dG(q) methods are of order 2¢ and 2¢q + 1, respec-
tively. We here state the corresponding properties for the mcG(g) and mdG(g) methods,
and give the proofs in the Appendix.

Assuming that the distances between adjacent synchronized time-levels, i.e. the lengths
of the time-slabs, are small enough in terms of the right-hand side f of (1.1), we have the
following bound for the error e(t) = U(t) — u(t) at final time for the mcG(g) method:

(5.1) le()] < / (K, w) dt,

where the weight w = (w;) = w(t) > 0 depends on f and u (and derivatives of u), but
does not depend on the time-steps k = (k;;). The notation of (5.1) is to be interpreted
component-wise, i.e. (k%); = k% = k?f“ on I;;. The mcG(g) method is thus of order 2g.

With the same assumptions as above, we have the following bound for the mdG(q)
method:

T
6:2) el < [ (% w) d,
0
and thus the mdG(q) method is of order 2¢ + 1.

5.2. Energy conservation for mcG(g). The standard cG(g) method is energy-conserving.
We now prove that also the mcG(g) method has this property, with the natural restric-
tion that we should use the same time-steps for every pair of positions and velocities. We
consider a Hamiltonian system

(5.3) i =—V,P(z),

on (0,7] with z(t) € RY, together with initial conditions for z and #. Here Z is the
acceleration, which by Newton’s second law is balanced by the force F(z) = —V,P(z) for
some potential field P. With v = z and v = & we rewrite (5.3) as

o 5] = et | = [ 20 ] = e
The total energy E(t) is the sum of the kinetic energy K(¢) and the potential energy
P(x(t)),
(5.5) E(t) = K(t) + P(z(t)),
with
1

(5.6) K@=%M®W=§M®W
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Multiplying (5.3) with 4 it is easy to see that energy is conserved for the continuous
problem, i.e. E(t) = E(0) V¢t € [0,7]. We now prove the corresponding property for the
discrete mcG(q) solution of (5.4).

Theorem 5.1. The multi-adaptive continuous Galerkin method conserves energy in the
following sense: Let (U, V') be the mcG(q) solution to (5.4). Assume that the same time-
steps are used for every pair of positions and corresponding velocities. Then at every
synchronized time-level t, such as e.q. T, we have

(5.7) K(f) + P(f) = K(0) + P(0),

with K(t) = %||V(t)||2 and P(t) = P(U(t)).

Proof. If every pair of positions and velocities have the same time-step sequence, then we
may choose V as a test function in the equations for U, to get

/O(U,V) dt:/O(V,V) dt:% 0 %IIVIIQ dt = K(f) — K(0).

Similarly, U may be chosen as a test function in the equations for V, to get

/t(U, V) dt = /t(v, 0) dt = /f—VP(U)U dt = — /t %P(U) dt = —(P(#) — P(0),
and thus K (t) + P(t) = K(0) + P(0). O

Remark 5.1. Energy conservation requires exact integration of the right-hand side f, or
at least that fJ(U, V) dt + (P(t) — P(0)) = 0. This might not hold if we do not have good
enough quadrature, or take special care of this, e.g. as proposed by Hansbo in [24].

5.3. Monotonicity. We shall prove that the mdG(q) method is B-stable (see [4]).

Theorem 5.2. Let U and V' be the mdG(q) solutions of (1.1) with initial data U(0™) and
V(07), respectively. If the right-hand side f is monotone, i.e.

(5.8) (f(u,”) = f(v,),u—v) <0 Vu,v € R,
then, at every synchronized time-level t, such as e.q. T, we have
(5.9) UE) = VE) <IU©7) = V().

Proof. Choosing the test function as v = W = U — V in (4.6) for U and V', summing over
the local intervals and subtracting the two equations, we have

Zi [[Wz-]i,j_lng_l + / WiW; dt] = / T(f(U, )= f(V,),U-V)dt<o.

=1 j—1
Noting that
[Wi]i,j—lm/i_’;_l + fL;j W, W, dt
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we get

) 1 _ 1 _ 1
SWdyoaWia+ [ Wil de = =5 IWO)IP + SIW TP + 5 300,
ij ij ij
so that

|W(T7)|| < W (7).

The proof is completed noting that the same analysis applies with 7" replaced by any other
synchronized time-level ¢. O

Remark 5.2. The proof extends to the fully discrete scheme, using the positivity of the
quadrature weights.

6. A POSTERIORI ERROR ANALYSIS

In this section we prove a posteriori error estimates for the multi-adaptive Galerkin
methods, including quadrature and discrete solution errors. Following the procedure out-
lined in the introduction, we start by defining the dual linearized problem, and derive a
representation formula for the error in terms of the dual and the residual.

6.1. The dual problem. The dual problem comes in two different forms: a continuous
and a discrete. For the a posteriori error analysis of this section, we will make use of
the continuous dual. We return to the discrete dual for the a priori error analysis in the
Appendix.

To set up the continuous dual problem, we define for given functions v (¢) and wvy(?),

(6.1) J*(v1(t), ve(t),t) = </0 %(svl(t) + (1 — s)ve(t), 1) ds) ,

where * denotes the transpose, and note that
J(v1,v9, ) (v1 —v9) = foi 8 (sv1 + (1 — s)va,-) ds (v1 — v2)
= Jo sr(sv+ (L= s)va, ) ds = f(vr,) = f(vn, ).

The continuous dual problem is now the following system of ODEs:

(6.3) { ~¢ = J'wU )e+g, on[0,T),

(,D(T) = ¢
with data @1 and right-hand side g. Choosing the data and right-hand side appropriately,
we obtain error estimates for different quantities of the computed solution.

(6.2)

6.2. Error representation. The basis for the error analysis is the following error repre-
sentation, expressing the error of any approximate solution U(t) in terms of the residual
via the dual solution ¢(t).
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Theorem 6.1. Let U be an approzimate and u the ezact solution of (1.1), and let ¢ be
the solution to (6.3) with right-hand side g(t) and initial data o7, and define the residual
of the approzimate solution U as R(U,t) = U(t) — f(U(t),t), defined on the inner of the
partitions U;1;;, © = 1,...,N. Assume also that U is right-continuous at T. Then the
error e = U — u satisfies

’L

N M;

(6.4) (e(T), ¢r) + /0 eg)dt=2 )

=1 j=1

R;(U, )i dt + [Usli j—1i(tij—1)

Proof. By the definition of the dual problem, we have using (6.2)
fOT(e, g)dt = fo e,—¢ — J*(u, U, ) ) dt
= 2 fl —eipi dt + fo J(u,U,")e, ) dt
Zij flﬁ —€;0; dt"‘fo U, )—f(U, ')v%p) dt
Zij f[ij —ejp; dt + Zz’j f[ij (fZ(“a ) - fi(U: ))%01 dt.
Integrating by parts, we get

/1 —eips dt = ei(t7;_;)p(tij—1) — e(ty;)(ty;) +/1 eip; dt,

ij ij

so that
> i f;ij —eipi dt = Y leilij—1pitii—1) — (e(T7), or) + foT(éa @) dt
Y Uijmi(tigm) — (e(T), o7) + [y (6, ) dt.
Thus
(e(T), er) + Jy (e.9) dt = Zz’j Ji; €+ filu, ) = fi(U, )i di + [Ui]i,j—l%(tz‘,j—l)}
i |Joy i = fz- (U, )i dt + [Uiligroilti) |
=Xy [ RV Y e+ Uy ity ).

which completes the proof. [l

We now apply this theorem to represent the error in various norms. As before, we let
|| - || denote the Euclidean norm on RY, and define ||v|| 110,11, = fOT ||v]| dt.

Corollary 6.1. If o7 = e(T)/||e(T)|| and g =0, then

(6.5 n=¥%|[ rw

i=1 j=1 Iij

Corollary 6.2. If o7 =0 and g(t) = e(t)/||e(t)||, then

J, me

ij

)i dt + [U]zy 10(t NE 1)] .

N M;

(6.6) el oy = D>

i=1 j=1

)i dt"‘[U]w 10(t; iyj— 1)]
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6.3. Galerkin errors. To obtain expressions for the Galerkin errors, i.e. the errors of the
mcG(q) or mdG(q) approximations, assuming exact quadrature and exact solution of the
discrete equations, we use two ingredients: the error representation of Theorem 6.1 and
the Galerkin orthogonality. We first prove the following interpolation estimate.

Lemma 6.1. If f € C9([a,b]) then there is a constant C,, depending only on q, such
that

(6.7) f(z) = nldf(2)] < C R = /\f(‘*’+1 y)| dy Vz € [a,b],

where w9 f(x) is the q:th-order Taylor expansion of f around o = (a +b)/2, k =b—a
and C, = 1/(24¢").

Proof. Using Taylors formula with the remainder in integral form, we have

[f(z) =7l f(2)] = Iiffofq+1 )y — 20)@ dy| < L(k/2)7 [}/ (y)] dy
Ak [P ()] dy.

d

We can now prove a posteriori error estimates for the mcG(g) and mdG(g) methods.
We denote the (absolute value of the) left-hand side of (6.4) by |||e|||. The estimates come
in a number of different versions. We typically use Fy or F3 to adaptively determine the
time-steps, and Fj or E; to evaluate the error. The quantities £y and E5 may be used for
qualitative estimates of error growth.

Theorem 6.2. The mcG(q) method satisfies the following estimates:

(6.8) llle||| = Eo < By < Ey < E3 < Ey,
and
(6.9) lllel|| < By < Es,
where
Ey = ‘ZZ]VI Z;Mll f]w : ; — Tri) dt|
£ = Zz 12 f[ |R ||‘Pz — il dt,
(6.10) E, = ZZ . Z qu_lkq” "y,
E;, = ZZ 15% maxjo 7] {Cq—1kf 7}
E4 = lfmaXz,[o,T {C rlkz 7‘1}

Bs = S42)|C ik R(U)|| p2mn <o),
with i(t) = rij and ki(t) = kij for t € Ij, and

o= RS =
(6.11) = JE1e) st = Jy [l dt,

1/2
S[q’ = (gl ar) ",
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and where T 1s any test space approrimation of the dual solution . Erpressions such as
kIR are defined component-wise, i.e. (k'R); = k;(t)%R;(t) = k} Ri(t) for t € ;.

