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Energy Norm A Posteriori Error Estimation
for Discontinuous Galerkin Methods

Roland Becker* Peter Hansbo! Mats G. Larson?

October 16, 2001

Abstract

In this note we present a residual-based a posteriori error estimate of a natu-
ral mesh dependent energy norm of the error in a family of discontinuous Galerkin
approximations of elliptic problems. The theory is developed for an elliptic model
problem in two and three spatial dimensions and general nonconvex polygonal do-
mains are allowed. We also present some illustrating numerical examples.

1 Introduction

Discontinuous Galerkin (dG) methods for elliptic problems have recently received renewed
interest, see [4] for an overview. One of the advantages is the flexible construction of ap-
proximation spaces, for instance allowing non-matching grids and different order of poly-
nomials on bordering elements without continuity enforcement. This property make the
dG method attractive for using together with an adaptive algorithm. Adaptive algorithms
are in general based on a posteriori error estimates providing information on where local
refinement is necessary.

In this paper we derive an a posteriori error estimate, of residual type, of a natural
mesh dependent energy norm. The estimate is of optimal order and is valid for a general
family of dG methods including the classical symmetric Nitsche method [11], the recent
nonsymmetric method proposed by Oden, Babuska, and Baumann [12], and stabilized
versions thereof.

Other work on a posteriori estimates for discontinuous Galerkin methods include Becker,
Hansbo, and Stenberg [1] where a weighted residual estimator of the L?-norm of the error is
presented and Riviere and Wheeler [13], where a residual estimator is derived for L2-norm
of the error and an implicit a posteriori error estimate of the energy norm based on local
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problems is evaluated numerically. It turns out that deriving a posteriori estimates of the
L2-norm of the error using duality arguments is indeed much simpler than energy norm a
posteriori error estimates. This is a consequence of the fact that the solution of the dual
problem is more regular than the discontinuous approximation.

Key to our proof of the energy norm a posteriori error estimate is a Helmholtz de-
composition of the gradient of the error. This technique is used to prove a posteriori error
estimates for nonconforming finite element methods by Dari, Duran, Padra, and Vampa [5]
and Carstensen, Bartels, and Jansche [3]. Our derivation of the a posteriori error estimate
contains two novel details. First, the usual Galerkin orthogonality principle is replaced
by the use of the fact that the dG method provides an explicit elementwise conservative
normal flux, and second our technique to handle the case of nonconvex polyhedra in three
dimensions which is related to the argument for nonconforming elements in Carstensen et al
[3]. The resulting a posteriori error estimate is also somewhat simpler than corresponding
results for nonconforming elements.

The paper is organized as follows: in Section 2 we introduce a model problem and
the family of dG methods; in Section 3 we derive our a posteriori estimate; and finally in
Section 4 we present some numerical experiments.

2 The model problem and the dG method

2.1 Model problem

We consider the following boundary value problem: find u : 2 — R such that

—V.o(u)=f inQ, (2.1)
u=gp onlp,

on(u) :=n-o(u) =gy on [y,

where  denotes a bounded polygonal domain in R¢, d = 2 or 3, with boundary I' =
I'pUTy, and o(u) is defined by

o(u) = Vu. (2.2)

If T'p # 0, (2.1) has a unique solution u € H! for each f € H', gp € H?(I'p), and
gy € H™Y/?(I'y), and if T'p = (), the solution exists and is unique up to a constant, i.e.,
u€ H'Y/Rif f € H™', gy € H'/2(T'), provided the compatibility condition

/Qf+/FgN=o, (2.3)

is satisfied.



2.2 Discontinuous spaces

To define the dG method we introduce a partition X = {K} of Q, satisfying the minimal
angle condition, see [2]. Further, we let the mesh function h : Q@ — (0, 00) be defined by
hlx = hx = diam(K). We let DP be the space of discontinuous piecewise polynomials
defined on K:

DP = P P, (K), (2.4)

KekK

where P,, (K) is a space of polynomials of degree px defined on the element K. Note that
the order of polynomials is allowed to vary from element to element.

