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MULTI-ADAPTIVE GALERKIN METHODS FOR ODES II:
APPLICATIONS

ANDERS LOGG

ABSTRACT. We present computational results for a variety of applications, solved using
the multi-adaptive Galerkin methods, mcG(g) and mdG(q), presented in [7]. Generalizing
the standard Galerkin methods, we allow individual time-steps for the different compo-
nents of a system of ODEs. The individual time-steps are determined in an adaptive
feed-back process, with the objective of efficient and reliable error control. Examples in-
clude the Lorenz system, the Solar System, stiff chemical reaction problems, and a number
of time-dependent PDEs, such as the heat equation, the wave equation and convection-
diffusion-reaction problems.

1. INTRODUCTION

In this paper we apply the multi-adaptive Galerkin methods, mcG(q) and mdG(q),
presented in [7] to a variety of problems, chosen to illustrate the potential of the multi-
adaptive methods. Throughout this paper, we solve the ODE initial value problem

(1) {Z((é; - ié,u(t)’t)’ t € (0,7,

where v : [0, 7] — RY, f : RY x (0,7] — R" is a given bounded function that is Lipschitz-
continuous in u, ug € RY is a given initial condition and T > 0 a given final time.

We refer to [7] for a detailed description of the multi-adaptive methods. We here recall
that each component U;(t) of the approximate solution U(t) is a piecewise polynomial of
degree ¢; = ¢;(t) on a partition of (0,7 into M; subintervals of lengths k;; = t;; — t; j_1,
j=1,...,M;. Oninterval I;; = (¢; j_1, t;;], component i is thus a polynomial of degree g;;.

The test problems presented below have been computed with the multi-adaptive ODE-
solver Tanganyika (see [8]) on a regular workstation. A few of the problems are included in
the publicly available (GPL) distribution of Tanganyika for Linux/Unix, and our intention
is to include more problems in future versions.
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2 ANDERS LOGG

2. THE HARMONIC OSCILLATOR

We start with a basic example, the harmonic oscillator:

U = U, on (0,71,
(2) iy = —uy, on (0,7],
u(0) = (0,1),

with exact solution u(t) = (sin(t), cos(t)). We solve this problem using the mcG(1) method,
and present the solution in Figure 1, together with the error and the time-step sequences
used for the two components. As one may expect, the error grows linearly with time.
Since the continuous method preserves energy (see [7]), the computed solution has correct
amplitude but the phase error grows.

Solution

0 5 10 15 20 25 30 35 40 45 50

0.04
' l
0.03F I
I ; b ] o | | | |
e ] o | o
0'02‘11‘,')i n':nﬂl,i'|"}|'}1"ﬁ"|l"l1lfl‘n”
[ ! | I ! ! \ ' Mo o A T i Y| Y | \ |
0.01 . \\Ul\ v [, J’\\/ W/ Jl\ Y] by v, \y A ) o _/\' J\’ Y
-~/ -~ ~/ s - ~~ - N — ~ - ~ ~—
0 1 1 1 1 1 1 1 1 1 J
0 5 10 15 20 25 30 35 40 45 50
t

Figure 1: The mcG(1) solution of (2) together with the error growth and the multi-adaptive
time-steps used for computing the solution.
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We see that the time-steps for the two components are different. This is because, even for
this simple problem, the components have different variations in time, and the time-steps
are large for the mcG(1) method when the variation is close to linear and the residual is
small.

The individual time-steps are thus large whenever the individual residuals are small.
Examining Figure 1 more closely, we see that the individual time-steps are large also at
other occasions. This happens when the local stability weight is small. As discussed in
[7], there are different variants of the a posteriori error estimates on which we base the
adaptive time-steps. One variant is to keep the local weights and try to equidistribute the
contribution to the error over the intervals. In Figure 2 we plot residuals, local stability
weights and time-steps. As can be seen, the time-steps are large whenever the residual or
the stability weight is small. (The exact phase of the stability weights depend very much
on the choice of data for the dual problem, i.e. which quantity of the solution we wish to
control at final time.)

Component 1 Component 2
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Figure 2: Residuals, local stability weights and time-steps for the two components of the har-
monic oscillator. The time-steps will be large when the residual is small, or when the local
stability weight is small.
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2.1. Comparison with the actual error. To check the quality of the a posteriori error
estimate, we compare the error estimate with the actual error. We do this for a couple of
different methods, ¢G(1), cG(2) and ¢G(3) and for a number of different tolerances, using
multi-adaptive time-steps. The correspondence between error and error estimate is very

ANDERS LOGG

good (see Figure 3), especially for the ¢G(1) method.

For other problems we may not always expect as tight estimates as presented here. The
quality of the error estimate depends very much on how much you are willing to pay to
compute the estimate. If we want [2-norm error control of the error, we have to guess the
data for the dual. For the simple problem of this section, we will at most be off by about
50% if we make a completely wrong guess. For other problems, the situation may be worse
(or better). The quality of the estimate depends also on which part of the error dominates.

If the Galerkin error dominates, we can expect a sharper estimate.

True Error / Error Estimate

Figure 3: Errors at different tolerances for the solution of the harmonic oscillator problem with
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To check the error estimates further, we solve again the simple linear test problem
for T" = 10 with a number of different methods, and for a number of different tolerance
levels. We do this simply by choosing different fixed and constant values for the time-steps.
Although this means we have the same time-step for all components, the method is still
the same multi-adaptive method; we do not take any advantage of the fact that we have
uniform time-steps. From the solvers point of view, this does not matter. Running the
test! for ¢ < 10, we get the results presented in Tables 1 and 2.

To eliminate the uncertainty of guessing data for the dual, i.e. choosing a value for
o(T) with ||(T)|| = 1, we choose here ¢(T) = (1,0) to have error control of the first
component, i.e. |||e]|| = |e1(T")| with the notation used in [7]. In Tables 1 and 2 we use the
notation |e| = |e;(T')|. This error is compared to the error estimates Ey = Ey + E¢ + Eqg
and Ey = Ey + E¢ + Eg, as defined in [7].
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Figure 4: Solution and time-steps for the mcG(1) solution of the test problem with TOL = 0.1.

ITry this yourself by running ’. /checkerror constant’in the src/demo/ directory of Tanganyika.
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k le] Ey E, le|/Ey le|/Es q 2q
1.000e-01 7.00e-03 7.01e-03 2.26e-02 | 0.998 0.309 1 2
5.000e-02 1.75e-03 1.75e-03 5.59e-03 | 1.000 0.313 1 2
2.500e-02 4.37e-04 4.37e-04 1.39e-03 | 1.000 0.315 1 2
1.000e-01 1.22e-06 1.23e-06 1.46e-05|0.998 0.084 2 4
5.000e-02 7.46e-08 7.47e-08 8.98e-07|0.999 0.083 2 4
2.500e-02 4.61e-09 4.61e-09 5.57e-08 | 1.000 0.083 2 4
1.000e-01 7.33e-08 7.42e-08 7.72e-08 | 0.988 0950 3 6
5.000e-02 2.25e-09 2.25e-09 2.30e-09|0.998 0978 3 6
2.500e-02 7.16e-11 6.93e-11 7.00e-11 | 1.033  1.022 3 6
1.000e-01 7.35e-08 7.41e-08 7.41e-08 |1 0.991 0.991 4 8
5.000e-02 2.24e-09 2.25e-09 2.25e-09|0.993 0993 4 8
2.500e-02 6.82e-11 6.95e-11 6.95e-11 | 0.981 0.981 4 8
1.000e-01 7.34e-08 7.41e-08 7.41e-08 | 0.991 0.991 5 10
5.000e-02 2.24e-09 2.25e-09 2.25e-09 | 0.995 0.995 5 10
2.500e-02 7.07e-11 6.93e-11 6.93e-11 | 1.020 1.020 5 10
1.000e-01 7.34e-08 7.41e-08 7.41e-08 | 0.991 0.991 6 12
5.000e-02 2.23e-09 2.25e-09 2.25e-09|0.991 0.991 6 12
2.500e-02 6.80e-11 6.95e-11 6.95e-11 | 0.979 0979 6 12
1.000e-01 7.35e-08 7.41e-08 7.41e-08 | 0.991 0.991 7 14
5.000e-02 2.24e-09 2.25e-09 2.25e-09 | 0.996 0996 7 14
2.500e-02 6.75e-11 6.95e-11 6.95e-11 | 0.971 0.971 7 14
1.000e-01 7.35e-08 7.41e-08 7.41e-08 | 0.991 0.991 8 16
5.000e-02 2.25e-09 2.25e-09 2.25e-09|0.997 0.997 8 16
2.500e-02 7.14e-11 6.95e-11 6.95e-11 | 1.028 1.028 8 16
1.000e-01 7.34e-08 7.41e-08 7.41e-08 | 0.991 0.991 9 18
0.000e-02 2.25e-09 2.25e-09 2.25e-09|0.996 0.996 9 18
2.500e-02 7.06e-11 6.93e-11 6.93e-11 | 1.019 1.019 9 18
1.000e-01 7.35e-08 7.41e-08 7.41e-08 | 0.992 0.992 10 20
5.000e-02 2.24e-09 2.25e-09 2.25e-09|0.995 0.995 10 20
2.500e-02 7.23e-11 6.93e-11 6.93e-11 | 1.043 1.043 10 20