Proof. Using the error representation and the Galerkin orthogonality, noting that the jump
terms disappear since U is continuous, we have

N M;

ZZ/ Ri( — ;) dt| = E,

=1 j=1

lelll =

where 7 is any test space approximation of ¢. By the triangle inequality, we have

E0<ZZ/ |R '—Wk@i)ldt:El

i=1 j=1

Choosing 7p; as in Lemma 6.1 on every interval I;;, we have

Er < 3 Cop kP [o [RA(U)] dt & [ [0™] dt = zwaﬂﬁmnﬁw=@
< zziglﬁvﬂwwmwmwc_mrg SV S maxig gy {Cm k% }
= By < max, 71 {Cy1 k¥ rz}zz . fo o)) qt
< max; 7] {Cqﬂkfln}\/_fo ||| dt = max; .17 {Cy—1kfir;} VNSl =

As an alternative, continuing from F5, we have

B = ZZ 1ZJ lcqzy—leij+1 sz z;h] == 1fo Qz—lkzqi‘Ri‘S'Eqi] dt
= fo 1—1kIR, sl dt<f0 |Cy 1 KOR(U)||| 89| dt

< (ST 1Co-her@)|E de) (STl ar) "

Noting now that s is the L2-projection of |¢(?)| onto the piecewise constants on the partition,

we have
T 1/2 T 1/2
([ s ae) < ([ oo ar)
0 0
so that
= q—1 L2(RN x[0,T7) L2(RN x[0,7]) = L5,
lelll < 1Cq- 1k R(U)] I E

completing the proof. O

Theorem 6.3. The mdG(q) method satisfies the following estimates:
(612) |||€‘H = E() S E1 S E2 S E3 S E4,
and

(6.13) llelll < s < Bs,
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By = S50 [, BaU) s = map) di (U (ltsgon) = mai(t ).
E, = YLy 1f1 |R H% mrepi| dt + [[Uij-alles(tij—1) — meei(ts; 1)l
Zz 129 1qu]k;1g”+2 _ZJSZUH]a

By = YN sl max,r) { o, kE 7}

E, = Slt/N max; {qukfﬁlrz}

1R(U)||L2(RN><[0,T]),

&
|

with
_ 1 1 _ 1
(6.15) Tij = o [ Rl dt + —|[Uig-al, Bit) = [Ri(t)] + o~ [[Uilij1],
1] J L 1) [
and we otherwise use the notation of Theorem 6.2.

Proof. As in the proof for the continuous method, we use the Galerkin orthogonality to
get

N M

ZZ/ — i) dt + [Uili o (@iltiji—1) — mea(ty; 1))‘ = K.

i=1 j=1

lelll =

By Lemma 6.1 we obtain

< Zz 12_7 1.[1z |R H‘Pz_ﬂ'sz‘ dt+‘[U],J IHQOZ( ij— 1) ﬂ-kgo’b(tz] 1)|
i i +1 i +1)

= B < SN S0 Cogkl ([ IRAO)] dt + |[Uilsg ) 2y, Lol 0] at

< Z 1 Z 1 C kq”+27 [qz]"‘l] E2

J— Z ] -

qij "1y Z]

Ey

Continuing now in the same way as for the continuous method, we have Ey, < F3 < E,
and E2 S E5. O

Remark 6.1. When evaluating the expressions Ey or Eyi, we don’t have to choose Ty as
in Lemma 6.1. This 1s only a convenient way to obtain the interpolation constant.

Remark 6.2. If we replace i flij |R;| dt by maxy,; |R;|, we may replace Cy by a smaller
constant Cy. The value of the constant thus depends on the specific way the residual is
measured. Different ways of measuring the residual give different constants.

6.4. Computational errors. The error estimates of Theorems 6.2 and 6.3 are based on
the Galerkin orthogonalities (4.3) and (4.6). If the corresponding discrete equations are not
solved exactly, the residual will not be orthogonal to the test space, and there will be an
additional contribution to the total error. For the mcG(g) method, this extra contribution
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may be estimated as follows:

Ec = ‘Zz 123 1f1 U)mepi dt‘ <Zz 123 1
(6.16) ~ ZZ 12 kw|go,]|k” fI@ ) dt

fI U)rp; dt

= Zz 12 kZJ|90UHR ‘<Ez 15 max; ‘R B
where
M; T
(6.17) 5= kyleul~ [l dt = 50
=1 0

is a stability factor, and we approximated the discrete or computational residual by

c_ Y [ pwaa=2 . —co— [ £
018 RG=p [ R@a= g ((&]q £ /Iijfz(U,)dt),

assuming that ¢ varies slowly on each sub-interval. More precise estimates may be used if
needed.

For the mdG(g) method, the situation is similar with the computational residual now
approximated by

1 1 _
(6.19) Ry, = r ([Ui]z‘,j—l + /IJ Ri(U)dt> = . ((fz‘jq —&ijo) — " fiU,+) dt) :

Thus, to estimate the computational error, we may evaluate the computational residuals
and multiply with the computed stability factors.

6.5. Quadrature errors. We now extend our analysis to take into account also quadra-

ture errors. We denote integrals evaluated by quadrature with f . Starting from the error
representation as before, we have for the mcG(g) method

(6.20)
llelll = fOT(R

Jo (B0 — mep) dt-i—fo (R, 7rkcp) dt
(R,
(R,

B e T
= fOT © — TEP) dt-i-fo (R, mrep) dt + <fo fo) ), ) dt,

if the quadrature is exact for Uv when v is a test function. The first term of this expression
was estimated in Theorem 6.2 and the second term is the computational error discussed
previously (where we evaluate [ rather than [). The third term is the quadrature er-
ror, which may be nonzero even if f is linear, if the time-steps are different for different
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components. To estimate the quadrature error, notice that

(fo Jo ) ) dt= 30, (f[w ff,]) filU, )i dt
Ez’j kij(PZJ ki; (flijfz ,+) dt — ‘f['ij fi(U, ) dt)
< ¥, 5 max; (R,

(6.21)

%

where the {S'Z[O]}fil are the same stability factors as in the estimate for the computational
error, and

(6.22) Re=1 ( LU dt— [ £, dt)
kij I;j L

is the quadrature residual. A similar estimate holds for the mdG(g) method.
We now make a few comments on how to estimate the quadrature residual. The Lobatto
quadrature of the mcG(g) method is exact for polynomials of degree less than or equal to

2q — 1, and we have an order 2¢q estimate for ] — [ in terms of 9 and so we make

q”

the assumption RQ x k;; If instead of using the standard quadrature rule over the

interval with quadrature re51dua1 'RZC”;O, we divide the interval into 2™ parts and use the
quadrature on every interval, summing up the result, we will get a different quadrature

residual, namely
(6.23) R = %C’Qm(k/2m)2q+l = 920 O )2 = 9209(m=D(=20) 020 — 9~2R%m—1

where we have dropped the ;; sub-indices. Thus, since |[Rem| < |[REm —RCm+1 |4 |ROm+1| =
|ROm — REm+1| 4 2724/R9m | we have the estimate

(6.24) |Rgm| < |Rgm _ Rgm+1|.

1— 2%
Thus, by computing the integrals at two or more dyadic levels, we may estimate quadrature
residuals and thus the quadrature error.

For the mdG(q) method the only difference is that the basic quadrature rule is one order
better, i.e instead of 2¢ we have 2¢ + 1, so that

(6.25) IRO| <

Om Qm
STT 2_1_2q|R — REm+1,
6.6. Evaluating F;. We now present an approach to estimating the quantity fOT(R, ©—
Trp) dt by direct evaluation, with ¢ a computed dual solution and mxp a suitably cho-
sen interpolant. In this way we avoid introducing interpolation constants and computing
derivatives of the dual. Starting with

zz/ (01 = e ],

=1 j=1

(6.26)
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for the continuous method, we realize that the best possible choice of interpolant, if we
want to prevent cancellation, is to choose mxp such that R;(¢; — mrp;) > 0 (or < 0) on
every local interval I;;. With such a choice of the interpolant, we would have

N M; N M;
(6.27) Eqg = ZZ/ _7Tk<Pz Zaw/ |R _ﬂ'kﬁpz)| dt,
=1 j=1 =1 j=1

with ;; = £1. The following lemmas give us an idea of how to choose the interpolant.

Lemma 6.2. If, for i = 1,...,N, fi = fi(Ui(t),t) and f; is linear or, alternatively,
f=fU(@),t) is linear and all components have the same time-steps and order, then every
component R; of the mcG(q) residual is a Legendre polynomial of order g;; on I;;, for
j - 1, ey Mz

Proof. On every interval [;; the residual component R; is orthogonal to P% ~'(I;;). Since
the conditions assumed in the statement of the lemma guarantees that the residual is a
polynomial of degree ¢;; on every interval I;;, it is clear that on every such interval it is
the g;;:th-order Legendre polynomial (or a multiple thereof). O

Even if the rather strict conditions of this lemma do not hold, we can say something
similar. The following lemma restates this property in terms of approximations of the
residual.

Lemma 6.3. Let R be the local L2-projection of the mcG(q) residual R onto the trial space,
i.e. Ry, is the L?(I;;)-projection onto P% (I;;) of Rilr,, j = 1,...,M;, i = 1,...,N.
Then every R;|r,, is a Legendre polynomial of degree qy;.

Proof. Since R; is the L2-projection of R; onto P%i (I;;) on I, we have

/Rivdt:/ R dt =0

ij ij
for all v € P%~1(I;;), so that R; is the g;;:th-order Legendre polynomial on I;;. O

Lemma 6.4. Let P, be the q:th-order Legendre polynomial on [—1,1]. Then the q:th-order
Radau polynomial, Q4(x) = (Py(x) + Py1(x))/(x + 1), has the following property:

(6.28) /_ 11 Qu(z)(z + 1) dz =0,

forp=1,...q. Conversely, if f is a polynomial of degree q on [—1,1] and has the property
(6.28), i.e. f_ll f@)(x+1)?dx =0 forp=1,...,q, then f is a Radau polynomial.
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Proof. We can write the g:th-order Legendre polynomial on [—1, 1] as P,(z) = ,12q DY((z?

1)?). Thus, integrating by parts, we have

SRR 1y de = g [ D@ - '+ (e~ (@ + 1y de
= ,2q f Dq (x+ 1) (2? — 1)) (z+ 1P dz
= (- f D7P((x +1)(2? — 1)9)DP(x + 1)P~! dx
= 07

since D'((x+1)(x%—1)9) is zero at —1 and 1 for [ < g. Assume now that f is a polynomial
of degree ¢ on [—1, 1] with the property (6.28). Since {(x+1)?},_, are linearly independent
on [—1,1] and orthogonal to the Radau polynomial Q,, {Q,(z), (z + 1), (z + 1)%,..., (z +

1)?} form a basis for PY([—1,1]). If then f is orthogonal to the subspace spanned by
{(z 4+ 1)P}]_,, we must have f = c@Q, for some constant c, and the proof is complete. [

Lemma 6.5. If, for i = 1,...,N, fi = fi(Ui(t),t) and f; is linear or, alternatively,
f = fU@),t) is linear and all components have the same time-steps and order, then

every component R; of the mdG(q) residual is a Radau polynomial of order q;; on I;, for
j=1,..., M.

Proof. Note first that by assumption the residual R; is a polynomial of degree ¢;; on I;;.
By the Galerkin orthogonality, we have

0= / RZ'U dt + [Ui]@j,lv(t:j,l) Yo € Pl (Iij)a
I;;

which holds especially for v(t) = (t — t; j_1)? with p =1,..., ¢, for which the jump terms
disappear. Rescaling to [—1, 1], it follows from Lemma 6.4 that the residual R; must be a
Radau polynomial on I;;. O

Also for the discontinuous method there is a reformulation in terms of approximations
of the residual.