2.3 The dG method
The dG method for (2.1) is defined by: find U € DP such that
a(U,v) =1(v) for all v € DP, (2.5)

where a(-,-) and [(-) are sums of elementwise defined forms

av,w) ==Y ag(v,w), 1) =Y k), (2.6)

given by
ak (v, w) = (0(v), Vw)k = ({(oa(v)), w)ar\ry (2.7)
+ a([v], on(w))or\ry /2 + B(h™ [v], w)ar\ry
and

le(w) == (f,w)k + (gn; w)oxnry (2.8)
+ a(gp, on(w))oxnry, + B(9p, b ' w)oxrry,

where o and [ are real constants. We also employed the notation

vt +v7)/2 on 0K \T,
(v) := {(+ )/ \ (2.9)
v on 0K NT'p,
and
vt —v~ on 0K \T,
= 2.10
] {v+ on 0K NI'p, (2.10)

where v*(z) = lim, o+ v(z F snk). Further on each edge E = K™ N K, the mesh

parameter h is defined by

y mlK*) + m(K)
T 3m(E) ’

where m(-) denotes the appropriate Lebesgue measure. Simpler choices such as h = (h)

may also be used in the case of locally quasiuniform meshes.

(2.11)
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2.4 The mesh dependent energy norm

We introduce the following mesh dependent energy norm

loll1? = llwlliX + llvll3x, (2.12)
where
lollz =" (0(), Vo)k, (2.13)
Kek
olllFe =D (R o], whorre/2 + (R0, v)okary- (2.14)
KekK

2.5 Stability and a priori error estimates

We shall assume that o and 3 are chosen such that the inf-sup condition

a(v, w)

m < inf sup (2.15)

veDPuepp |||0]l] [[[wl]|”

holds with constant m independent of h. For instance, for the classical Nitsche method
[11], « = —1 and (2.15) is satisfied for sufficiently large 5. Taking o = 1 we obtain
the nonsymmetric method suggested by Oden, Babuska and Baumann [12] and (2.15) is
satisfied for 8 > 0. In fact, for quadratic and higher order polynomials 3 can be set to
zero in the nonsymmetric case, see [8] and [9].

If (2.15) holds one can prove the a priori error estimate

[lu = Ul[| < chul, (2.16)
where = min(l,p+ 1) and u € H'.

2.6 Elementwise conservation property

Introducing the discrete flux

(0,(U)) — BR7U] on 0K \ T,
En(U) = 0u(U) = BL~H(U — gp) on 0K NTp, (2.17)
gn on 0K NIy,

we obtain the discrete elementwise conservation law

/Kf—i—/aKEn(U)z(), (2.18)

for all K € K. Thus the directly accessible flux 3, (U) is elementwise conservative. This
property will play an important role in our later developments.
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3 A posteriori error estimate of the energy norm

3.1 Error representation

We begin with a lemma giving a Helmoltz decomposition of the elementwise defined flux
o(e). We treat the two- and three-dimensional cases simultaneously and employ the nota-
tion

curlv = (00, ~010) d =2, (3.1)
V xw d =3,

forve [H'(Q))* withk=1ifd=2and k=3 if d = 3.

Lemma 3.1 There exists ¢ € H(Q) and x € [HY(Q)]* such that

o(e) = o(¢) + curl x, (3.2)
with
¢=0o0onTpandn-curly =0 on Iy, (3.3)
and the stability estimate
lo (@) + llcurl x|l < cllle]l|x- (3-4)

holds

PROOF. Let ¢ € Vy = {H' () : v =0 0n I'p} be defined by

(0(0), Vo) = (a(e), Vo), (3-5)

for allv € Vy. Then V- (c(¢) —o(e)) =0 and [n- (c(d) —o(e))] = 0 at each edge. Further
we have (0,(4),1)ry = 0 and thus o(¢) — o(e) = curl x, see Girault and Raviart [7].
Note that since |||e]/|ax = |[|U]||ox is directly computable we have

llelll* = [llelllk + 1T l3c (3.6)

and thus we need to estimate |||e||[x to obtain an a posteriori estimate of |||e]||.
Using Lemma 3.1 we get

llelllz = > (Ve,0(8))x + (Ve, curl Y)x. (3.7)