Table 1: Errors and error estimates for the mcG(g) method with 1 < ¢ < 10 for the harmonic
oscillator.
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k le] Ey E, le|/Ey le|/Ey q 2q+1
1.000e-01 2.30e-01 2.55e-01 6.06e-01 | 0.904 0.380 0 1
5.000e-02 1.26e-01 1.33e-01 3.30e-01 | 0.945 0.381 0 1
2.500e-02 6.54e-02 6.74e-02 1.71e-01 | 0.971 0.383 0O 1
1.000e-01 7.85e-05 7.45e-05 4.99e-04 |1.054 0.157 1 3
5.000e-02 9.63e-06 9.35e-06 6.22e-05|1.030 0.155 1 3
2.500e-02 1.19e-06 1.17e-06 7.73e-06 | 1.021 0.154 1 3
1.000e-01 7.81e-08 8.12e-08 1.84e-07 | 0.962 0.423 2 )
5.000e-02 2.43e-09 2.55e-09 5.73e-09 | 0.956 0.424 2 )
2.500e-02 8.07e-11 8.10e-11 1.79e-10| 0.997 0.450 2 )
1.000e-01 7.33e-08 7.01e-08 7.01e-08 | 1.045 1.045 3 7
5.000e-02 2.26e-09 2.27e-09 2.27e-09|0.995 0.995 3 7
2.500e-02 6.88e-11 6.97e-11 6.97e-11 | 0.987 0.987 3 7
1.000e-01 7.35e-08 7.00e-08 7.00e-08 | 1.050 1.050 4 9
5.000e-02 2.25e-09 2.26e-09 2.26e-09 | 0.995 0.995 4 9
2.500e-02 7.12e-11 7.13e-11 7.13e-11|0.998 0.998 4 9
1.000e-01 7.34e-08 6.99e-08 6.99e-08 | 1.050 1.050 5 11
5.000e-02 2.26e-09 2.27e-09 2.27e-09|0.995 0.995 5 11
2.500e-02 6.80e-11 7.09e-11 7.09e-11|0.959 0.959 5 11
1.000e-01 7.34e-08 7.00e-08 7.00e-08 |1.049 1.049 6 13
5.000e-02 2.24e-09 2.26e-09 2.26e-09|0.994 0994 6 13
2.500e-02 6.70e-11 7.15e-11 T7.15e-11|0.937 0.937 6 13
1.000e-01 7.34e-08 6.99e-08 6.99e-08 | 1.050 1.050 7 15
5.000e-02 2.24e-09 2.25e-09 2.25e-09]0.993 0.993 7 15
2.500e-02 7.00e-11 7.01e-11 7.0le-11|0.998 0.998 7 15
1.000e-01 7.34e-08 6.99e-08 6.99e-08 | 1.050 1.050 8 17
5.000e-02 2.23e-09 2.26e-09 2.26e-09 | 0.987 0.987 8 17
2.500e-02 7.13e-11 7.14e-11 7.14e-11|0.998 0.998 8 17
1.000e-01 7.35e-08 6.99e-08 6.99e-08 | 1.050 1.050 9 19
5.000e-02 2.25e-09 2.26e-09 2.26e-09|0.995 0.995 9 19
2.500e-02 7.13e-11 7.14e-11 7.14e-11|0.998 0.998 9 19
1.000e-01 7.35e-08 6.99e-08 6.99e-08 | 1.050 1.050 10 21
5.000e-02 2.25e-09 2.26e-09 2.26e-09|0.995 0.995 10 21
2.500e-02 7.08e-11 7.10e-11 7.10e-11|0.998 0.998 10 21

Table 2: Errors and error estimates for the mdG(g) method with 0 < g <

oscillator.

10 for the harmonic
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2.2. A posteriori error estimates. The Galerkin part of the sharpest error estimate,
Eo, is

®) %> oo at.
=1 j=1
for both the mcG(g) and the mdG(g) method, for the special choices of interpolants dis-
cussed in [7]. For the mdG(q) method this means that the jump terms disappear, and for

both methods we thus have

(4) / Rilis — mepy) dt

=/ | Rillos — mreps| dt = Cy ki | Ri(8;)|[0i () — mwepi(ti;)];

where the {C[I} are computable constants, different for the two methods. We also keep
track of the actual sign of f I; R;(p; — mrp;) dt so that we may actually take into account
cancellation over intervals and between different components. In this way we are able to
evaluate the error exactly, including its sign, if we know the dual well enough. Note that
this does not mean that the dual has to be solved on a finer grid or with a higher-order
method — although for the discontinuous method it is natural to solve the dual with
one order higher polynomials. By choosing the interpolant in this special way we avoid
the problem of having to evaluate f I; R;p; dt accurately, which is otherwise necessary if
we want to introduce as few inequalities as possible in the error estimate. Evaluating this
quantity directly is difficult, since the residual is, by the Galerkin orthogonality, orthogonal
to a large part of the dual.
The Galerkin part of the second error estimate, F, is

N M;
(5) By =33 Cpyors ik ry,

i=1 j=1
for the mcG(g) method, while for the mdG(q) method we have
N M
(6) Z Z Cq” 13”—1—1 kq” i _’L]’
=1 j=1

for certain interpolation constants {C,}, residuals {r;;,7;;}, and stability weights {s%’-]},
as described in [7]. Here we have introduced a number of inequalities and on top of that
interpolation estimates. We may thus expect this second estimate to be less precise than
the first estimate. This is also the case, according to the results presented in Tables 1 and
2. For smaller time-steps and higher-order methods, this agrees increasingly well with the
more delicate estimate, the reason being that the computatlonal error (see [7]) dominates,
and this is estimated in the same way in both Ey and E.

Now, why do we keep the time-steps constant and equal? The answer is, to eliminate a
part of the error that is difficult to estimate, namely quadrature errors. Using a quadrature
rule that agrees with the order of the method, as described in [7], we should be able to keep
this error zero. If, however, we allow for different time-steps for different components, we
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will get quadrature errors. To see this, think of the simplest possible case, a system of two
ODEs, and time-steps k1; = {1} and ky; = {0.5,0.5} on [0,1]. Computing [, fi(U,t) dt =

fol f1(U,t) dt with a quadrature rule that fits the first component, we will not capture the
variation of the second component, since this component, although piecewise linear (say),
will not be piecewise linear on the partition of the first component, but rather on its own
partition. Individual time-steps will thus result in additional quadrature errors if we don’t
do something about the quadrature. Adaptive quadrature and estimation of quadrature
errors are discussed in [7], but although we may, in principle, estimate the quadrature
errors, we may not expect these estimates to be of the same quality as the rest of the error.

To illustrate this, we solve the test problem again, using the mcG(1) method with
TOL = 0.1. We obtain the solution and time-step sequences presented in Figure 2.1. If
the time-step sequences seem a little wiggly, this is because the time-steps for this tolerance
are quite large compared to the period of the oscillations. As noted before, the time-steps
are large when the solution is close to linear.

Plotting the residual — see Figure 5 — we see that it behaves as we expect it to do, as
a first-order Legendre polynomial, i.e. being zero in the middle of the interval, on every
local interval. We also note that the residual is not exactly a Legendre polynomial, since
the time-steps are no longer equal. The projection of the residuals onto the individual trial
spaces are, however, Legendre polynomials, as we noted in [7].

Choosing now the interpolant in a suitable way, for the mcG(1) method as the piecewise
constant polynomial that interpolates the dual at the midpoint of every interval, the prod-
uct R;(¢; — mr;) does not change sign on any of the local intervals, provided the dual can
be well-represented locally by a first-order polynomial. This is also the case, according to
Figure 5.