Lemma 6.6. Let R be the local L?-projection of the mdG(q) residual R onto the trial space,
i.e. Rip, is the L*(I;;)-projection onto P% (ILj;) of Ril,, j = 1,...,M;, i = 1,...,N.
Then every RZ| 1,; 18 a Radau polynomial of degree ¢;;.

Proof. Since R; is the L2-projection of R; onto P%i (I;;) on I;;, it follows from the Galerkin

orthogonality that
/ Ri’l) dtz/ RZ"U dt:(),

1] ©]

for any v(t) = (t —t;; 1)” with 1 < p < ¢. From Lemma 6.4 it then follows that R; is a
Radau polynomial on I;;. O

We thus know that the mcG(g) residuals are (in some sense) Legendre polynomials on
the local intervals, and that the mdG(q) residuals are (in some sense) Radau polynomials.
This is illustrated in Figure 2.



18 ANDERS LOGG

x107°

Q;:NO (\/\}054

-6

-3+

I I I L L L L L L ~10 I I I I I I L L L
5 51 5.2 53 5.4 t 5.6 5.7 5.8 5.9 6 5 5.1 5.2 5.3 5.4 t 5.6 57 5.8 5.9 6

Figure 2: The Legendre-polynomial residual of the mcG(g) method (left) and the Radau-
polynomial residual of the mdG(g) method (right), for polynomials of degree five, i.e. methods
of order 10 and 11 respectively.

From this information about the residual, we now choose the interpolant. Assume that
the polynomial order of the method on some interval is ¢ for the continuous method. Then
the dual should be interpolated by a polynomial of degree ¢ — 1, i.e. we have freedom to
interpolate at exactly ¢ points. Since a ¢:th-order Legendre polynomial has ¢ zeros on the
interval, we may choose to interpolate the dual exactly at those points where the residual
is zero. This means that if the dual can be approximated well enough by a polynomial of
degree ¢, the product R;(p; — mrp;) does not change sign on the interval.

For the discontinuous method, we should interpolate the dual with a polynomial of
degree ¢, i.e. we have freedom to interpolate at exactly ¢ + 1 points. To get rid of the
jump terms that are present in the error representation for the discontinuous method, we
want to interpolate the dual at the beginning of every interval. This leaves ¢ degrees of
freedom. We then choose to interpolate the dual at the ¢ points within the interval where
the Radau polynomial is zero.

As a result, we may choose the interpolant in such a way that we have

Z/ Ri(pi — Tieps) di
ij i

(6.29) lelll =

?,

= ay [ |Ri(ei — mepi)| dt,
ij

with o;; = £1, both for the mcG(g) method and the mdG(g) method (but the interpolants
are different). Notice that the jump terms for the discontinuous method have disappeared.

There is now a simple way to compute the integrals [ I R;(p; — mrp;) dt. Since the
integrands are, in principle, products of two polynomials for which we know the positions
of the zeros, the product is a polynomial with known properties. There are then constants,
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Cy, depending on the order and the method, such that
(6.30) /1 |Ri(pi — mrepi)| dt = Cy, kij | Ri(ti;) | i(tiz) — mrpi(ts;)]-
i

The constants C; may be computed numerically beforehand.
Finally, note that there are “computational” counterparts also for the estimates of type
E3 in Theorems 6.2 and 6.3, namely

el < 325 [, | Rillos — mwps| dt = 32,5 Co ki |Ri(835)| [, ﬁm — il dt

6.31 >
(631 < Y Simaxjor, o Cp kS| Rilt;)],

with S’Z = fOT k% | i — ;| dt for the continuous method and similarly for the discontinuous
method. '

6.7. The total error. The total error is composed of three parts, the Galerkin error, Eg,
the computational error, E¢ and the quadrature error, Eg:

(6.32) lle|| < Eg + Ec + Eq.

Choosing estimate Fj3 of Theorems 6.2 and 6.3 we then have the following (approximate)
error estimate for the mcG( ) method:

(6.33) llle]l| < Z [ Sl maX{C’ 1k} +S l[nax|’RC| +S 1[na>]< |’RQ|]
and for the mdG(q) method we have

(6.34) el < Z [ Slaitl] max {Coukfit i} + S I[naX|RC| + S 1[18ax|729|]

This estimate includes also numerical round-off errors (included in the computational error)
and modelling errors (included in the quadrature error).

The true global error may thus be estimated in terms of computable stability factors
and residuals. We expect the estimate for the Galerkin error, F, to be quite sharp, while
E¢ and Eg may be less sharp.

6.8. An a posteriori error estimate for the dual. We conclude this section by proving
a computable a posteriori error estimate for the dual. To compute stability factors we solve
the dual problem numerically, and we thus face the problem of estimating the error in the
stability factors.

To demonstrate how relative errors of stability factors can be estimated using the same
technique as above, we compute the relative error for the stability factor S,(7), defined as

T
(6.35) SoT)= sw_ [l
lle(T)lI=1J0

for a computed approximation ® of the dual solution .
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To estimate the relative error of the stability factor, we use the error representation of
Theorem 6.1 to represent the L'([0, 7], RY )-error of ® in terms of the residual of ® and
the dual of the dual, w. In the Appendix we prove the following lemma, from which the
estimate follows.

Lemma 6.7. Let ¢ be the dual solution with stability factor S,(t), i.e. with data ||¢(t)|| =1
specified at time t, and let w be the dual of the dual as defined in the Appendiz. We then
have the following estimate:

(6.36) lw(®)]] < S,(T —t) ¥t € [0, T).

Theorem 6.4. Let ® be a continuous approxrimation of the dual solution with residual Re,
and assume that S,(t)/S,(T) is bounded by C on [0,T]. Then the following estimate holds
for the relative error of the stability factor Se(T):

T
(6.37) 56(T) = S,D/S,T) < C [ I Rol
and for many problems we may take C = 1.

Proof. By corollary 6.2, we have an expression for the L'([0,T], RN )-error of the dual, so
that
(6.38)

T T T T
1So(T) = So(D] = |5 12l dt — J llell at| = | f5 (el = Il ae| < fy 10 = o e
T T
= @ = pllgomzn = fy (Ro,w(T =) dt < [ | Rallllw] d.
With C defined as above it now follows by Lemma 6.7 that

T
S6(T) = ST <C [ |Rall dt S,(T),
0
and the proof is complete. O
Remark 6.3. We also have to take into account quadrature errors when evaluating (6.35).
This can be done in many ways, see e.g. [10].

7. ADAPTIVITY

In this section we describe how to make use of the a posteriori error estimates in an
adaptive algorithm.

7.1. A strategy for adaptive error control. The goal of the algorithm is to produce
an approximate solution within a given tolerance TOL in a given norm |||-|||. The adaptive
algorithm is based on the a posteriori error estimates presented in the previous section, of
the form

N M;
ijt+1
(7.1) llelll <D >k rigsis,

i=1 j=1
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or

N
(7.2) llelll <) S; m?xkg’;frij,
i=1
where we refer to {s;;} as stability weights and to {S;} as stability factors.
We use (7.2) to determine the individual time-step sequences, i.e. we seek to choose the
time-steps as

TOL/N\ /7

We use (7.1) to evaluate the resulting error at the end of the computation, noting that
(7.1) is sharper than (7.2).

The adaptive algorithm may thus be expressed as follows: Given a tolerance TOL > 0,
make a preliminary guess for the stability factors and then

(1) Solve the primal problem with time-steps based on (7.3).

(2) Solve the dual problem and compute stability factors and stability weights.
(3) Compute an error estimate F based on (7.1).

(4) If E < TOL then stop, and if not go back to (1).

Although this seems simple enough, there are some difficulties involved. For one thing,
we have to choose the proper data for the dual in order to get a meaningful error estimate.
Furthermore, choosing the time-steps based on (7.3) may be difficult, since the residual
depends implicitly on the time-step. We now discuss these issues.

7.2. Regulating the time-step. To avoid the implicit dependence of k;; for rj; in (7.3),
we may try replacing (7.3) by

TOL/N 1/pij
Si Tijj—1 '

(7.4) kij = (

Following this strategy, if the time-step on an interval is small (and thus also the resid-
ual), the time-step for the next interval will be large, so that (7.4) introduces unwanted
oscillations in the size of the time-step. We therefore try to be a bit more conservative
when choosing the time-step, to get a smoother time-step sequence. For (7.4) to work, the
time-steps on adjacent intervals need to be approximately the same, and so we may think
of choosing the new time-step as the (geometric) mean value of the previous time-step and
what we get from (7.4). This works surprisingly well for many problems.

We have also use standard PID (or just PI) regulators from control theory with the goal
of satisfying

or, taking the logarithm with C; = log(TOL/(NS;)),
(7.6) pijlog kij +logr; = C;,
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with maximal time-steps {k;;}, following work by Séderlind and coworkers [21, 38]. This
type of regulator performs a little better than the simple approach described above, pro-
vided the parameters of the regulator are well-tuned.

7.3. Choosing data for the dual. Different choices of data for the dual problem give
different error estimates, as described before. The simplest choice is ¢ = 0 and (p7); = i,
for control of the final time error of the n:th component. For control of the [>-norm of the
error at final time, we take ¢ = 0 and ¢ = é(7")/||é(T)|| with an approximation € of the
error e.

If the data for the dual problem is not correct, the error estimate may also be incorrect:
with é(7) orthogonal to the error, the error representation only gives 0 < TOL. In practice
however, the dual — or at least the stability factors — seem to be quite insensitive to the
choice of data for many problems, so that it is in fact possible to guess the data for the
dual.

As another option, we may use the fact that the multi-adaptive algorithm tries to equidis-
tribute the error onto the different components. If the error is indeed the same for every
component, we should choose the data for the dual problem as (¢r); = +1/v/N for all
components. In this way we only have to make a guess for the sign of the errors of the
different components. In practice, however, we may not be sure that the error is the same
for every component, certainly not for the initial computation when we don’t know the
stability factors.

7.4. Adaptive quadrature. To control the quadrature error, we make also the quadra-
ture adaptive. Based on the estimates of the quadrature error, we choose a good enough
quadrature rule for every interval. Notice that a better quadrature rule may be needed for
component i both if f; = f;(U;,-) is nonlinear, or if f; depends on some other component
with smaller time-steps.

7.5. Adaptive order, g-adaptivity. Since we allow for different and varying orders, as
well as different time-steps, for the different components, the method is also g-adaptive (or
p-adaptive). At this stage, lacking a strategy for when to increase the order and when to
decrease the time-step, the polynomial orders have to be chosen in an ad hoc fashion for
every interval. One possible way to choose time-steps and orders is to try to solve over
some short interval with different time-steps and orders, optimizing the choice of time-step
and order with respect to the computational time required for achieving a certain accuracy.
If we suspect that the problem will change character, we will have to repeat this procedure
at a number of control points.