KeK



For the first term on the right hand side of (3.7) we begin by observing that (Ve,o(¢)) =
(o(e), Vo), and subtracting a piecewise constant projection my¢ of ¢, which is zero on all
elements K with a face on I'p. Then we integrate by parts

D (0(e), Vo) = > (0(e), V(6 — m08)) (3.8)

KekK KekK
=Y (f+V-o(U),¢ - md)x (3.9)
KeK
+ (Un(u) —0,(U), ¢ — md)ar\r,
=) (f+V-0o(U),¢— md)x (3.10)
KeK

+ (En(U) = on(U), ¢ — m0d)ax\rp-

In the last equality we used the fact that X,(U) is continuous accross edges so that
Yokex(On(u), ®)or\ry, = 2 kex (Bn(w), ¢)ax\r, and conservative so that (o (u), Tod)ax\r, =
(En(U), mo¢)ax\r,, for all elements K € K without a face on I'p.

Next for the second term on the right hand side of (3.7) we integrate by parts

Z (Ve,curl x) g = Z (u—=U,n-curl X)ax\ry (3.11)
KeK Kek
= Z (v—=U,n-curl x)asr\ry - (3.12)
Kek

Here we replaced u by an arbitrary function v € V,,,, where
={ve H':v=gponTp}, (3.13)

in equality (3.12). The replacement is allowed since the normal component of curl y is
continuous and v = u on I'p.
Together (3.7), (3.10), and (3.12), give the representation formula

llelllt = Y (f+ V- 0(U), ¢ — md)x (3.14)

Kek
+ (3En(U) —on(U), ¢ — md)ax\rp
+ (’U - U, n - curl X)aK\FN;

for all v € V,,,

3.2 An a posteriori error estimate

We are now ready to state our a posteriori error estimate.



Theorem 3.1 The error e = u — U satisfies
llel[[* < e (Z pi) , (3.15)
Kek
with constant ¢ independent of h and element indicator px defined by
pr = hillf +V - o(U)kllk (3.16)
+ hicl|Za(U) = on(U)l3ivr, + b NUME k0

where the discrete normal fluz X, (U) is defined by

2(U)) — BhHU OK\T,
oy [ @ @)= 0] om0k .
gn on OK NT'y.
We shall need the following lemma in the proof of Theorem 3.1.
Lemma 3.2 It holds
Y DS § o{ TR RS
9D KeK KeK

with constant ¢ independent of h and Vg, defined in (3.13).

PROOF OF THEOREM 3.1. The proof consists of estimates of the three terms
on the right hand side of (3.14). We begin by observing that using the Cauchy-Schwarz
inequality followed by standard estimates we obtain

|6 = modl| < chi ||Vl < chllo()]l- (3.19)

For the first term we get, using the Cauchy-Schwarz inequality and (3.19),

((f+V-0U), ¢ =md)k| < I +V-oU)]kll¢ —mool (3-20)
< chi|lf +V-a(U)llkllo(d)] k- (3.21)

Next to estimate the second term term we use the Cauchy-Schwarz inequality, the trace
inequality ||v]|3 < cl|v||(hg |||l + || Vv]]), and (3.19) to get

((En(U) = 0n(U), ¢ — m0@)arc\rp| < En(U) = 0n(U)llox\ry |6 — modllor\ry
< chil|Za(0) = on(@)lorrollo (@)l (3.22)

For the last term we have

[(v =U,n-curl X)am\ry| < |lv— U||H1/2(8K\FN)||n : Cur1X||H—1/2(6K\FN)

< cllv = Ullvagorcyeylewrl xl . (3.23)



In (3.23) we employed the trace inequality

|7 - curl x| -1/205) < cllcurl x|| (3.24)

which follows from
I wllg-som) < e(llwllic + AxllV - wilx), (3.25)

see [7], with w = curl x, together with the fact that V - curl x = 0.
Summing over all the elements, using the stability estimate (3.4) and dividing by |||e|||x
we obtain

llell® < > bl f + V- o(U)kllk (3.26)

KeK
+ hic[[Za(U) = on(O)llGk\rp + 10 = Ul pp a0\

for all v € V,,. By Lemma 3.2 we may replace infyey, > pcxllv — U||21/2(6K\FN) by
Y kex hl_{1||[U]||%K\FN, and thus the proof is complete.