Assuming exact quadrature and exact solution of the discrete equations, the Galerkin
orthogonality should hold, which for the mcG(1) solution means that we should have

(7) /‘R”H:Q
Iij

for every local interval I;;, so that the functions

(8) m@:AR@M&

should be zero at the nodal points, as it is for the solution with constant time-steps —
see Figure 7. This will not hold if quadrature and computational errors are not zero, as
is evident from Figure 6. The functions R; are not zero at the nodal points, and so the
Galerkin orthogonality does not hold. Correspondingly, the quadrature and computational
parts of the a posteriori error estimates presented in [7] are non-zero, and we should still
be able to estimate the error properly. The error (for the first component at time ¢t = T')
is now |e| = 0.032, and the solver reports error estimates Ey = 0.036 and Ey = 0.094.
The conclusion is thus, that by keeping other errors than the Galerkin error small, we
get very good estimates for the error, since the pure Galerkin error is easy to estimate.
Allowing also computational errors, including round-off error, and quadrature errors on
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the other hand, the error will be more difficult to estimate well. All sources of the error
are equally important and moving from one problem to the other, any of these may be the
most dominant and so, the most important. Later, we will consider the Lorenz system, for
which the computational error, in this case accumulated finite precision arithmetic round-
off error, is the most important to take into consideration, and for which the Galerkin error
is negligible.

Ry
o

P1, TP
o

©1 — TP

6]
T
|

o

R1(S01 - 7Tlc<,01)

-5 ! ! ! ! ! ! ! ! !
0 1 2 3 4 5 6 7 8 9 10
t

Figure 5: The residual R1, the dual ¢ and its piecewise constant interpolant w1 for the first
component of the mcG(1) solution of the test problem with TOL = 0.1.
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Figure 6: Integrated residuals for the two components of the mcG(1) solution to the test problem
with TOL = 0.1.
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Figure 7: Integrated residuals for the first component of the mcG(1) solution of the test problem
with £ = 0.2.
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3. A SIMPLE NON-LINEAR PROBLEM

We now compare the error estimate with the actual error in following non-linear problem,

?:111 = U,
Uy = uz+uug,
(9) Uz = ug+ uiug,
1'1,4 = U4 + U U3 + UgUs2,
’[L5 = Us + U1U4 + U2Us3,
where u(0) = (1,1,1,1, ) with exact solution u(t) = (e’,e*, 3e, 1", 1e5). We solve

using the mcG(1) method with different tolerances. Again we have a good correspondence
between error estimate and actual error.
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Figure 8: Errors at different tolerance levels for the multi-adaptive solution of (9).
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4. THE LORENZ SYSTEM

We consider now the famous Lorenz system,

z = o(y—x),
(10) y = rr—y—zxz,
z = xy— bz,

with the usual data (z(0),y(0),2(0)) = (1,0,0), o = 10, b = 8/3 and r = 28, see e.g.
[2]. The solution u(t) = (z(t),y(t), 2(t)) is very sensitive to perturbations and is often
described as being “chaotic”. With our perspective this is reflected by stability factors
with rapid growth in time.

The computational challenge is to solve the Lorenz system accurately on a time interval
[0, 7] with T as large as possible. We investigate the computability of the Lorenz system
by solving the dual problem and computing stability factors, to find out the maximum
value of 7'
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Figure 9: On the right is the trajectory of the Lorenz system for final time 7" = 40, computed
with the multi-adaptive ¢cG(5) method. On the left is a plot of the time variation of the three
components.
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4.1. A simple experiment. To begin with, we examine solutions of the Lorenz system
for a number of different methods. In Figure 10 we plot solutions for the x-component of
the Lorenz system on [0,40]. The time-step is the same for all components and constant
equal to £ = 0.001. Some time after ¢ = 20, the second-order accurate cG(1) solution is
no longer correct. (A good thing about the Lorenz system is that when the solution once
starts to be incorrect, it quickly becomes very inaccurate also in picture-norm.)

Increasing the order of the method until we finally reach the 20:th and 21:st order
methods ¢G(10) and dG(10), we get more and more accurate solutions, and are able to
solve until 7" = 40. Increasing the order further does not increase the accuracy of the
solution, since the error is now dominated by the computational error caused by finite
precision arithmetic round-off error.
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Figure 10: These plots show solutions, computed with different methods with constant time-step
k = 0.001, for the z-component of the Lorenz system from time ¢ = 20 to final time T = 40.
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Figure 11: The c¢G(5) residual for the z-component of the Lorenz system.

4.2. Reaching further. As is evident in Figure 11 the residual is small already for the
10:th-order method ¢G(5), and this residual should be weighted with &> = 107! in the
error estimate. Also when multiplying with the stability factor we will get far below a
tolerance of say TOL = 0.1. The Galerkin error is thus small enough. To get further
than 7' = 40, we must thus do something else than decreasing the time-step or increasing
the order of the method. We must decrease the computational error, the accumulated
numerical round-off error.

A simple view of this is that at every time-step we will make a relative error of at least
10716, These errors will accumulate at a rate determined by the stability properties of the
dual. To decrease this error we must thus not decrease the time-step, but instead increase
the time-step! In this way we will take fewer time-steps and so decrease the computational
error. Since increasing the time-step we will increase the Galerkin error, we may perhaps
have to increase also the order of the method to keep the Galerkin error small.

In Figure 12 we present solutions with £ = 0.1. We are now able to solve until about
T = 50, using as few as 500 time-steps. The higher order methods all agree until some
point close to ¢ = 48, and not even the 30:th-order method mcG(15) is able to get any
further. This indicates that again we have reached a limit.
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Figure 12: Solutions for the z-component of the Lorenz system with methods of different order,
using a constant time-step k = 0.1.
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4.3. Comparison with ode45. We compare these results with a standard ODE-solver,
the Runge-Kutta solver ode45, that is shipped with the commercial program MATLAB.
In this context ode45 is a low-order solver, and we do not reach time 7" = 40 no matter
how small a “tolerance” we choose. Decreasing the time-step further will only increase the

numerical error, since the number of time-steps will then increase.
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Figure 13: The ode45 solution for the z-component of the Lorenz system at a number of different

tolerance levels.

4.4. The dual solution. We now turn to the solution of the dual problem. The stability
factors grow, as we shall see, exponentially with time, and so does the dual (backward in

time).

For a small ODE-system such as the Lorenz system, which has only three components,
we can afford, from a computational and storage point of view, to compute the fundamental
solution to the linear dual problem, i.e. the matrix ®(¢) such that the dual ¢ solved with
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©(T) = r is given by ¢(t) = ®(t)¢7. In Figure 14 we plot (the [>-norms of the three rows
of) the fundamental solution and its third derivative as function of time.

The time-steps for the solution of the dual are based on an a posteriori error estimate
for the dual, presented in [7], to give a relative error for the global stability factor smaller
than 10%. Here we have used a simple approximation of the matrix exponential for solving
the linear dual problem, and so the time-steps are the same for all components of the dual.
Note that for the dual, there are no stability factors present in the estimate for the relative
error, and so the time-steps are completely determined by the regularity of the solution.
This is also evident when examining Figure 14; about 10 time-steps per half period are
needed to resolve the dual.
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Figure 14: The dual for the Lorenz system (above) and its third derivative (below).
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4.5. Stability factors. We now turn to the computation of stability factors for the Lorenz
system, such as

T
(1) ST) = max [ 090
viI=tJo

where @ is an (approximate) solution of the dual problem with ¢(7') = v. Letting ® be an
(approximate) fundamental solution of the dual problem, we have

T
(12) maX/ 159 (1) dt</ max 840 (1] dt:/ 189 (1) dt = ST,
0

lloll=1 l[oll=1

and thus computing S9(T) gives a bound for S19(T), which for Lorenz system turns out to
be quite sharp. By computing the fundamental solution we avoid computing the maximum

n (11).
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Figure 15: Time-steps for the dual problem based on an a posteriori error estimate for the dual.
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We compute the variation of the stability factors on [0, 50], see Figure 16, where we plot
the stability factor for ¢ = 0, corresponding to computational and quadrature errors. The
stability factors grow exponentially with time, but not as fast as indicated by an a priori
error estimate. An a priori error estimate indicates that the stability factors grow as

(13) S(T) ~ T,

where A is some bound for the Jacobian of the right-hand side for the Lorenz system.
Making a simple estimate, we take A = 50, so that already at T = 1 we have S(T) ~ 10%.
In view of this, we would not be able to compute even to T" = 1, and certainly not to
T = 50 for which S(T") ~ 10'°°. The point is that although the stability factors grow
very rapidly at some occasions, such as nearby the first flip at 7" = 18, they do not grow
monotonically, and thus as an average grow at a moderate exponential rate.