8. SOLVING THE DISCRETE EQUATIONS

In this section we discuss how to solve the discrete equations (4.5) and (4.9).
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8.1. A simple strategy. As discussed in Section 4, the nonlinear discrete algebraic equa-
tions for the mcG(g) method to be solved on every local interval I;; take the form

qij

81 &iym= £mo+km2w‘m [iU (75" (s58)), 75 (s409h)), m= 1, gy

The discrete equations for the mdG(g) method are similar in structure and so we focus on
the mcG(g) method.

The equations are conveniently written in fixed point form, so we may apply fixed point
iteration directly to (8.1), i.e. we make guesses for the values of {&;jm}o?_ |, e.g. &ijm = &ijo
form =1,...,¢;, and then compute new values for these coefficients from (8.1), repeating
the procedure until convergence.

Note now that component U;(t) is coupled to all other components through the right-
hand side f. This means that we have to know the solution for all other components in
order to compute U;(t). Since this works also the other way around, we have to know U;(t)
in order to compute the solutions for all other components, and since all other components
step with different time-steps, it seems at first impossible to solve the equations in the way
that we have described.

As a first simple strategy, though, we try to solve the system of nonlinear equations (8.1)
by direct fixed point iteration. All unknown values, for the component itself and all other
needed components, are interpolated or extrapolated from their latest known values. If we
thus for component i need to know the value of component [ at some time ¢;, and we only
have values for component [ up until time ¢; < ¢;, the strategy is to extrapolate U; from
the interval containing ¢; to time ¢;, according to the order of U; on that interval.

In what order should the components now make their steps? Clearly, to update a certain
component on a specific interval, we would like to use the best possible values of the other
components. This naturally leads to the following strategy:

(8.2) The last component steps first.

This gives an explicit time-stepping method which works well enough for many problems.
Each component is updated individually once, following (8.2), and we never go back to
correct mistakes. For some problems however, solving the discrete equations in this explicit
fashion is not accurate enough. We now describe how to extend the explicit time-stepping
to an iterative process for solving the discrete equations.

8.2. The time-slab. The idea is now to in principle follow the strategy described above,
with the addition that we go back and redo iterations if necessary. The way we do this
is that we arrange the elements — we think of an element as a component U;(¢) on a
local interval I;; — in a time-slab. This contains a number of elements, a minimum of N
elements, and moves forward in time. On every time-slab, we have to solve a large system
of equations, namely the system composed of the element equations (8.1) for every element
within the time-slab. We solve this system of equations iteratively, by direct fixed point
iteration, or by some other method as described below, starting from the last element in
the time-slab, i.e. the one closest to t = 0, and continuing forward to the first element
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0 T

Figure 3: The last component steps first and all needed values are extrapolated or interpolated.

in the time-slab, i.e. the one closest to ¢ = T. These iterations are then repeated from
beginning to end until convergence, which is reached when the computational residuals on
all elements are small enough.

There are now a number of ways to construct the time-slab. One is dyadic partitioning,
in which we compute new time-steps for all components, based on residuals and stability
properties, choose the longest time-step as the length of the new time-slab, and then for
every component choose a fraction 1/2" of the length of the time-slab that is smaller than
the desired time-step for that component. The advantage of such a partition is that the
time-slab has straight edges — we’ll explain more what we mean by this below — and that
the components have many common nodes. The disadvantage may be that the choice of
time-steps is constrained.

Another choice is to choose a rational partition of the interval. We choose the longest
time-step as the length of the time-slab, and other possible choices are now fractions of this,
1/2,1/3, 1/4 and so on. This allows for some more freedom when choosing the time-steps,
and the time-slab still has straight edges, but we do not have as many common nodes as
before.

We choose instead a third alternative: total freedom. The time-steps are not constrained
at all, except that we match the final time end-point, and may vary also within the time-
slab for the individual components. The price we have to pay is that we have in general
no common nodes and the edges of the time-slab are no longer straight.

This construction of the time-slab brings with it a number of problems of technical and
algorithmic nature. We will not here discuss the implementational and data structural
aspects of the algorithm — there will be much to keep track of and this has to be done
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in an efficient way — but we will give a brief account for how the time-slab is formed and
updated.

Assume that in some way we have formed a time-slab, such as the one in Figure 4.
We make iterations on the time-slab, starting with the last element and continuing to the
right, towards ¢t = T'. After iterating through the time-slab a few times, the computational
(discrete) residuals on all elements are small enough.

For some of the elements, the ones at the front, or prow, of the slab, the values have been
computed with extrapolated values of many of the other elements. The strategy is now to
leave behind only those elements that are fully covered by all other elements. These are
then cut off from the time-slab, which then decreases in size. Before starting the iterations
again, we have to form a new time-slab. This will contain the elements of the old time-slab
that were not removed, and a number of new elements. We form the new time-slab by
requiring the all elements of the previous time-slab will be totally covered within the new
time-slab. In this way we know that every new time-slab will produce at least N new
elements. The time-slab is thus crawling forward in time, rather than marching.

An implementation of the method then contains the three consecutive steps described
above, iteration and formation of a new slab, where the formation part consists of the two
steps of decreasing the size of the slab, leaving a number of elements behind, and increasing
again the size of the slab, incorporating a number of new elements.

In addition to this, in order to solve the equations on the elements within the slab closest
tot =0, i.e. the elements at the stern of the slab, we have to know the values of a number
of elements that are no longer part of the slab. For this reason, in addition to the slab, we
keep a number of elements in a tail for each component, just to cover the rear end of the
time-slab.

Remark 8.1. Fven if an element within the time-slab is totally covered by all elements,
the values on this element may still not be completely determined, if they are based on the
values of some other element that is not totally covered, or if this element is based on yet
another element that is not totally covered, and so on. To avoid this, one can impose the
requirement that the time-slabs should have straight edges.

8.3. Diagonal Newton. For stiff problems the time-step condition for convergence of
direct fixed point iteration is too restrictive, and we need to use a more implicit solution
strategy.

Applying Newton’s method, we improve the range of allowed time-steps and the con-
vergence rate, but this is costly in terms of memory and computational time, which is
especially important for us, since the size of the slab may often be much larger than the
number of components, N. We thus look for a cheap way that does not increase the cost
of solving the problem, but still has the advantages of the full Newton’s method.

Consider for simplicity the case of the multi-adaptive backward Euler method, i.e. the
mdG(0) method with end-point quadrature. On every element we then want to solve the
equation

(8.3) Uij = Ui j1 + ki fi(U(tig), tig)-
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0 T

Figure 4: The time-slab used for the multi-adaptive stepping (dark grey). Grey elements are
elements that have already been computed.

In order to apply Newton’s method we write this as

(8.4) F(V)=o0,
with F;(V) = Us; — U; j—1 — ki fi(U(ti5), ti;) and V; = U;;. Newton’s method is then
(8.5) Vi =y — (F'(V™) TRV,
We now simply replace the Jacobian with its diagonal, so that for component 7 we have
Ur — Uiy — kii f;
n+l _ 71 ] %J vy Je

(4] Ou;
with the right-hand side evaluated at V". We now note that we can rewrite this as
(8.7) Ut = U = 0(U]; — U jo1 — kijfi) = (L = U + 0(Us i1 + kij i),
with

(8.9) PP

af; ?
1— kgt

so that we may view the simplified Newton’s method as a damped version, with damping
6, of the original fixed point iteration.

The individual damping parameters are cheap to compute, we don’t need to store the
Jacobian, we don’t have to use any linear algebra, and we still get some of the good
properties of the full Newton’s method.

For the general mcG(q) or mdG(g) method, the same analysis applies. In this case

however, when we have more degrees of freedom to solve for on every local element, 1—k;; 35 L
7
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will be a small local matrix, of size ¢ X g for the mcG(g) method and size (¢+1) X (¢+1)
for the mdG(g) method.

8.4. Explicit or implicit. As described above, both mcG(g) and mdG(g) are in principle
implicit, in the sense that they correspond to the nonlinear equations (8.1) on each time-
slab. However, depending on the solution strategy for the non-linear equations (8.1), the
resulting fully discrete scheme may be of more or less explicit character. Using a diagonal
Newton method as in the current implementation of Tanganyika, we obtain a method of
basically explicit nature. This gives an efficient code for many applications, but we may
expect to meet difficulties for stiff problems. We now discuss this issue and why in fact we
could with our implementation successfully solve also many stiff problems, such as systems
of chemical reactions.

8.5. The stiffness problem. In a stiff problem the solution varies quickly in transients
and slowly outside transients. For accuracy reasons the time-steps will adaptively be kept
small inside transients, and will then be within the stability limits of an explicit method,
while outside transients one would like to use larger time-steps. Thus Tanganyika has
no problem to solve a stiff problem inside transients, and is in fact ideally suited for this
purpose by its multi-adaptive feature. Outside the transients the diagonal Newton method
handles stiff problems of sufficiently diagonal nature, and otherwise the strategy is to
decrease the time-steps whenever needed for stability reasons. Typically this results in an
oscillating sequence of time-steps where a couple of large time-steps are followed by some
small corrective time-steps, see [31].

Tanganyika thus performs like a modern unstable jet fighter, which needs small stabiliz-
ing wing flaps to follow a smooth trajectory. The pertinent question is then the number of
small stabilizing time-steps per large time-step. We analyze this question in [26] and show
that for certain classes of stiff problems it is indeed possible to successfully use a stabilized
explicit method of the form implemented in Tanganyika.

8.6. Extension to DAEs. In [27] we extend the scope to DAEs, which we approach by
regularizing the algebraic equations to stiff ODEs and solving the regularized systems by
the methods described above, including the special technique of handling the stiffness.

8.7. Precalc. There are many “magic numbers” that need to be computed in order to
implement the method, such as quadrature points and weights, the polynomial weight
functions evaluated at these quadrature points, etc. In Tanganyika, these numbers are
computed at the startup of the program and stored for efficient access. Although somewhat
messy to compute, these are all computable by standard techniques of numerical analysis,
see e.g. [37], and once these numbers are known, it is “simple” to implement the method.

8.8. Solving the dual problem. In addition to solving the primal problem, i.e. @ = f,
we also have to solve the continuous dual problem. This is an ODE in itself that we can
solve using the same solver as for the primal problem.

In order to solve this ODE, we need to know the Jacobian of f evaluated at a mean
value of the true solution u and the approximate solution U. If U is sufficiently close to u,
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which we will assume, we take this mean value to be U. When solving the dual, the primal
solution must be accessible, and the Jacobian must be computed numerically by difference
quotients if we don’t know it explicitly. This makes the computation of the dual solution
expensive. There are, however, a couple of advantages as well, as compared to the primal
problem. For one thing, we don’t have to solve the dual with as high precision as for the
primal; a relative error of say 10% may be disastrous for the primal, whereas for the dual
this only means that our error estimate will be off by 10%, and we really only need to
know the size of the error with at most on digit. Secondly, the dual is linear, which may
be taken into account when implementing a solver for the dual. If we can afford the linear
algebra, as we can for reasonably small systems, we can then solve the discrete equations
directly without any iterations.