PROOF OF LEMMA 3. Let X = {X} be the set of nodes, {¢x} the set of
associated piecewise linear (or bilinear) basis functions, wx = supp(¢x), CPx = C(wx) N
{v:v=wluy,w € DP,w = gp on I'p}, and finally CP = P ¢xCPx C Vy,,.

We clearly have

inf Z v — U||H1/2 (0K\T'y) < vlencf’.P Z lv — U||§Il/2(3K\FN)' (3.27)
KeK

veY, 9D KeK

Using an inverse inequality we have

lv = Ullmremry) < b’ lv = Ullogyrys (3.28)

for all v € CP and K € K. Further, for each v = erx pxvx € CP we have

v — U”?)K\FN = Z(U — U, px(vx —U))or\ry (3.29)

XeXx

1/2

< 90 = Dy 0 (wx — U)lloxvry (3.30)

Xex

1/2
1/2
< v = Ullorrry (Z X (vx — U>||§K\FN) : (3.31)
Xex

where we used the fact that ), . ¢x = 1 and the Cauchy-Schwarz inequality. We can
conclude that

Y hRl = Ullsrary < D 20 b IeR (vx = U)llyrys (3-32)

KeK XeX Kek



for all v € CP.
Next we note that there is a constant ¢ independent of A such that
. 1y 1/2 1y 1/2
inf > h'lled (ox = Dliziary < D e IeX Ulllarry- (3.33)

vx ECP
R KekK

Inequality (3.33) follows from the fact that if the right hand side is zero then U is continuous
on wx and we may take vx = Ul|,,. Then the left hand side is also zero. Now (3.32)
imediately follows by finite dimensionality and scaling.

Finally, (3.18) follows from (3.27), (3.32) and (3.33) together with the identity

3> I OMres = D PR MU 3mr (3.34)

XeX Kex KekK

where, again, we used the fact that ), ox = 1.

4 Examples

In all the computational examples, we have used linear discontinuous elements on triangu-
lar, geometrically conforming meshes. We have chosen the constants as ¢ = 1 (in (3.15))
and 3 = 5 in all computations, and we have discarded the internal residuals, so that the
effectivity indices are based only on the jump terms.

4.1 Sinusoidal hill

We consider the problem (2.1) with data f = 27?2 sin(7z) sin(7y) in the domain Q =
(0,1) x (0,1), with 'y = @ and gp = 0. This problem has the exact solution v =
sin(m x) sin(7 y).

In Figure 4.2, we show the last mesh used in the computations using the unsymmetric
bilinear form, in Figure 2 we show an elevation of the corresponding solution, and in Figure
3 we show the effectivity index on the successively refined meshes using the symmetric
and unsymmetric bilinear form corresponding to @ = £1. We note that the error is
overestimated by around a factor of 3 with the choices of constants made. We emphasize
that we do not attempt to reach effectivity indices of around one, but rather to show that
the effectivity index does not vary too much with respect to a given mesh. We refine the
mesh using an adaptive algorithm based on refining a fixed fraction (30%) of those element
with the largest error contribution.

4.2 Peak function

For our next example, we choose the “peak function” used for instance by Riviere and
Wheeler [13], given by the exact solution

610z2—|—10y (1 . $)2$2 (1 . y)2 yz

u= ,
2000

(4.1)



on the domain (0,1) x (0,1). The parameters and method for refining the mesh are the
same as in the previous example. In Figure 4, we give the last mesh in a sequence of
refined meshes using the symmetric bilinear form, and in Figure 5 we give the isolines of
the corresponding solution. Finally, in Figure 6, we give the variation of the effectivity
index on the refined meshes for both the symmetric and unsymmetric forms.
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Figure 1: Final adapted mesh for the sine function.
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Figure 5: Isolines of the discrete solution.

5 : ‘
R Symmetric method
sl - - = Unsymmetric method | |
A i
35F |

Effectivity index

1 1 1 1 1
2 4 6 8 10 12 14
Refinement level
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