Figure 16: The stability factor for the computational and quadrature errors, as function of time
for the Lorenz system.
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4.6. Conclusions. We now make simple estimates for the growth rate of the stability
factors, in order to predict how far along it is possible to compute. Fitting simple functions
to the stability factors as function of time, we have the following approximations:

(14) Sl(T) ~ 4 - 10la=3)+037T
or, simpler but not as good,
(15) Sla(T) ~ 1094773,

From the a posteriori error estimates presented in [7], we find that the computational
error can be estimated as

16 Ec =~ SO(T R¢
(16) c (T) max || R

where the computational residual R¢ is defined as

1

(17) Ri(t) = — (U(tij) —U(tij) —/ fi(U;) dt)
] Iij

for the mcG(g) method and similarly for the discontinuous method.
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Figure 17: Different stability factors, zeroth, first and second order as defined in (12), for the
Lorenz system.
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With 16 digits of precision, we cannot expect to have a discrete residual smaller than

about ﬁ_jl()—w, so that, with the approximation above, we have
(18) Eqo =~ 10T/3_;10716 _ 10T/3716;’
min Ry, min k;;

so that with k;; = 0.1 as above we have
(19) E¢ ~ 107315,

With time-steps k;; = 0.1 we thus cannot expect to do much better than 7" = 50, since
then we will have an error larger than unity, which we take as a criterion for an incorrect
solution. Increasing the time-step further, to say k;; = 10, we can compute a little further,
but only a couple of time units, since the stability factors grow exponentially. Increasing
the time-step even further we will soon have a time-step that is greater than the length of
the whole interval, i.e. £ > T.

Our conclusion is thus that by examining the stability factors, we can say that our
computation is probably correct until right before 7' = 50, and that we cannot get much
further with 16 digits of precision. (With 32 digits of precision we would reach 7" = 100,
and so on.)
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Figure 18: Fitting approximations to the Lorenz stability factors; above the approximation (14)
and below the approximation (15).
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5. THE SOLAR SYSTEM

We now consider the Solar System, including the Sun, the Moon, and the nine planets,
which is a particular n-body problem of fundamental importance:

N Gm;m;
(20) mt; = Z ;= a:J|3 —z;),
j 1

J#

where z;(t) = (x}(t), z?(t), 22 (t)) denotes the position of body i at time ¢, m; is the mass

of body 7, and G is the gravitational constant.

10 T T T T T T T T T

P
B>
2
%
S

Figure 19: The solution for the components of the Earth-Moon system, and the trajectories of
Earth and the Moon. Notice that the distance between Earth and the Moon is too small for the
differences in positions to be visible in this plot, but that the differences in velocity components
are clearly visible.
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Figure 20: The computed distance between Earth and the Moon as function of time.

As initial conditions we take the values at 00.00 GMT on January 1:st 2000, obtained
from the US Naval Observatory [1] with initial velocities obtained by fitting a high-degree
polynomial to the values of December 1999. The initial data should be correct to five or
more digits, which is similar to the available precision for the masses of the planets. We
normalize length and time to have the space coordinates per astronomical unit, AU, which
is (approximately) the mean distance between the Sun and Earth, the time coordinates per
year, and the masses per solar mass. With this normalization, the gravitational constant
is 4m2.

5.1. Earth and the Moon. Starting off a little easy, we compute the trajectories for
Earth and the Moon with the Sun fixed, dropping the other eight planets. The resulting
system of ODEs then consists of N = 2-2-3 = 12 components, i.e. the position and velocity
components for the two bodies. In Figure 19 we plot the solution during the first five years,
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i.e. until January 1:st 2005, and in Figure 20 we plot the variation of the distance between

the Moon and Earth as function of time.

We will now consider the predictability of solutions to the Earth-Moon system. Con-
trolling the numerical error on a small tolerance level (< 107%), we focus on data errors
(wrong initial data) and modelling errors (wrong equation). Solving the dual of the Earth-
Moon system, and computing stability factors, we analyze in detail how these two errors

accumulate.

Solving first the dual on [0, 10] with data chosen for control of the z'-coordinate of the
Moon at final time, we get the solution given in Figure 21. The dual grows linearly (and

oscillates) backward in time.
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Figure 21: The dual of the Earth-Moon system for a specific choice of data (see text).
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Neglecting all errors other than errors in initial data, the error at final time, e(7"), can
be represented as (see [7])

(21) (e(T), o(T)) = <Z|</>z | e (0 I—E:S‘s )|ei(0)

where {S5(T)}Y, are sensitivity stablhty factors that measure the influence of error in
initial data. Wlth ©i(T) = 1 for the z'-coordinate of the Moon and zero for all other
components, we have |e,1 | = [(e(0),¢(0))[. We thus expect errors in initial data to also
grow linearly, since solving to 17" = 20, the dual will grow twice as large. We verify this
simple observation by solving the dual to a number of final times 7" < T = 10. In Figure
22 we plot the different stability factors as function of time.

Figure 22: Sensitivity (data) stability factors, {S¢}¥,, for the Earth-Moon system.
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The stability factors grow linearly with time, and thus also the error introduced by errors
in initial data. Note also that the stability factors do not grow monotonically, since by
the periodicity of the solution, some values for the final time will be more forgiving with
certain errors in initial data.

Assuming now that we know initial data for Earth and the Moon with a relative error
of 1075 for every component, how far do we get? Analyzing the growth of the stability
factors in more detail, we fit the parameters of {C;/77}¥, to the stability factors for the
different components and expect to have p; ~ 1 for : = 1,..., N. From Table 3, where we
also give the errors in initial data, we conclude that

N N
(22) leg (T Z T)e:(0)| & Y CiTe:(0 |—TZC|eZ )| ~ 0.0035 T.
=1 =1

Keeping the error for the z!-coordinate of the Moon less than the radius of its orbit around
Earth, which is approximately rq = 0.0026 AU, thus requires 0.00357" < 0.0026, so that we
cannot expect to compute accurately longer than to 7" = 0.0026/0.0035 ~ 0.75, i.e. only
nine months!

i| C; pi |e(0)] Cile;(0)] Variable
1] 170 1.00 1.8e-06 3.1e-04 xl—coordinate for Earth
21 130 0.98 8.9e-06 1.2e-03 z2-coordinate for Earth
31 35 099 3.8-06 1.3e-04 z3-coordinate for Earth
41 170 0.99 1.8e-06 3.1e-03 z'-coordinate for the Moon
5] 130 0.99 8.8e-06 1.1e-03 z2-coordinate for the Moon
6 34 0.99 3.8¢-06 1.3e-04 3 -coordinate for the Moon
71 24 1.03 6.3e-05 1.5e-04 z'-coordinate for Earth
8| 2.0 1.01 1.0e-05 2.0e-05 2 -coordinate for Earth
910.86 1.01 4.4e-06 3.8e-06 J:3 coordinate for Earth
10| 1.6 1.00 6.2e-05 1.0e-04 z'-coordinate for the Moon
11| 2.0 0.99 1.2e-05 2.4e-05 #2-coordinate for the Moon
1210.88 0.99 5.1e-06 4.5e-06 #3-coordinate for the Moon

Table 3: Estimated values for the individual stability factors, S;(t) = C;TPi, together with the
individual errors in initial data.

We now proceed to see if this holds in reality, i.e. by comparing two solutions, one with
“correct” initial data, and one with some errors introduced. Simply multiplying initial
data for all components with 1.00001, the error grows as shown in Figure 23. In this figure
we also show the growth of errors introduced by an incorrect gravitational constant G.
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Figure 23: Errors in the z!-coordinate of the Moon, z},, as function of time (above), and errors
in the position relative to Earth, z}, — zl, (below), for incorrect initial data (left), and incorrect
gravitational constant (right).

We see that the error in position for the Moon grows rapidly, and reaches the limit of
unpredictability already after a few years, as we expect. (The prediction of nine months
is for worst-case data.) We also note that the error for the relative position (with respect
to Earth) for the Moon seems to grow slower. Is it in fact so that even though we cannot
compute correctly the absolute position for the Moon more than a few years, the Moon will
still be in the correct position relative to Earth, so that we can effectively compute much
longer? To investigate this, we solve the dual again, now with data chosen for control of
the relative z'-coordinate of the Moon, x}, — zl,, i.e. we take ¢;(T) = 1 for the Moon’s
z!-coordinate, and ¢;(T) = —1 for Earth’s z'-coordinate. Noticing that the dual does not
change much, we plot the growth of the error for the two quantities, z}, and x}, — z1,, see

Figure 24.
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Figure 24: The growth of the error for the the two quantities =}, and =}, — =},

If the duals, and thus the stability factors, are about the same, why is one of the errors
larger than the other? The answer is the choice of error in initial data. Let ¢/®M) be the
dual for control of the error of 2}, at final time, and let @l#r 5] be the dual for control of
the error of z}, — zL, [21’5 ﬁI;?]l time. As noted z?bove, w.e -tl-len have e,1 (T') = (¢l31(0), e(0)),
and e,1 g1 (1) = ("m ?£/(0), e(0)). Choosing the initial error now as

1 1 1

_ =250y — P . ookl
(23) (0) = C (@ H(0) = P Ly, 6h2E(0))

for some constant C' (chosen so that the largest relative error for the components is the
same as before, 107°), i.e. subtracting the projection onto go[zllvf](O), the situation is the
opposite, i.e. large error for z}, — 2}, and zero error for z},, see Figure 25.
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Figure 25: The growth of the error for the two quantities z}, and z}, — z},, for the special
choice of initial error in (23).