9. TANGANYIKA

We conclude by giving a short description of the implementation of the multi-adaptive
method: Tanganyika. In the accompanying paper [31], we will present numerical results
obtained with the multi-adaptive solver for a variety of test problems.

9.1. Purpose. The purpose of Tanganyika [32] is to be a working implementation of the
multi-adaptive methods. If it may also serve as a general-purpose efficient and reliable ODE
solver, that is of course a bonus, although reaching there still requires more of development
and testing.

The code is open-source (GPL, see [1]), so feel free to dig in and see for yourself, at

http://www.phi.chalmers.se/tanganyika/

Comments are welcome.
All examples in this and the accompanying papers have been computed using this code,
perhaps passing a few extra options, some of which may not be documented, to the solver.

9.2. Structure and implementation. The solver is implemented as a C/C++ library,
and to solve the problem (1.1) the solver needs to know three things: initial conditions,
the right-hand side f, and the final time T. In addition to the bare essentials there are a
number of optional parameters that the solver accepts, such as e.g. the tolerance (which
perhaps is really an essential parameter) and which method and order we want to use
(automatic choice of this is thus not yet implemented).

The C++ language makes abstraction easy. The implementation thus closely reflects the
description of the method. There are thus classes named Solution, Element, cGgElement,
dGgElement, TimeSlab, Galerkin, Component, ErrorControl and so on.
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APPENDIX A. MULTI-ADAPTIVE GALERKIN DETAILS

This section contains some details left out of the discussion of Section 4.

A.1. The mcG(g) method. To rewrite the local problem in a more explicit form, let
{sn}l_o be a set of nodal points on [0, 1], with s = 0 and s, = 1. A good choice for the
¢G(q) method is the Lobatto points of [0, 1]. This is discussed in more detail below. Now,
let 7;; be the linear mapping from the interval I;; to (0, 1], defined by

t—tij
tij — tig-1’

and let {A\9}¢_, be the {s,}?_, Lagrange basis functions for P7([0,1]) on [0, 1], i.e

ST o Ce e e

We can then express U; on [;; in the form

(A.3) Z Eijn N9 (735(1)),

and choosing the A4 as test functions we can formulate the local problem (4.3) as: Find
{&jn}ai ), with & = fZ,J_l,qi,j_l, such that for m =0,...,¢; — 1.

qij
A0 [ gy O] e (o) dt = [ AC@ONE s (0) e
Lij p=0 Lij
To simplify the notation, we drop the ;; sub-indices and assume that the time-interval is
[0, k], keeping in mind that, although not visible, all other components are present in f.
We thus seek to determine the coefficients {&,}?_; with & given, such that form =1,...,q
we have

(A5) > top | MO 0) at= [ o) @

or simply
(A.6) qu ¥l &n = bm,
n=1
where
(A7) ot = / 0N de
and 0
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We explicitly compute the inverse Ald = (&;%]n) of the matrix Ald = (a%l). Thus,

switching back to the full notation, we get

q
(Ag) gljm = _'SOZ mnano +/ w[qw (7-1]( )) fZ( ( ) t) dta m = 1a -5 G5,
n=1

where the weight functions {wm _, are given by

(A.10) Zamn bl m=1,...,q

Following Lemma A.1 below, this relation may be somewhat simplified.

Lemma A.1. For the mcG(q) method, we have

q
Sl g0 = —1.

n=1

Proof. Assume the interval to be [0,1]. The value is independent of f so we may take
f=0. We thus Want to prove that if f =0, then &, =& forn=1,...,q,i.e. U =Uj on
[0,1] since {A2}?_, is a nodal basis for P4([0, 1)).

Going back to the Galerkin orthogonality (4.3), this amounts to showing that if

1
/ T dt = 0 Vo € P[0, 1]),
0

with U € P4([0,1]), then U is constant on [0,1]. This follows by taking v = U. Thus,

& = & forn =1,...,¢, so that the value of Y7 _, &L‘,’L]nano must be —1. This completes
the proof. O

The mcG(g) method thus reads: For every local interval I;, find {&;;,}07,, with &0 =
fi,jq,qi,j,l, such that

(A.11) &ijm = &ijo +/1 wltil(r; () f;(U®),t) dt, m=1,..., g,

ij

for certain weight functions {wi}?_,  P%1(0,1), and where the initial condition is
specified by &0 = u;(0) fori =1,..., N.

The weight functions may be computed analytically for small ¢, and for general ¢ they
are easy to compute numerically. In Table 1 we list some low-order weight functions for an
equidistant nodal base. Notice that with s, = 1 we have wl? = 1. This agrees with (4.3),

taking v = 1.
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wi(r) = 1(5 - 67) wy () =1

wi¥ (1) = (37 — 967 +607%) wil(r) = £ (26 + 247 — 607%) wil(r) =1

Table 1: Weight functions for the cG(q) method with an equidistant nodal base for ¢ = 1,2, 3.

A.2. The mdG(¢g) method. We now make the same Ansatz as for the continuous method,

(A12) Z 52]” Z )

where the difference is that we now have ¢+ 1 degrees of freedom on every interval, since we
no longer have the continuity requirement for the trial functions. We make the assumption
that the nodal points for the nodal basis functions are chosen so that

(A.13) sq =1,

i.e. the end-point of every sub-interval is a nodal point for the basis functions.
With this Ansatz, we get the following set of equations for determining {&;;,}?

qij

qij
A 14 (Z 62]774 q” fng) / Zé-zgndt 7_1,3 (t))} /\L%”](sz(t)) dt

Lij n=0

Fi(U(), )] (1,5(1)) dt,

I;;

for m = 0,...,q;;, where we use {;;, to denote &; j_1,,;, 1.e. the value at the right end-
point of the previous interval. To simplify the notation, we drop the sub-indices ;; again
and rewrite to [0,k]. We thus seek to determine the coefﬁ(ﬂents {&}1_o such that for

m =20,...,q we have
(A.15)

(nz_‘afnkk]w)—fa ) AL‘?)(O)+;@% /0 D ()N (1)) dt = /0 PN () dt,

or simply

q
(A.16) > ald & = b,
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where

(A17) ofl, = [ X8 @AZ) ae NI ON0),
and 0

(A.18) blal = jf FNI(7 (1)) dt + &5 N9 0).

Now, let AlY be the (¢ + 1) x (¢ + 1) matrix Al = (a%]n) with inverse A4 = (d%]n).
Then, switching back to the full notation, we have

q
(A.19) %m=§N2)@M@®%ﬂAUﬂ(M(Dﬁ(())ﬁ,m=Q~w%a
n=0 ij

where the weight functions {w[nq]}q_o are given by

q
(A.20) :§: MAd m=0..4q

As for the continuous method, this may be somewhat simplified.

Lemma A.2. For the mdG(q) method, we have

Z amn )‘L?

Proof. As in the proof for the mcG(g) method, assume that the interval is [0, 1]. Since the
value of the expression is independent of f we can take f = 0. We thus want to prove that
if f =0, then the solution U is constant. By the Galerkin orthogonality, we have

1
[Ulov(0) -I-/ Uv dt =0 Yo € P40, 1),
0

with U € P9(0,1). Taking v=U — U(0~), we have
0 =(Ub-thU U0-)) dt 2+ 14U —U0))?dt
= 5(U(0%) - U(U_DQ'F%(U(l)—'U(O_N
so that [U]o = 0. Now take v = U. This gives [, (U)? dt = 0. Since then both [U]y = 0
and U = 0 on [0,1], U is constant and equal to U(0~), and the proof is complete. O

The mdG(g) method thus reads: For every local interval I;;, find {&;n}2,, such that
for m =0,...,¢; we have

(A21) @m=§%+[¢m (r5(8)) FUD), )

for certain weight functions {w!?}¢_, c P9(0,1).
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Remark A.1. Also for the mdG(q) method, we have the property that w([,q] = 1. To see
this, take v =1 in the Galerkin orthogonality.

A.3. Choosing basis functions and quadrature. We now discuss how to choose nodal
points for the nodal basis functions, and quadrature points for the quadrature.

Having the same nodal points as quadrature points may increase the efficiency of the
solver, since when we then wish to evaluate some function expressed in the nodal basis at
a quadrature point, we may just take the nodal value at that point, instead of having to
evaluate all basis functions at this specific point and compute the weighted sum. It turns
out that it is indeed possible to choose the same quadrature points as nodal points in a
good way.

As already mentioned above, we assume that the end-points of every interval are nodal
points, both for the continuous and the discontinuous method. This is for practical pur-
poses; the end-point values will have certain significance for both methods. For the contin-
uous method it is desirable to have also the left end-point of every interval as a nodal point.
This makes it easy to impose the continuity on the solution, just taking &jo = & j—1,4:,_,-

If the polynomial order on some interval is ¢, we have to compute integrals of the right-
hand side times polynomial weight functions of degree ¢ — 1 for the mcG(g) method, and
degree ¢ for the mdG(g) method, see (4.4) and (4.8). The main criterion for choosing
the quadrature is now that the quadrature should be exact at least if the right-hand side
is a polynomial of degree g, i.e. locally f;(U(t),t)|r, is a polynomial of degree q. The
quadrature should thus be exact for polynomials of degree

for the continuous method and
(A.23) gac =q+q=2q

for the discontinuous method.

For the continuous method we thus want a quadrature that is exact for polynomials of
degree 2q — 1, and where the end-points are quadrature points. Another requirement is
that the Lagrange nodal basis functions should be able to represent polynomials of degree
q, which means we want ¢ + 1 nodal points. Now, the best possible quadrature with ¢ 4+ 1
nodal points, including both end-points of the interval, is the Lobatto, or Gauss-Lobatto,
rule, which turns out to be exact for polynomials of degree less than or equal to 2¢ —1. We
thus choose the Lobatto points as both quadrature and nodal points. The Lobatto points
on [—1,1] are given by —1, 1 and the zeros of the derivative of the g:th-order Legendre
polynomial on [~1,1], P;(x), which can be expressed as

1
We may thus express this as finding the zeros of zP,(z) — P,—1(x).
For the discontinuous method, we want a quadrature that is exact for polynomials of
degree 2¢, i.e. one degree more than for the continuous method. We wish to represent

polynomials of the same degree, ¢, with the nodal basis, and so we have the same number
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of nodal points, ¢ + 1. We thus now want a quadrature rule that is one order better with
the only difference that now we don’t need to include both end-points, only one of them.
This turns out to be possible. The best quadrature points with one end-point included are
the Radau, or Gauss-Radau, points of the interval. With this quadrature we can integrate
polynomials of degree 2q exactly which is just what we want. The Radau quadrature points
of [—1,1] are given by —1 and the zeros of

By(x) + P (2)
1+z
where P, is the g:th-order Legendre polynomial on [—1,1]. We may thus express this as

finding the zeros of P,+ P,.;. Note now that if we want the right end-point to be included,
rather than the left, we have to flip these points to have 1 as a nodal point.