5.2. The Nine Planets. We now extend the system to include also the remaining eight
planets, in the following order with respect to their mean distance to the Sun: Mercury,
Venus, (Earth already included), Mars, Jupiter, Saturn, Uranus, Neptune and Pluto, and
we compute stability factors for error control at final time 7" of the z'-coordinate for the
innermost planet Mercury. As before, the stability factors for error in initial data grow
linearly with time, and we make the prediction that we cannot compute accurately further
than about 500 years, assuming initial data is correct to five digits. Since the stability
factors grow only linearly, we are in a much better situation than for the Lorenz system,
for which we have exponentially growing stability factors. This means that if we know
initial data with twice as many digits, i.e. with a relative error less than 107! we will
reach 10° times further, whereas for the Lorenz system, twice as many digits means we will
reach only twice as far.
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Examining the growth of the stability factors during the first ten years, see Figure 26, it
is clear that the structure is quite intricate. The choice of final time and the distribution
of the initial error onto the different components are of great importance for the actual
size of the error. It is also evident which components influence Mercury the most, namely
the components of Mercury itself, the Sun, and, to some extent, Venus and Jupiter.
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Figure 26: Stability factors for the z'-coordinate components of the nine planets and the Sun,

w.r.t. the error in the z'-coordinate for Mercury at final time.

Examining now as before the actual size of the error for an actual error in initial data,
we multiply initial data for the positions of Mercury and the Sun with 1.00001 (since the
contribution to the error introduced by errors in the other components is negligible), and
find that after 500 years the error is indeed very large, but perhaps only half as large as we
expect it to be. This is again because the estimated value of 500 years is for the worst case
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error in initial data. In Figure 27 we illustrate the differences in the position of Mercury
at final time, 7" = 500, for the two choices of initial data.

Figure 27: Positions of Mercury for two different choices of initial data, with relative difference
less than 10, at time T' = 500, i.e. on January 1:st 2500, 00:00 GMT. (The version of Mercury
going a little faster is the one computed with “correct” initial data.)

Finally, we make a comparison of the computational cost between the mcG(1) method
and the standard ¢G(1) method, measured as cpu time, the total number of local time-
steps, i.e. M = Zf\;l M;, and the total number of local function evaluations (including
also the evaluation of different residuals).

Starting with the Sun and Mercury, we add the remaining planets one after the other,
and expect the cost of the multi-adaptive method to remain close to constant, whereas for
the standard ¢G(1) method, using the same time-steps for all components, we expect the
cost to grow linearly with the number of planets.

For demonstration purposes, we take for the multi-adaptive method 75 time-steps per
period for each of the planets (with a maximum time-step of 0.1), and for the ¢G(1) method
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we take all time-steps equal to the smallest time-step, i.e. 75 time-steps per Mercury year.
As a measure of the error, we take the maximum relative error in position for the planets
at final time.

We present the results below in Figure 28. The error is about the same for the two
methods. (We can expect the error to be somewhat larger for the multi-adaptive method.)
The number of local time-steps and local function evaluations clearly behaves as we expect
it to do, remaining practically constant for the multi-adaptive method and increasing
linearly for the standard method. Although the work in terms of the number of steps
and function evaluations remains constant for the multi-adaptive method, the cpu time
increases as we increase the number of planets, since the cost for the administration of the
different components with their different time-steps increases.
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Figure 28: A comparison of the mcG(1) method (dashed) with the ¢G(1) method, starting with
the Sun and Mercury, and then adding the rest of the planets, one after the other.

We have above discussed predictability due to data errors. The computability of the
Solar System will be studied in future work, extending the strategy presented for the
Lorenz system: given accurate data, the challenge is to compute on a time interval as long
as possible.
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6. EARTH, THE MOON AND THE COMET

Next, we consider the many-body problem in a special setting. Earth and the Moon
orbit around the Sun, which we may think of as fixed at the origin. In comes a comet
aimed to pass very near the Earth-Moon system. To decrease the sensitivity for the choice
of initial data for the comet, and thus to make the aiming a little easier, we take a very
heavy comet, more like the size of Jupiter than a regular-sized comet. The events are then
as follows: the comet comes in from out of nowhere, going straight towards Earth and the
Moon taking their usual route around the Sun. Once the comet gets close enough, it will
shoot the Moon out of its orbit around Earth, placing it in a new orbit of its own around
the Sun. The equations are, as for the Solar System,

. Gm;m;
(24) mit; = Z = _ij|3 — x;),
g T

with initial conditions taken as the positions on January 1:st 2000, 00.00 GMT. The hope-
fully unrealistic data for the comet is taken so as to fit this example.

10
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Figure 29: Solutions for the positions of the Earth-Moon-Comet system as function of time.
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Figure 30: Trajectories of Earth (going from the right to the left in the lower plot), the Moon
(coming from the right being thrown upwards), and the comet (which is the the straight line
coming in from above).
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Solving, using the explicit version of the mcG(3) method, to final time 7' = 1.2 (years),
we obtain the solution given in Figure 29. At the point where the comet gets very close,
there seems to be a sudden jump in the solution. As is evident from Figure 30, this is
not a jump, but only a very fast change of velocities for Earth and the Moon. This rapid
change is also reflected in the size of the individual time-steps, which decrease rapidly at
t = 0.95, see Figure 31. At this point, the residuals get tremendously large, and in order
to keep the error small, the time-steps have to be very small, but only for a short while,
and only for some of the components.

6.1. The dual and the stability factors. In order to get a better understanding for
the problem and for the events occurring near t = 0.95, we solve the dual and compute
stability factors. In Figure 32 we plot the dual for a particular choice of data. The dual
is solved backward in time, starting with ||¢(7)|| = 1, and evidently stays small until it
suddenly starts to increase, and after that increases linearly in size.

x107°

Figure 31: Time-steps for the position components of the Earth-Moon-Comet system.
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Figure 33: Sensitivity, S°, computational, S¢, and Galerkin, SY, stability factors as function of
time for the different components of the Earth-Moon-Comet system.

The conclusion is then, that if we want to compute beyond the critical point, we have
to be more careful, and use much smaller time-step, than if we want to compute to a point
before the critical point. This is even clearer if we look at the local stability weights, the
integrals of which are the stability factors. In Figure 34, we plot the local stability weights
for the different components of the Earth-Moon-Comet system, when solved to a point
beyond the critical point. Judging by these local weights, the time-steps must be small all
the way up until the critical point, even at the beginning of the interval, long before the
critical point. Choosing the time-steps based only on the residual — or the local error —
we will miss the importance of having to take smaller time-steps before the critical point
than afterwards. The residual is large only at the critical point, and so says nothing about
the stability properties of the problem.
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Figure 34: Local stability weights for the Earth-Moon-Comet system; s is the local compu-
tational weight, s9 is the local weight for the Galerkin error, and s is the local weight for the

Galerkin error based on evaluating ¢ — mxp.
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7. A STiFF CHEMICAL REACTION PROBLEM

We next consider the “HIRES” problem from [4], which is the following stiff system of
ODEs:

(u; = —1.71 u; 4+ 0.43 uy + 8.32 uz + 0.0007,
’l:l,g = 1.71 Uy — 8.75 Ua,
uz = —10.03 u3z + 0.43 uy + 0.035 us,
Us = —1.745 Us + 0.43 Ug + 0.43 Ur,
ug = —280 ugug + 0.69 ug + 1.71 us — 0.43 ug + 0.69 uy,
uy = 280 ugug — 1.81 uy,
L g = —280 ugug + 1.81 uy,

with ug = (1,0,0,0,0,0,0,0.0057) and 7" = 321.8122.

1
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0 ' : ' 0 ' : '
0. s 100 200 300 400 0. s 100 200 300 400
X 10 X 10
6 . . . " 6
4 L4
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0 1 2 3 4 5 0 1 2 3 4 5
t t

Figure 35: Solutions for the eight components of the ODE-system with axes chosen as in [4].
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Figure 36: The mdG(1) solution for all components of the ODE-system (above), and the solution
for the second component at its peak (below). The second and third markings on every interval
are the nodal points; the first marking is there to indicate the discontinuity.

Solving using the mdG(1) method, we obtain the solution plotted in Figures 35 and
36, with time-steps as in Figure 37 and residual as in Figure 38. The time-steps are
small for all components during the initial transient, after which all time-steps quickly
increase to reach a pre-defined maximum time-step of ¥ = 1, which is larger than the
maximum stability /stiffness-imposed allowed time-step. Since the method is explicit, or,
more correctly, the implicit discrete equations are solved by explicit fixed point iteration,
we should not be able to use a time-step as large as £ = 1. The individual Newton scaling
makes it possible, however, to do this, as described in [7].