(A.25)

b

Remark A.2. Using different time-steps for different components, we will not be able to
benefit as much from choosing the same quadrature as nodal points as we would with the
same time-steps for all components, since then a quadrature point for one component is
not necessarily a nodal point for another component.

Remark A.3. One may also think of choosing the basis so as to give as simple coefficients,
f[ AjAi dt or f[ AjAi dt, as possible. The latter of these turn up in linear problems. As an
example, consider the discontinuous method for a linear problem, where a good choice of
basis functions is then the Legendre polynomials on the interval, see [40].
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APPENDIX B. THE DISCRETE DUAL PROBLEM

The discrete dual solution @ is a Galerkin approximation of the continuous problem

@(T) = 91
where m,u is an interpolant or a projection of the true solution u, and where we will choose
the Galerkin approximation to suit the needs of the a priori error analysis below.

As everything else is the other way around for the dual problem it should come as no
surprise that the test and trial spaces are interchanged. Thus for the mcG(g) method the
dual trial space consists of all (possibly discontinuous) piecewise polynomials of degrees
{¢;; — 1}, and the test space consists of all continuous piecewise polynomials of degrees
{¢i;}, on the same partition as for the forward problem. To ensure that the dimensions
of the test and trial spaces are the same, we require that the test functions vanish at the
end-point t = 0. To see that we get the correct number of degrees of freedom, note first
that with M intervals for a certain component, the count is M¢q for the trial functions. For
the test functions, we have ¢ + 1 degrees of freedom per interval, from which we subtract
one degree of freedom per interval; one for everyone of the M — 1 continuity requirements,
and one extra for the requirement that the test functions must vanish at the end-point.
The total number of degrees of freedom is thus

(B.2) Mg+1)—(M—=1)—1=M(g+1)— M = My,

in agreement with the number of degrees of freedom for the trial functions.
The discrete dual problem for the mcG(g) method is then to find ® € W, such that

N M T
(B.3) —(@(T),U(T))-i—ZZ/ D, dt:/ (J*(mpu, U, )@ + g, v) dt,
i=1 j=1"1ij 0
for all v € V, where ®(T") = & and
(B.4)
V = {U € C([O,T]) : ’U,“[ij € ’P‘h’j([ij)’ j= 1,...,MZ‘, 1= 1,...,N, ’U(O) = 0},
W = {v:vy, e P9 (Iy), j=1,...,M;, i=1,...,N}.

In the mdG(q) method the trial and test spaces are the same. The discrete dual problem
for the mdG(q) method is thus to find ® € W, such that

(B5) ZZZ: [_[(I)z]zfvz] — [ (IlL’UZ dt] = A (J*(mcu, U, )(I) + g,U) dt,

i=1 j=1 ij

for all v € V, where ®(Tt) = &7 and the trial and test spaces are the same as for the
mdG(g) method, i.e.

(BG) V:W:{UIU”IH quij(fij),jzl,...,Mi, Z:L,N}
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APPENDIX C. STABILITY ESTIMATES
In this section we prove stability estimates for the multi-adaptive methods and their

duals.

C.1. Stability estimates for the primal methods. We start by proving basic stability
estimates for the the linear problem

(C.1) {ZI(%; = 50(,t)U(t)’ te (0,7,

where A(t) is an N x N matrix depending on time ¢. The goal is to estimate the size of
the discrete solution U, and its derivatives, in terms of A. As a simple measure of A, we
take

D ()],

(C.2) A= max max sup |a;;

0<p<g—1 %,j 4¢ [0,T7]

where A = (a;;) and ¢ is the order of the derivative we want to estimate. We use {t,,}
to denote synchronized time-levels, and denote by K,, = t,, — t,,_1 the corresponding
time-steps.

To begin with, we will need the following variant of the discrete Gronwall inequality.

Lemma C.1. Assume that z,a : N — R are non-negative, z(0) < C, a(i) < 1/2 for all i,
and

(C.3) z(m) < C + Z a(i)z(3).

Then, for m =1,2,..., we have

(C.4) z(m) < 2Cexp (Z_: 2@(i)> .

under the assumption

z(m) < C+ Z a(i)z(7).

=0
Assuming a(i) < 1/2 for all 4, we have by (C.3)

(1 —a(m))z(m) <C+ )  a(i)z(d),

i=1
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so that, since |1 — a(m)| > 1/2,
m—1

2(m) <20+ 2a(i)z(i),

i=1

and the desired estimate follows. U
We can now prove the stability estimates for the mcG(g) and the mdG(g) method.

Lemma C.2. Let U be the mcG(q) solution of (C.1), and assume for simplicity that A > 1.
If for some constant C,, only depending on the highest polynomial order, CuNAK,, < 1/2
for all m, then fori=1,..., N we have

N
(C.5) UL ()] < CoAP exp(CeN Ati) > [ui(0)], p=0,1,...,

=1

where t,, is the next synchronized time-level with t < t,,.

Proof. By (4.4) we have

(C6) Eim = s(0) + / T ) ADU @) dt.

for some piecewise polynomial weight functions {7;;m}, and therefore

tij N
Eijm| < |u:(0)] + ch/O SO (UL 0)] dt
n=1

We then have, with a new constant C, (depending on the choice of nodal points),

ti; IV
\U;(t)| < |u(0)] +CqA/O E|Un(t)\ dt, t €0,
n=1

Now choose t;; = t,, for some synchronized time-level ¢,,, so that this expression holds for
all 7, and make the definition

Ui(tm) = max |U;(t)],

te[0,tm]

and let
N
Ultm) =Y _ Ui(tm),
=1

with U; and U piecewise constant on the partition defined by the synchronized time-levels.
Then, summing over all components, we get
U (tm) Sy [ui(0)| + CoNA [ S0, [Un(t)] dt
Z%l ui(0)] + CNA [;™ U(t) dt
>ic [i(0)[ + X200, CuNAKLU (L),

I IAIA
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where {K,,} are the lengths of the time-slabs, i.e. the distances between adjacent synchro-
nized time-levels. Since by assumption C;NAK,, < 1/2 we have, by the discrete Grénwall
lemma,

N m—1 N
O(tm) <23 |us(0) [ exp (Z QCqNAKn> < 22NAn 3 ug(0),
=1

n=1 =1

so that, in particular,

N
Ui(#)] < 26*CNAm Y ", (0)],
i=1
for 0 <t <t,.
Now, in order to control derivatives of U, we choose a local test function v for component
i that vanishes outside I;; in the Galerkin orthogonality (4.1) to get

/ U dt = / (AU)w dt.

) 1

Since the test function is one degree lower than U; for the mcG(g) method, we may choose

v as the L?-projection onto P%*(I;;) of sgn(U;), which gives
U dt = / 0; sen(U3) dt = / Ui dt = / (AU)sw dt < AT () [ [o] dt.

Since v is an L*-projection of sgn(U;), it follows by the Cauchy inequality that [, |v| dt <
ij

ki { [ v? dt 2 < ki { [, (sgn(U;))? dt 2 < k;;, and therefore
I \J I J \J1;; J

1 ) _

— |Ui| dt < AU (t;5).
kij I

By an inverse estimate for polynomials, it follows that
H}gx |UZ‘ < CQijA[j(tij)a

so that in particular

nex Ui| < Co AU (L),
,tm

for all synchronized time-levels t,,.
In order to control higher order derivatives, we choose v € P% ~'(I;;) so that for all

w € P%~P we have
/ sgn(UP) w dt = / v w dt.

I I
This will determine ¢;; + 1 — p degrees of freedom for v, leaving ¢;; — (¢;; +1—p) =p —
degrees of freedom. We choose these to have [(U-(p_n) - (AU)(p_n_l))v(”’l)]t” = 0 for

i i tij—1
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n=1,...,p—1, and obtain
[, 0Pt = [, UP sen(UP) dt
= flij Ui(p)v dt
S (=D U eI (<1 [, T dt

= MY HUPT OIS (<1, (AU) @Y dt
= ()P = (AU TR 4 ) ((AU)) e dt
= [;,(AU))*~Dv dt
< kiyCpAmax, . -1 UM.

Thus, by induction, assuming for simplicity that A > 1, we get, again by an inverse
estimate,

N
UL (0)] < Coll? exp(CyN Atrn) D ui(0)
i=1
for every ¢t < t,, (with a new constant C;). Note that this expression holds also p > g,
since those derivatives are zero. O

Lemma C.3. Let U be the mdG(q) solution of (C.1), and assume for simplicity that A > 1.
If for some constant Cy, only depending on the highest polynomial order, CyNAK,, < 1/2
for all m, then fori=1,..., N we have

N

(C.7) UP (1)] < CoAP exp(CuNALm) D [ui(0)], p=0,1,...,
i=1

where t,, is the smallest synchronized time-level with t < t,,.

Proof. Following the proof for the continuous method, since we also for the discontinuous
method have an expression of the kind

bum = 1s0)+ | Y O AGU), dt,

it is clear that we will also get the estimate

N
Ui(t)] < 2"y " i (0)],
i=1
where now C; is some other constant, depending on the highest order of the method. For
estimating higher order derivatives, notice that also for the discontinuous method we have

/ Upv dt = / (AU)v dt,
I I;;

ij 3
if we take the test function zero at ¢; ;_;. This will take away one degree of freedom, but
since the test functions have one extra degree of freedom for the discontinuous method, we
are still able to estimate the derivatives as before, possibly with different constants. Il
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C.2. Stability estimates for the dual methods. We now discuss stability estimates
for the discrete dual problems, i.e. obtain bounds on @ in terms of f or J. In the following,
we limit ourselves to estimating the final time ly-error, i.e. the right-hand side data for the
discrete dual problems, g, is assumed to be zero. In order to obtain the same estimates as
for the primal forward problem, we show that the dual methods, i.e. (B.3) and (B.5), are
time-stepping methods in the sense that the degrees of freedom are given by expressions
similar to (C.6).

Consider component ¢ of the discrete dual for the continuous method. Choosing the test
function v; = 0 for j # ¢ and v; as the test function w that vanishes outside [¢; ;_1,7’] and
is equal to one on [t;;, 7] in (B.3), we have

T
I;; tij I;;

with B;(t) = (J*(mpu(t), U(t),t)®(t));. If we now make an Ansatz for the discrete dual ®;,

as we did for the forward method, and vary the test function w over I;; with w(t; j_1) =0

and w(t;;) = 1, we get expressions for the degrees of freedom for ®; on I;;, {nijm}%fol, of
the form

T
(C.9) Nijm = i(T) + / YijmBi dt,
tij—1
for m = 0,...,¢; — 1, where {7;;m} are polynomial weight functions. In the same way

as before for the forward method, we thus get a similar stability estimate for the dual
backward method.
For the dual backward method of the discontinuous method, we will, since the test and
trial spaces are the same, get exactly the same estimate as before for the forward method.
We thus have stability estimates also for the dual methods, and we state these in the
simplest possible way.