7.1. The stiffness problem. For this problem, the simple Newton scaling is not enough
to make the iterations converge. To handle this, we must decrease the time-step, but only
when necessary. In this way the time-step will oscillate, being sometimes (hopefully most
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of the time) large and sometimes small, as is described in [7] and is explored further in
[3], the idea being that allowing for non-zero discrete residuals, the solution will often be
accepted already after the first iteration, so that we manage well using the large time-
steps. This will make the continuous and discrete residuals grow gradually, as is evident
from Figure 38, so that at some point we will have to decrease the time-step (which then
happens automatically since the residual is large) to make the iterations converge, and we
obtain small residuals once again. Note that the exact behaviour of this process depends
very much of the actual problem, the size of the time-steps, and the tolerances for the total
error and the computational error. Ideally, the process of changing between large and small
time-steps comes automatically with the usual time-step regulation based on the residual.

100 150 200 250 300
t
1t 1
0.8} 0.8}
< 0.6 43_,0.6 I
0.4 1 0.4
0.2} 1 0.2}
0 . . . 0 . . -
0 100 200 300 280 290 300 310 320
t t

Figure 37: The individual time-steps for the eight components of the ODE-system (above), and
the time-steps for the first component (below).
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Figure 38: The individual residuals for the eight components of the ODE-system (above), and
the residual for the first component (below).

7.2. Stability factors. After the initial transient, the variation of the solution is simple.
This is reflected also in the stability properties of the problem. In Figure 39, we plot the
sensitivity stability factors for the components of the ODE-system. These are defined as

(26) SH(T) = 1lp0)]),

with ¢;(T") = &;;. Notice that this is somewhat different from the definition in Section
5.1, where the i:th sensitivity stability factor measures the influence of an error in the
initial value for component %, on the error for a given quantity of the solution. Here, the
1:th sensitivity stability factor measures the influence of a general error in initial data on
the error in component 7. From the discussion in Section 5.1 we know that, assuming the
equations are solved exactly, we have, for 1 =1,... N,

(27) lei(T)| < S7(T)lle(0)]].
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The sensitivity stability factors for the components that quickly settle to constants
quickly decrease below unity (they are all unity at time ¢ = 0), whereas the sensitiv-
ity stability factors for components five and six increase steadily until finally also these
decrease. (Compare with the behaviour of the solution components.)
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Figure 39: Sensitivity stability factors for components 1,2, 3,4,7 and 8 (above) and for compo-
nents 5 and 6 (below).
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8. A PROPAGATING FRONT PROBLEM

We now consider the following system of partial differential equations:

(28) { Zl : eu% i —U12’Uz%a

9 — €UH = uUjuj,
on (0,1) x (0,7T] with u4(+,0) = w19, ua(-,0) = u11, and homogeneous Neumann boundary
conditions at x = 0 and x = 1. This reaction-diffusion system models an isothermal
auto-catalytic reaction, see [9]: Two substances, A and B, distributed along [0, 1] with
concentrations u; and ug, A reacts to form B with B working as a catalyst,

(29) A+2B — B+2B.

With a suitable choice of data conditions we will obtain a reaction front moving from the
left to the right. Taking

0, z < x,
(30) U190 = { 1’ x 2 o,
and ugg = 1 —u for some z4 € (0, 1), the reaction will take place at z = xy and propagate
to the right. For this to work we will need some diffusion.

We take € = 0.001 and solve for T" = 500, using the ¢G(2) method after discretizing in
space to obtain an ODE. The solution and the individual time-steps are plotted in Figure
40 at two different times. The reaction front propagates to the right, and so do the time-
steps, in the sense that these are small only at the front. Outside of the reaction front
the time-steps are large and reach some pre-defined maximum level, in this case kyax = 5.
(The individual Newton-scaling make time-steps as large as this possible.) See Figure 41
for a space-time plot of the solution and the time-steps.

In Figure 42 is another view of the time-steps. These are the time-steps for one of the
two species at a specific location within the domain as function of time. The time-steps
are clearly localized in both space and time. (In much the same way since the solution has
a wave-like behaviour.) In this figure we also plot the corresponding residual as function
of time. Keeping in mind that the plot is logarithmic we see that the residual is very small
outside the reaction front, so that outside the front the time-steps are large.

8.1. Stability factors. We also include a plot of some different stability factors for the
problem. These are defined as follows,

SET) = |pi(0)],
(31) SHT) = [ 1eP) () dt,
SYT) = [ lei(0)] dt,
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1.2

Figure 40: The solution and the time-steps at ¢ = 50 (above) and ¢t = 300 (below).
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where the dual is solved backward from ¢t = T with data ||¢(T)|| = 1, and for the mcG(q)
method we have p; = ¢;. We refer to these as sensitivity, Galerkin and computational (or
quadrature) stability factors. What is noteworthy is that these all decrease significantly
when the reaction has finished and the solution is constant, and we interpret this so, that
if we want to have a solution that is correct at a time beyond this point we do not need to
be very careful; the solution will anyway be close to true solution which is constant.

Figure 41: A space-time plot of the solution (above) and time-steps (below) for the propagating
front problem, with time going to the right. The two parts of the plots represent the components
for the two species A (lower parts) and B (upper parts).
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Figure 42: Time-steps and residuals for one of the species at a fixed position within the domain.

10

Figure 43: Different individual stability factors as function of time as described in the text.
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9. A MECHANICAL MULTI-SCALE SYSTEM

We consider the mechanical system in Figure 44, consisting of N different point masses
{m;}Y,, connected together with equal linear springs with spring constant &, which exhibits
a range of different time-scales.

Figure 44: The mechanical multi-scale system for N = 10. The masses are different but we
assume the spring constants to be the same.

Using Newton’s second law, we model the system by

mit; = k(2 — ) — ks, =1,
(32) m;E; = k($i+1 — l‘z) — k'(l‘z — LEi_l), 1<i< N,
mit; = —k(l“i - l“i—l)a i =N,

where z;(t) is the position of mass m; at time t. These equations can be written as a 2NN
first order system of the form u = f.
We assume that

(33) m; =p~ 7Y,
for some p > 1. Relating the masses to the frequency w of the oscillating motions we have,
somewhat simplified, w = /k/m, so that with e.g. p = 4, the frequency of should be

doubled for every mass as we move from the left to the right. To obtain larger systems we
repeat periodically, setting

(34) m; = pfmod(ifl,n)’
for some n < N. For example, if N = 100 and n = 10, we have
(35) {m i, ={1,1/2,...,1/2° ..., 1,1/2,...,2°}.

We will also consider a system consisting of one small mass and many larger masses. In
this case the dynamics of the system will be completely dominated by the smallest mass.
We expect the multi-adaptive method to perform particularly well on such a problem,
using small time-steps only for the smallest mass.
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Figure 45: The positions of the masses of the mechanical multi-scale system as function of time
for N = 10, p = 3. Notice the presence of many different scales.

9.1. The solution. We now choose p = 3 and solve for 7" = 10. For this system the
difference in scales between the finest scale and the coarsest scale is roughly a factor

\/39 ~ 140. The large difference in scales is evident in Figure 45. It is also directly evident
in Figure 46, where we plot the multi-adaptive time-steps for the different components.

Ideally we would like to see that the size of the time-steps of a component should precisely
reflect the frequency for that component. To see that this is the case, that the residual-
based time-steps are chosen in agreement with the choice we would make ourselves if we
were to make a clever guess for the time-steps, we plot the mean time-steps for every
component in Figure 47. Comparing the mean time-steps we see that they agree well with
the predicted factor of V3 between adjacent scales.

9.2. Multi-adaptive time-stepping. If we use M time-steps for the slowest component
and the time-steps for all components are chosen to be the same, the total number of
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time-steps will be M N \/]_)N ~! neglecting the time-stepping of the velocity components.
With different time-steps for the different components, the total number of time-steps will
be

(36) M@A+p 2+ +pN-D/2) = M‘/;V__ll <5 _J;I/\/Z_)\/ﬁfv‘l.
We thus gain a factor N(1 —1/,/p). For p = 4 this means a factor V/2.
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Figure 46: The time-steps for the position components of the mechanical multi-scale system as
function of time for N = 10, p = 3. The presence of different scales is reflected by the different
time-steps.
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Figure 47: The time-steps for the position components of the mechanical multi-scale system
as function of time for N = 10, p = 3 (left), mean time-steps (middle), and mean time-steps as
function of component index.

9.3. Increasing the size of the system. Increasing now the size of the system to a
thousand particles, meaning an ODE-system with 2000 components, we take the masses
as in (34), with n = 10, i.e. the 1000 masses are ordered in 100 packages of ten. We take
p = 2 and solve using the mcG(1) method, and obtain the solution presented in Figure
48. Masses of the same sizes sit in similar positions and they have similar, but not the
same, trajectories. We thus have 200 components moving with the lowest frequency, 200
components moving with the highest frequency, and 1800 components in between. Note
also that positions and velocities for a certain mass need not, and will often not, use the
same time-steps. (If we want the method to be energy-conserving we have to use the same
time-steps for corresponding position and velocity components, see [7].)
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Figure 48: The mechanical multi-scale system for N = 1000. The plots show the motion and
solution for a part of the system.

All 2000 components of the ODE-system thus have their own individual and time-
dependent time-steps, residuals, and stability weights. For this particular computation
we have chosen to base the time-steps on an equidistribution of the error, i.e. keeping the
stability weights within the sum of the a posteriori error estimate, rather than taking a
maximum to obtain global stability factors. (See [7] for a discussion of this.)

9.4. Stability weights. To investigate the local stability weights we decrease the size of
the system to 100 masses, which is large enough for demonstration purposes. Examining
Figure 50 we find that, as we expect, the stability weights are ordered in groups. Apart from
the grouping based on the size and position of the corresponding mass, the components
will also group depending on whether they represent a position or a velocity. To keep
the discussion simple, we focus on the components representing positions, i.e. components
with indices 1, 2,...,100.

We expect these components to group into ten different groups, possibly with the ex-
ception of the first and the last components that correspond to the mass attached to the
wall and the last little loose mass at the end, since these are special.
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Figure 49: Time-steps (k), residuals (r), stability weights (s) and “local errors” (e), i.e.
qui] kl'|R;|, for the mechanical multi-scale system with N = 1000.

Investigating the stability weights more closely, as in Figure 51, the structure becomes
more clear. The most clearly visible groups of stability weights are those labelled A, B, C
and D in this figure, and these groups contain the following components:

A : 10,20,...,90,
B : 9,19....,89,
C : 11,21,...91,
D : 8,18,..,98.

Table 4: Grouping of the component stability weights as indicated in Figure 51.
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These are components that are close to the high-frequency motion occurring nearby
1 =10, 20,...,100. What is missing in this picture is perhaps the last component, number
100. As mentioned before, this one is a bit special since it has only one neighbour. It
therefore does not fall into this group, and following the discussion below it will be clear
why. The first component is not present since to the left of it is the wall and not a
high-frequency component, as is the case for components 11,21,...,91.
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Figure 50: Local stability weights for the solution of the mechanical multi-scale system for
N = 100. The stability weights seem to be ordered in groups.

The components of groups A, B, C' and D all have particularly large stability weights.
We will now attempt to give an explanation of this and perhaps some further insight to
the mystery of stability factors.

The dual problem, from which we compute the stability factors and the stability weights,
is the linearized adjoint problem

(37) —¢(t) = T ([)p(t),
where J is as defined in [7]. Think of it as the Jacobian of the right-hand side.
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Figure 51: Grouping of local stability weights for the solution of the mechanical multi-scale
system for N = 100.

Now, if component i depends to a large extent on component j, there will be a large entry
at position (i,7) in the Jacobian. Large entries on row i in its transpose J* thus means
that other components (including itself) in the original primal problem depend heavily on
this component. Since now large entries on row ¢ of J* may contribute to making the
1:th component of the dual large, we conclude that the local stability factor for a certain
component reflects how much that component influences other components in the primal
problem:

(38) i

I
*
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This is in agreement with our example, where the components with the highest stability
factors are those that are close to and influence small masses, since these are easiest to
influence. Since the time-steps are based on both the stability properties of the dual and
on the residuals, the components corresponding to large masses will still use larger time-
steps; the motion is slow and the residuals will therefore be small. The time-steps will,
however, be smaller than if they had been based on residuals alone. We thus have to be
more careful with the slow components than one might think, since small errors for these
components may cause large errors for the fast components. (In this case where fast means
light and easy to move.) In Figure 52 we compare time-steps and residuals for the fastest
and slowest components of the system.
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Figure 52: Time-steps and residuals for components of the mechanical multi-scale system for
N = 100; components corresponding to large masses on the left and component corresponding to
small masses on the right. The time-steps are almost identical for components at similar positions
in the system, with the exception of the first component (which is attached to the wall), and the
last component (which does not have a component on its right-hand side).
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9.5. A multi-adaptive test problem. To further demonstrate the potential of the multi-
adaptive methods, and to specify a test problem for multi-adaptive time-stepping, we
change the setup of the mechanical multi-scale system considered above.

The problem is as before to compute accurately the positions (and velocities) of the N
point-masses connected with springs of equal stiffness as in Figure 53.

Figure 53: A mechanical system consisting of N = 5 masses attached together with springs.

Choosing one of the masses much smaller than the other, m; = 1074, m; = 1 for
1 = 2,...,N, we expect the dynamics of the system to be dominated by the smallest
mass, in the sense that the resolution needed to compute the solution will be completely
determined by the fast oscillations of the smallest mass.

To compare the multi-adaptive method with a standard method, we first compute with
constant time-steps k = kg using the standard ¢G(1) method, and measure the error, the
cpu time needed to obtain the solution, the total number of steps, i.e. M = Zf\il M;, and
the number of local function evaluations. We then compute with individual time-steps,
using the mcG(g) method, choosing the time-steps as k; = kg for the position and velocity
components of the smallest mass, and as k; = 100ky for the other components, since we
know that the frequency of the oscillations behaves like 1/y/m. For demonstration pur-
poses, we thus choose the time-steps a priori to fit the dynamics of the system. Comparing
the results for the two methods, k; = ko for all components and k; = kg only for the fast
components, we find that the error is basically the same. As IV increases the total number
of time-steps, the number of local function evaluations (including also residual evaluations),
and the cpu time increase linearly for the standard method, as we expect.

For the multi-adaptive method, on the other hand, the total number of time-steps and
local function evaluations remain practically constant as we increase N. The cpu time
increases somewhat, since the increasing size of the time-slabs introduces some overhead,
although not nearly as much as for the standard method.

For this particular problem the gain of the multi-adaptive method is thus a factor NV,
where N is the size of the system, so that by considering a large-enough system, the gain
is arbitrarily large.
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Figure 54: Error, cpu time, total number of steps, and number of function evaluations as function
of the number of masses, for the multi-adaptive ¢G(1) method (dashed) and the standard cG(1)

method.
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10. THE WAVE EQUATION

A closely related problem is the wave equation,
(39) i—u" =0,

on (0,1) x (0,7] together with initial and boundary conditions. Starting with a pulse at
x = 1/2, we expect to see two pulses of half the size propagating in both directions, as in
Figure 55.

0.8

0.6

04r

0.2

FaWaWalra o FaW WaWaWaWala

0.1 0.2 0.3

o3

0.8 T

0.6 .

041 .

0.2 .

0.6 0.7 0.8 0.9

Figure 55: The solution will be two waves, travelling in opposite directions.



MULTI-ADAPTIVE GALERKIN METHODS FOR ODES II 61

Solving with the mcG(1) method, with large enough time-steps and coarse enough grid,
we get the solution given in Figure 56. As we expect, the solution “wiggles” in the same
way as with the ¢G(1) method (Crank-Nicolson).

0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x x

Figure 56: The mcG(1) solution at two different times.

We expect the time-steps to be small only near the propagating peaks, and large else-
where. Examining a plot of the time-steps as function of time and space — see Figure
57 — it is clear that the time-steps are localized in both space and time. To see that the
residual-based time-steps are chosen properly, notice the following: By an a priori error
estimate, we have for the mcG(1) method something like

(40) e ~ ki,
which for the wave equation means we have
(41) e~ k2",



62 ANDERS LOGG

We may also realize this directly; the mcG(1) method with its piecewise linear approxima-
tion of the solution, should have difficulties at such occasions when and where the second
derivative is large. The time-steps should therefore be small whenever u” is large.

Plotting thus the second derivative of the exact solution at ¢ = 0 in Figure 58, and
comparing to the residuals and the time-steps in Figure 59, we find that the residual
reflects the size of 4" and that the time-steps are chosen properly. (The residual contains
one time-step, so that we have e ~ kR ~ kku" = k*u" in agreement with the a priori error
estimate.)

— T

Figure 57: Time-steps as function of time (going to the right) and space for the mcG(1) solution
of the wave equation, below time-steps for the positions and above time-steps for the velocities.
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Figure 58: The initial condition, its derivative and its second derivative.
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Figure 59: Residuals and time-steps at time ¢ = 0. The residual resembles the second derivative,
as in Figure 58.
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11. THE HEAT EQUATION WITH LOCAL HEATING

As another example of a standard PDE, we solve the heat equation,
o — Au = f(x,t),

on Q x (0, 7] with homogeneous Dirichlet boundary conditions, where  is a square in R?
centred at (0, 0).