Lemma C.4. If the Jacobian elements {J;;(t)} and their derivatives are bounded by A
on [0,T], and the lengths of the time-slabs, {K,}, are small enough in terms of A, then
the discrete duals and their derivatives, both for the mcG(q) and the mdG(q) method, are
bounded on [0,T] in terms of A.
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APPENDIX D. A PRIORI ERROR ANALYSIS

In this section we prove a priori error estimates for the multi-adaptive Galerkin methods.
We obtain estimates showing that the mcG(g) method is of order 2¢ and the mdG(q)
method is of order 2¢q + 1.

D.1. Introduction. The goal here is to obtain estimates for the error in terms of the
time-steps k, i.e. estimates of the form

T
(D.1) llell < [ (.w) a
0
for some integer p > 0, and where w does not depend on the computation.

D.2. Error representation. We split the error into two parts,
e=U—-u= (U —mu)+ (mpu — u) = &+ (mpu — u),

where € denotes the discrete error U — mpu for mpu some trial space approximation of the
exact solution. We will choose m,u in a special way below, and we will refer to it simply as
the interpolant. The idea is that the second part of the error is easy to estimate in terms
of derivatives of u, so if we can estimate € we are done.

The following two theorems represent this part of the error in terms of the residual of the
interpolant. This is the main part of the a priori error analysis, together with the stability
estimates for the discrete duals.

Theorem D.1. For the multi-adaptive continuous Galerkin method, mcG(q), the discrete
error e = U — mpu, where mpu 1s a trial space interpolant of the exact solution, can be
represented in terms of the residual of the trial space interpolant and the discrete dual ®
as

T T
@)+ [ (@9 dt== [ (Bima,),®) dr
0 0
iof mpu anterpolates u at end-points of every local interval.

Proof. Since €(0) = 0 and € is a continuous piecewise polynomial of orders {g;;}, it is a
test function for the discrete dual, and thus

T N M T
(e(T), By) + / e d=3% / 610, di+ / (6, —J* (meu, U, )®) dt,
0 i=1 j=1"1ij 0

where
[, —J*(mu, U, )®) dt = [ (—=J(mpu, U, )e, ®) dt

Jo (f (meu, ) = (U, ), ®) dt
S [ (Film, ) = Fi(U, )@ dt.
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Since now ® is a test function for the forward problem, it is orthogonal to the residual of
U, so that

fIij [e:®i + (fi(meu, ) — fi(U,)®] dt = fL,] [ i dtﬂ-kuz + filmeu, ) — fi(U, )} ®; di
= [, [FRi(mu, ) + Ri(U, )] ®; dt
= _II 7TkU, (I) dt.

Summing up, noticing that the residual of the interpolant is well-defined except at the
nodes where it is discontinuous, we have

T T
@T),00) + [ (@g)di=— [ (Rlma),0) i,
0 0
which completes the proof. U

Theorem D.2. For the multi-adaptive discontinuous Galerkin method, mdG(q), the dis-
crete error € = U — mpu, where mpu 1s a trial space interpolant of the exact solution, can

be represented in terms of the residual of the trial space interpolant and the discrete dual
P as

N M;
(é(T),<I>T)+/ g,9) dt = ZZ[ [l 1 Pt y) / R;(mu)®; dt]
0 i=1 j=1

if mpu interpolates u at the right end-point of every interval.

Proof. We now try to do the same thing as in the previous proof, having only to keep track
of a few extra terms. Since all four trial and test spaces are the same for the primal and
the dual problem, it is clear that e is a test function for the discrete dual, and thus

/OT(é, g) dt = Z [—[Cbi]ijéi_j +/ _eb, dt

ij ij

T
+/ (e, —=J*(mpu, U, -)®) dt.
0

As before, we have
T
/ (&, =T (mpu, U, ) @) dt = / (filmiu, -) = fi(U, ) ®; dt.
0 ij Vi
Now, integrating by parts, we get

Ue + f[ é’i@i dt = (t:—] 1)(1) (t:—] 1) é(tz;)(bz(t;;) + fIij éz(I)z dta

so that, since €(0~) = 0 and e is right-continuous at 7,

Zij [— zge + f[ EZ(I)Z dt] = —(é(T),(DT) + Zij [éi]z’,j—l(bi(t:j_l) + flij éz(I)z dt] .
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Summing up and using the Galerkin orthogonality for U, we have, noting that U; — 7rkuz+

filmgu,-) = fi(U, ) = Ri(U, ) — Ri(meu, -),
(é(T)’ (DT) + f()T(é’ g) dt = Zij [éi]ij—lq)'(t;—jfl + f[ —R'(Tfku ) + RZ(U, )) (Dz dt]
= Z [ﬂ-kuz]z,J l(I) Z] 1 f[ 7Tku (D dti|

completing the proof. O

D.3. Interpolation estimates. What follows here is some further preparation for the a
priori error estimates, for which we need expressions for u — myu with m,u some trial space
approximation of u chosen in a special way. For now, assume that f is a real-valued scalar
function on the interval [a, b].

For the mcG(g) method, we define the following interpolant:

4 f € P(a,b),
(DQ) 7]'[‘1] (CL) = f(a) and 7-(-[(1] (b) — f(b)’
fab(f — 7l f)y dz = 0 Vv € P172%(a,b),

i.e. mldf is a polynomial of degree ¢ that interpolates f at the end-points. The further

qg+1—2=q—1 degrees of freedom are determined by ¢ — 1 projection conditions. Notice

that for ¢ = 1 only the interpolation conditions are necessary to determine the interpolant.
For the mdG(g) method, we define the following interpolant:

miilf € P(a,b),
(D-3) h() (%
df)v dz =0 Vv € P7"(a,b),

ie. 7ldf is a polynomial of degree ¢ that interpolates f at the right end-point. The
further ¢4+ 1 — 1 = g degrees of freedom are determined by ¢ projection conditions. Again,
notice that for the lowest degree polynomial of the method, in this case ¢ = 0, only the
interpolation condition is necessary to determine the interpolant.

We will use the Peano kernel theorem to represent f — 7% f in terms of derivatives of f.
To do so, we must first investigate a few important properties of the two interpolants.

Lemma D.1. For both types of interpolants, if f € P4(0,1) then 7ldf = f.

Proof. For the meG (q) interpolant, f —nl9 f is zero at 0 and 1 and is a polynomial of degree
g, so that it has a maximum of ¢ — 2 zeros on [0, 1]. We may thus choose the test function
v € P172(0,1) such that it has the same sign as f — 7l f. If then f(z) — 7ldf(x) # 0 at
some point, we have

/l(f—ﬂ fv dz >0,
0

in contradiction to the property of the interpolant that f — 79 should be orthogonal to
P?2(0,1). Thus f —7l4f =0 and 7ldf = f.
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For the mdG(g) interpolant, f — w9 f is zero at 1 and is a polynomial of degree ¢ with
g — 1 zeros on [0,1]. Choosing now the test function v € P?1(0,1) with the same sign as
f — 7l f we see as before that we must have 7l9 f = f. O

Lemma D.2. For both types of interpolants, if f is continuous on [0, 1], then there is a
constant Cy, (different for the two types of interpolants), only depending on q, such that

(D-4) 7D f (@) < Cylf (2)] Va € [0,1].
Proof. To estimate the mcG(q) interpolant, let A\g(z) =1 — z and A;(z) = z. Then
f(@) = folz) + F(0)Ao (33) fFMAu(z),
where fo = f — f(0)A\o — f(1)Ay, so that, since 7l is linear,
mf (@) < |7 fo(2)] + 1| fllo,,

where || f|o,] = maxpj|f|- It thus suffices to estimate the interpolant of the function
fo that is zero at the end-points. Write the interpolant as 7l% fy(z) = x(1 — z)p(z) with
p € P772(0,1). Then, by the Cauchy inequality, we have

f 7l fo(z)] dz = fo z(1 — z)|p(z)] dx_fo V(1 \/I(l—x)|p$;v2)| dx
< (o= da) " (@0 - (@) o) da:)
(12 ueIpte) )™ = 2 (1, fteote) )

Ve (g \pxw) Sy cqwfon[o,u,

where ¢, is a constant such that

éIH

IN

< 1-— 2,
max p(z)] < ¢ ;g[gflc]x( z)|p(z)| Vp € P
To obtain a value for this constant, note that the inequality holds if p(z) = 0 Vz € [0, 1].
If not, take z’ € (0,1) with p(z') # 0. Then, assuming that the maximum is attained at
T =1z,
m/(l_‘l;(/i)fz‘,(z/)‘xl(l —a')|p(z)] < wr(llzszﬁ‘)l‘,(wf)‘ maxzefo,1)Z(1 — ) |p(z))|

maXgelo,1) |p(x)| =
< ¢gMaXgeo,1] r(1 — z)|p(z)|,

with
1
minp||, ;=1 MaXzefo,) (1 — ) [p(z)]

The minimal maximum is obtained if the maximum of |p| is placed at one of the end-points
where (1 — z) = 0 and [p(z)| decreases as fast as possible when z(1 — z) increases. Thus
taking p(z) = x97? we obtain a maximum at x = 1 — 1/¢, giving

1
= < 4q.

(1-1/q)

C, =

Cq =
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Since all norms on finite dimensional spaces are equivalent, there is a constant c; such that

I folloy < < fy | o) do < /L8 fe, [nl0 ol

so that, finally,

||7r[‘1]f0 [

lli0,13,
with Cy = (c})%c,/6.

For the mdG(q) interpolant, it suffices to estimate the interpolant of the function f; that
is zero a the right end-point, i.e. fo(1) = 0. We write the interpolant as 719 fo = (1 —z)p(z)
with p € P271(0,1). By the Cauchy inequality we then have

Jo 79 fo@)] dz = [ (1~ a)|p(x Idx—foVl—x)\/(l—x)\p(x)ldiv

< (fia—=)a)” (-l )(u»d@”Q
_ LQ( Ll (2)p(a )1/2 (fo folz d:v) 2
< VR (ﬁmx|¢®”2 N Cmﬂfb

where ¢, is a constant such that

< 1-— Vp e P
max Ip(z)] _cqmrg[gflc]( z)|p(z)| Vp

To obtain a value for this constant, note that the inequality holds if p(z) = 0 Vz € [0, 1]. If
not, take ' € (0,1) with p(z’) # 0. Then, again assuming that the maximum is attained
atrx =1,

max,epo [p(@)] = 2O (1 - o) p(@')] < B2 max,epa(l - 2)|p()

< cgmaxeepo (1 — z)|p(z)],
with
1
minyp =1 MaXzefo,1](1 — =) [p(x)|

The minimal maximum is obtained if the maximum of |p| is placed at the right end-point
where 1 —z = 0 and |p(z)| decreases as fast as possible when 1 — z increases. Thus taking
p(z) = 297! we obtain a maximum at x = 1 — 1/¢, giving

Cq:

= ————— <4,
T(-1/gr

as before. Continuing now as above for the meG(g) interpolant, we obtain a similar estimate
for the mdG(g) interpolant, completing the proof. O

The Peano kernel theorem can be stated in the following way (see e.g. [36]): For A a
bounded linear functional that vanishes on P9(a, b), define

(D-5) K(t) = A( t)%,
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where v, = max(0,v). If K has bounded variation and f € C?"!([a,b]), then

(D.6) Af = /bK(t)f(qH)(t) dt

We now apply this to the special choices of interpolants for the mcG(g) and mdG(q)
methods discussed above.