We discretize in space and solve the resulting ODE with the multi-adaptive method as
before. Solving for the right-hand side

f(a,t) = (1 +t)sin(t) exp(—((2/0.1)* + (y/0.1)*)/2),
we have a source localized in space and time, and we want to see the time-steps localized
in the same way. The solution will be localized to x = y = 0, oscillating up and down. We
plot the solution at three different times in Figure 61.
The time-steps will behave in much the same way, being quite large, reaching some
pre-defined largest time-step, close to the boundary where the solution is constant, and
oscillating from small to large in the middle of the domain.

Figure 60: Time-steps (left) and residuals (right) for the solution of the heat equation with local
heating.
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Figure 61: The solution to the heat equation with local heating at three different times.
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The time-steps vary also in time, being large whenever the solution is close to linear
(compare Section 2). In this way, twice every period the time-steps are large, and twice
they are small, at least close to x = y = 0 where all the action is (see Figure 62).

Figure 62: Time-steps for the solution of the heat equation at two different times.
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12. BURGER’S EQUATION WITH MOVING NODES

We turn now to Burger’s equation,

(42) u+ puu' — eu” =0,
on (0,1) x (0, 7] with initial condition

_ | sin(wz/z0), 0 <z < m,
(43) uo(z) = { 0, elsewhere,

and where y = 0.1, e = 0.001 and zy = 0.3.
The solution is a shock forming near x = xy, and so we expect to have small time-steps
close to the shock and large time-steps outside.

12.1. Moving nodes. To make things a little more interesting, we will allow some more
freedom for the discretization, namely moving nodes, i.e. nodes with time-dependent posi-
tions. We may think of this as following particle paths or streamlines. The idea is that if we
move the nodes in the direction of the convection, the resulting PDE (ODE) is essentially
the heat equation, so if we can remove the convective term by moving the nodes, we can
solve a simpler equation.

To formulate the multi-adaptive method for PDEs with moving nodes, consider the
problem

(44) o+ A(u)u = f(z,t), in Q x (0,77,

for some linear differential operator A(u) on some domain 2. We consider now the multi-
adaptive moving-nodes method with piecewise linears in space, for which the Ansatz is

(45) U(z,t) = Z&(t)%(%t),

where the {&;}¥, are functions of time, and {;(-, %)}, are piecewise linear basis functions
in space for any fixed ¢. This is explained in Figure 63. We could also think of adding and
deleting nodes as we go along, but we keep the number of nodes is fixed here.
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Figure 63: Moving nodes with piecewise linear node position functions for = (0,1).

Figure 64: A multi-adaptive solution with moving nodes. The solution is piecewise linear in
space at every fixed ¢ and piecewise polynomial (in this case piecewise linear) along the particle
paths.
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Inserting the Ansatz into (44) and testing with the basis functions gives, fori =1,..., N,

d N N
(46) /QE (;fg‘%‘) ©; dfﬂ-i-/Q (A(U) ;é}'%) @i do = /Qf% dz,

which should hold on (0, 7. Rearranging, we get

(47) i::f'j/ ip; dx+Z€g [/ A(U)g; dx+/ew] dw] /f% dr,

or, finally,
(48) M(£)E(t) + (S(1) + T(1))E(t) = b(2),

where
(49) M) = ([ o thean do)

is the mass matriz,

(50) S(t) = (/Q pi(z, ) (A(U(2,1))p;(2,1)) dﬂf)

is the stiffness matriz?,

(51) 110 = ( [ wile.0ps(0.) do)

is the translation matriz and b(t ( fQ x,t)p; d:r) is the right-hand side. This equation
is now in the form of (1), except for the mass matrix, which we may choose to treat in
different ways, the simplest being to replace it with the diagonal lumped mass matrix.
We may thus apply the multi-adaptive method to (48) to have individual time-steps with
moving nodes. Such a solution is at every fixed ¢ piecewise linear in space, and piecewise
polynomial of degree according to the method along the particle paths, see Figure 64.
For this method to work well, it is crucial that we can compute the element-interactions,
i.e. the mass, stiffness and translation matrices on the fly. This is simple to do in one
dimension, where we can write down explicit formulae for the matrix elements. As an
example we take the translation matrix. This is a tridiagonal matrix with elements

ti = 1/6 (41 — Ziz1),
(52) ti,i—l = 1/6 (ii—l + QI'Z),
tiiv1r = 1/6 (—ipr — 20),
for homogeneous Dirichlet boundary conditions, where z;(¢) is the position of node ¢ at
time .
This method has been implemented for one-dimensional problems, and has been success-
fully applied to Burger’s equation and a number of linear convection-diffusion problems.

2The expression for the stiffness matrix is to be interpreted in a suitable way. If e.g. AU) = —A, we
integrate by parts to place one of the derivatives on the test function.
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’N

Figure 65: Above the solution as function of space and time, and below the solution as function
of the local coordinates and time, i.e. the same plot as above but keeping the nodes at their
original positions in the plot.
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For convection-diffusion problems, notice that if we choose the particle paths correctly,
i.e. in the direction of the streamlines, we get the desired set of equations along these
streamlines. To see this, consider the problem

(53) uw(x,t) + b(z, t)u' (x,t) — eu”(z,t) = f(z,t)

on (0,1) x (0,7, for which the contribution from the convection,

(54) | Hat)e e da,

is balanced by the corresponding term from the translation matrix, so that the result is
that the convection effectively disappears from the equation. To verify this, consider the
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basis function @; on (x;_1, z;), where ¢;(z,t) = (x — z;-1(¢))/(x;(t) — z;-1(¢)), so that

) 1. -2 .x—zi 1
(55) Pi ($, t) - h'z Ti-1 h/z + z; hz - hz (t)
where h;(t) = z;(t) — ; 1(t) and ©(z,t) is a measure of i; in between nodes. To have
balance between the convection and the terms from the translation of the basis functions,
b(z,t)¢)(z,t) should balance —p;(x,t), which is thus the case if b(x,t) = Z(z,t). Thus,
choosing the particle paths in accordance with the field b, the convection and the translation
parts will (almost) cancel out.

i(z,t),

1 T T T T T T T T T
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0® 1 1 o A4~ Va N Ve N N N N N o N N Va NI v\
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Figure 66: The solution as function of space at t =0, t =7/2 and t =T

12.2. The solution. Solving now with the mdG(0) method to T' = 1, we get the solution
presented in Figure 65.
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The solution is obtained by starting with a uniform grid at ¢ = 0, dividing the interval
[0, 1] into 30 subintervals. The nodes are then moved in the direction of the convection,
ie. (pu,1), taking care the node paths do not intersect. In this way, the resulting ODE
will contain very little of the convection, being dominated by the diffusion term, so that
we in fact are back to solving the heat equation. This is seen in Figure 65, where we
together with the solution also plot the solution expressed in the original coordinates, i.e.
the coordinates are put back to their original position.

As is evident in Figure 66, the nodes move in the direction of the convection into the
front, to automatically give a better resolution of the front.

In Figure 67, we plot the node paths. Not only do the nodes move into the front to
provide a better resolution, but the time-steps are also larger outside the front where
nothing happens.
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Figure 67: Node paths for the multi-adaptive moving-nodes solution of Burger’s equation.
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13. A CONVECTION-DIFFUSION PROBLEM WITH MOVING BOUNDARY

A related problem to the Burger’s equation is the following convection-diffusion problem,

(56) U+ Bu —eu = f,
where we take
(57) f=1for |x—05/<0.1and t <1,

and zero elsewhere. The difference from Burger’s equation is that the convection, § =
B(z,t) is given, and we take

(58) B(x,t) = 0.1sint.

We solve for T = 4 and € = 0.001 using the mdG(0) method. To make things a little more
interesting we also have a time-dependent domain, letting also the boundary nodes follow
the flow.

Figure 68: Above the solution as function of space and time, below the solution as function of

the local coordinates and time, i.e. the same plot as above but keeping the nodes at the original
position in the plot.
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Figure 69: Node paths. Notice the localization in space and time of the smaller time-steps.

As for Burger’s equation, moving the nodes transforms the problem into something more
like the heat equation, which is evident in Figure 68, where we also plot the solution with
the nodes moved back to their original positions.

Looking at Figure 69 showing the node-paths for the solution, we see that the small
time-steps are clearly localized to the beginning of the time interval, and also localized to
nearby x = 0.5. Noteworthy is that the time-steps are also somewhat smaller in the region
to the right of x = 0.5. This is natural, since the convection is directed towards the right
close to t = 0.

14. FUTURE WORK

Together with the companion paper [7] (and [6, 5]), this paper serves as a starting point
for further investigation of the multi-adaptive Galerkin methods and their properties.

Future work will include a more extensive investigation of the computability of the Solar
System, and application of the multi-adaptive methods to DAEs and large systems of
chemical reactions. We will also consider in more detail the extension of the multi-adaptive
methods to time-dependent PDEs.
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