Theorem D.3. Assume that f € C97'([a,b]). Let k = b — a. Then there is a function
G(z,t), with |G(z,t)| < (1+ Cy), such that

ka—l

(D.7) fla) =t f(0) = *o / FO ()G (1) dt.

Furthermore, if g is an integrable (essentially) bounded function on |a,b], then there is a
function Hy(t), with |Hy| < (1+ Cy)ess supy q5|g|, such that

b kq—i—l
D) [ 6@ = rs@e) o= C 0 [ 0wy @) ar
These representations hold for both types of mterpolants.

Proof. For the proofs, we only need the linearity, and the two lemmas D.1 and D.2. What
we say therefore holds for both types of interpolants. For simplicity, we assume the interval
in question is [0, k].
(7) For any fixed x, define
Aof = f(z) — 79 f(z).
Since 79 is linear, this functional is linear, and by lemma D.1 it vanishes on P10, k). By
Lemma D.2,

Aof| = [f(2) = 7 f(@)| < |f(2)| + [79f(2)] < (1 +C) max|f],

[0,k]
so that the functional is also bounded. Furthermore,
1 1
K,(t) = aAm(. — 1)L = J [(z —1)4 - rldl (g — 1],

so that K, is of bounded variation. Now,

K() = 4[@-0) —rld@—t)1] =% [(w%)i _ pld (wat)ﬂ = ¥G(x,1),
where |G(z,t)| <14 C, for z,t € [0, k] Thus, by the Peano kernel theorem,

F(@) = 7 f (@) = Auf = K2 [E FOD0)G 1) di.
(73) To prove (D.8) define

Af = / (f(z) — 79 (2))g(x) da.
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The functional A is then linear, bounded and vanishes on P?(0, k). Now,

K(t) = fo [(z — )% — alid(z — )% ] g(x) do
LTy (e, () o e = 5221 )

where Hy(t) < (1+Cy)ess supyg /g for ¢ € [0, k] Thus, again by the Peano kernel theorem,

/0 (@) = 79 f@))g() e = F / PO () Hy (1) dt,

completing the proof. O

D.4. A priori error estimates. We now make use of the error representations and the

stability estimates in order to obtain a priori error estimates for the multi-adaptive meth-
ods.

Theorem D.4. Assume that the exact solution u has q + 1 continuous derivatives, i.e.

locally uz(q“'ﬂ) is continuous on Ij. Assume also that the Jacobian elements {J;;} and
their derivatives are bounded by A on [0,T)], and that all K, are small enough in terms of
A. Then the following a priori error estimate holds for the mcG(q) method:

T
09 el < [ () d

0
where w = w(u,t) > 0 does not depend on k. The mcG(q) method is thus of order 2q.

Proof. Starting from the error representation of Theorem D.1, noting that the residual of
the exact solution is zero, we have, with ¢ = 0 and ®r = &(T)/||e(T)||,

le(D)]| = —fo Wku ,®) dt=— [[(R 7rku ) R(u,-),®) dt
= [y (f(meu,- f(u ), ®) dt + [if (L (u— mypu), ) dt.
Since m,u interpolates u at the end—pomts of {_lij} we can integrate by parts, to get

T i
f() (%(u - Wku)’ (P) dt = Zz]il Z;w 1 f[l] % U; — WkUZ)Q dt
Zij\;l Zj 1 f[ U; — 71'lcuz (D dt = 0,

which clearly holds for ¢;; = 1, since then {Di = 0, and also for ¢;; > 1, since then u; — m,u;
is orthogonal to P%i—2(I;;) on I;;. Linearizing, with J as in (6.1), we have

fo (mpu, <) — f(u,-), @) dt = fo (e, u, -) (mpu — u), @) dt
= fo T — u, J*(Tpu, u, -)®) dt = fOT(Wku — u, B(®)) dt,
where B(®) = J*(myu,u,-)®. We now again use the orthogonality of 7m,u — u and subtract
a interpolant of B (noting that this interpolant is zero for ¢ = 1), to get
I (f(mgu,-) = flu,-),®) dt = [ (7l u—u u, B(®) - 7 A B(®)) di
= 3 Jiy (1w — ) (Bi(®) — i Bi(®)) dt

= Zma]
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By Theorem D.3, we have

a; = [y (M — ) (By(®) - w,[cq”‘Z]B(cb)) di
- ffu kqu” kij fIl,] 4ij (.T t) (q”+1) kij f[ qij—2 y: B(q” (y) dy dt
< fI” q” 22;1” ktj fIU Ju ‘sz+1)( )| d.’L" 1 fIU |B((Iu—1)( )| dy dt
< fL, kij 5 wij dt,
with

1 g 1 o
wilt) = wy = Coy - [ @) e - [ 1B

I;; ) ij

for t € I;;. From the discussion of Section C.2 it follows that this w is bounded if all K,
are small enough. Thus, since myu interpolates u at T',

T
le()] = e < 3 / K2 dt = / (K1, w) dt.
i ij

g

Theorem D.5. Assume that the exact solution u has q¢ + 1 continuous derivatives, i.e.

locally ugq“ﬂ) is continuous on Ij. Assume also that the Jacobian elements {J;;} and
their derivatives are bounded by A on [0,T), and that all K, are small enough in terms of
A. Then (assuming U is right-continuous at T') the following a priori error estimate holds
for the mdG(q) method:

(D.10) lle(T)|| 5/0 (K*7T w) dt,

where w = w(u,t) > 0 does not depend on k. The mdG(q) method is thus of order 2q + 1.

Proof. Starting from the error representation of Theorem D.2 in the same way as for the
continuous method, noting that the residual of the exact solution is zero as well as the
jump terms, we have, with g = 0 and &7 = &(7)/||e(T)||,

le()ll = S SN [l ®i(t) — [, Bi(men) @ di]
= Xy [ — iy 9t ) f, () — Ri(w); di]
= Zij [(_[ﬂ-kuz uz] 1,j— 1(1) ( ij— 1 fIij i 7rkui - ’U,,)(I)Z dt)

+ fzij(fi(WkU, )= fi(u,-))®; dt}
= I+1I.
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We integrate the first of these expressions by parts, using the fact that (mpu; — u;) is
orthogonal to P%i~1(I;;), to get

] = Zij —[ﬂ'kuz uz]z] 1@ ( Wi 1 fIz'j %(mui —Uz)cbz dt:|

= Sy | — sl ) [ - w2 |
. [ — ) (050 0ultFy1) — s = ) (5)0415)]
= 0,

since 7gu; interpolates u; at the right end-point of every interval. Thus, linearizing, with
J as in (6.1), we have

el = S, 3 fr, (filmen, <) = filu, ) @i dt = [ (f (e, <) = f(u, ), ®) dt
= [T(J(mpu, u,- Vet — ), ) dt = fo TRl — U, J*(wku, u,-)®) dt
= [, (mu—u, B(®)) dt,
where B(®) = J*(mgu, u,-)®. Continuing in the same way as for the continuous method,
using the orthogonality of myu — u to subtract an interpolant of B(®), and using Lemma
D.3 to represent differences in terms of derivatives, we end up with the same estimate as

before, only now we may subtract interpolants of B(®) that are one degree better than for
the continuous method, so that now

le@)|l = [le(T)] < / (K1, ) dt.
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APPENDIX E. A STABILITY ESTIMATE FOR THE DUAL OF THE DUAL

To simplify matters, we write the dual problem as

D) = A@p(),
(=) Lt 2
where ¥(t) = (T —t), A(t) = J*(u(T — t),U(T —t),T —t), v € RV is some normalized
data for the dual, i.e. ||v|| = 1, and we assume A to be piecewise Lipschitz-continuous.
The dual problem for this dual problem may then be written as
—w(t) = A Ww(t) + ew/llew],
(E-2) { w(T) = 0.

for error control in L'([0,T], R™) of an approximation ¥ of the dual 1.
To prepare for the estimate we explore a few basic properties of the solution operator
E;‘I‘(t2) of (E.1).

Lemma E.1. Let E;}(t2) be the solution operator of

(E.3) o(t) = AQt)v(t), t € (0,7),

defined by v(ty) = Eﬁ(tz)v(tl) for all t,ty € (0,T) with t; < ty. Forty < t; we make the
definition E}(t2) = E?g;')(T — t3). This solution operator has the following properties:

(E.4) (Et/j(tz))* = E;, (1),

(E.5) E; (t2) = E{'(t2) B} (1),
for any t,ts,t € (0,7).

Proof. We give an intuitive proof based on expressing the solution operator as a product
of matrix exponentials. Since A is piecewise Lipschitz-continuous, it can be approximated
by some piecewise constant A such that, for any € > 0, ||A(t) — A(t)|| < € on [0,T]. By
a Gronwall argument it is then clear that we may also approximate Ej(t;) with E7(¢,)
arbitrarily well. It thus suffices to consider a piecewise constant A. For A piecewise
constant and right-continuous, and we may take A to be piecewise constant on a uniform
partition of [t1, 5], we have, for t; < o,

Eﬁ(tg) = exp(kA(ty)) exp(kA(ty — k)) - - -exp(kA(t; + k)),

for some k = (t — t1)/M. The two stated properties of A now follow directly, noting that
for t; > to, we have

E;‘l‘(tg) = exp(kA(T — (T —ty —k))) - -exp(kA(T — (T — t1)))
— exp(kA(ts + k) - - exp(kA(t)).
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Lemma 6.7. Let ¢ be the dual, with stability factor S,(t) (i.e. with data ||v|| = 1 specified
at time t), and let w be the dual of the dual as defined in (E.2). Then the following estimate
holds:

(E.6) [w(®)]| < Sp(T — 1)

Proof. Using the Duhamel representation formula, we can write the dual of the dual as

w(t) :/t Er ()(Er (5)) " ew(s)/lley(s)]| ds,
so that .
|w (@)l =/t (B2 (1) (Bz () ey (s)/lley(s)ll, w) ds,

with w; = w(t)/||w(t)||. Thus, using the properties of the solution operator discussed in
the previous lemma, we have

lw@ = ftT EA* t)(E7 (5)) ey (s)/llew(s)l, we) ds
= ft (B (1) EA*( J(Er () ep(s)/lley(s)]], we) ds
= ft (B2 (t)e w(8)/llew ()l we) ds = [, (ev(s)/llew ()], (BT () wr) ds
= J (ew(S)/llew )l B (s)we) ds < [ | Ef (s)wil] ds = Su, (T = 1),

= /tT [¥(s)] ds = /tT (T — s)|| ds = /OTt llo(s)|| ds,

and (T —1t) = ¥(t) = wy. With S,(T' —t) = sup fOTft ll¢|| ds and the supremum taken
over all w; € R* with ||w|| = 1, we thus have

lw@® < Sp(T = 1).

with
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