CHALMERS

FINITE ELEMENT CENTER

PREPRINT 2001-12

Analysis of a Family of Discontinuous Galerkin
Methods for Elliptic Problems: the One Dimen-
sional Case

Mats G. Larson and A. Jonas Niklasson

- . Chalmers Finite Element Center
<« p CHALMERS UNIVERSITY OF TECHNOLOGY
- Goteborg Sweden 2001






CHALMERS FINITE ELEMENT CENTER

Preprint 2001-12

Analysis of a Family of Discontinuous Galerkin
Methods for Elliptic Problems: the One
Dimensional Case

Mats G. Larson and A. Jonas Niklasson

CHALMERS

Chalmers Finite Flement Center
Chalmers University of Technology
SE—412 96 Goteborg Sweden
Goteborg, September 2001



Analysis of a Family of Discontinuous Galerkin Methods for Elliptic Problems: the
One Dimensional Case

Mats G. Larson and A. Jonas Niklasson

NO 2001-12

ISSN 1404-4382

Chalmers Finite Element Center
Chalmers University of Technology
SE-412 96 Goteborg

Sweden

Telephone: +46 (0)31 772 1000

Fax: +46 (0)31 772 3595
www.phi.chalmers.se

Printed in Sweden
Chalmers University of Technology
Goteborg, Sweden 2001



Analysis of a Family of Discontinuous
Galerkin Methods for Elliptic Problems: the
One Dimensional Case *

Mats G. Larson T A. Jonas Niklasson ¥

September 21, 2001

Abstract

In this paper we analyze a family of discontinuous Galerkin methods, parametrized
by two real parameters, for elliptic problems in one dimension. Our main results are:
(1) a complete inf-sup stability analysis characterizing the parameter values yielding
a stable scheme and energy norm error estimates as a direct consequence thereof,
(2) an analysis of the error in L? where the standard duality argument only works
for special parameter values yielding a symmetric bilinear form and different orders
of convergence are obtained for odd and even order polynomials in the nonsymmet-
ric case. The analysis is consistent with numerical results and similar behaviour is
observed in two dimensions.

1 Introduction

Discontinuous Galerkin methods have recently obtained renewed interest, motivated by
several appealing properties as well as the successful application to hyperbolic problems.
See the recent conference proceedings [5] for an overview of recent developments in this
area.

This paper grew out of an effort to analytically understand the properties of discontin-
uous Galerkin methods for elliptic problems. We present an analysis in one spatial dimen-
sion which we believe give new insights guiding the analysis in two dimensions, which we
present in a second paper. Throughout the paper we make an effort to present illustrating
numerical results verifying our analytical results.
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tDepartment of Applied Mechanics, Chalmers University of Technology, Goteborg, SE-412 96, Sweden,
jonas.niklasson@me.chalmers.se



We shall study a family of discontinuous Galerkin methods for second order elliptic
problems. The family contains the classical method of Nitsche [6], as well as the recent
method of Oden, Babuska, and Baumann, see [7], and stabilized version thereof. The
method of Nitsche has been analyzed by, among others, Wheeler [11], Arnold [1], and more
recently in the context of domain decomposition by Becker, Hansbo, and Stenberg [3]. The
method of Oden et al. is a nonsymmetric formulation for which the stability only has been
analytically established for cubics and higher order polynomials in one spatial dimension,
see [2]. However, extensive numerical results, presented in [7], indicate that the scheme
is stable in one and two dimensions for quadratic and higher order approximations. The
numerical experiments also indicated that the nonsymmetric scheme converged with order
p+ 1 in L? for odd order of approximation p, but only p for even order. Optimal order
energy norm error estimates for stabilized versions thereof, for which stability is trivial,
have also been analyzed in [9] and [10].

Our analysis of these schemes build on a novel splitting of the discrete space into a
direct sum of continuous piecewise polynomials and a space representing the discontinuous
part of the functions also satisfying a special orthogonality relation. Based on this splitting
we prove the following main results:

e A complete characterization of the parameters yielding an inf-sup stable scheme and,
as a consequence, optimal order energy norm error estimates.

e An analysis of the error in L? explaining the different behaviour of the nonsymmetric
scheme for odd and even order approximation.

Finally, we make some remarks on the elementwise conservative nature of the discon-
tinuous Galerkin method, which is a common motivation for the use of these methods, see
for instance [7] and [8]. We note that with the obvious definition of the numerical flux our
family of methods is always elementwise conservative, but, the numerical flux is in fact
nodally exact only for the symmetric scheme. For the nonsymmetric schemes there is a
nonzero constant added to the flux. The nodal exactness of the flux corresponds to the
well known nodal exactness of continuous Galerkin approximations of the Poisson equation
in one dimension.

The paper is organized as follows: in Section 2 we present the model problem and
method; in Section 3 we introduce the splitting of the discrete function space; in Section
4 we prove our main stability result and energy norm error estimates; in Section 5 we
prove L? error estimates; and in Section 6 we study the convergence of the flux and the
conservative nature of the method.



2 The model problem and method

2.1 The continuous equations

We consider the following one dimensional boundary value problem: find u : 2 — R such
that

—Uy, = f in Q, (1)
u=gp onlp,

U, =gy on ['y,

where u,, denotes the normal derivative nu,, with n the outward unit normal; the domain
is Q = [0,1], with boundary Q2 =T =TpUTy;and f: Q - R, gp : 'p — R, and
gn : 'y — R are given data. To insure uniqueness we shall assume that ['p is not empty.

2.2 The discontinuous Galerkin method

To formulate the discontinuous Galerkin method we let L = {K,} be a partion of the
interval Q into N subintervals (elements) K; = [E;_i, Ej| of length hg, = E; — E;_;
where £ = {E;}, 0 = Ey < E; < --- < Ey =1, is the set of nodes. At each node
E we define a normal n = n(E), such that n(Ey) = —1 and n(E;) = 1,5 = 1,..., N.
Furthermore, we let V" be the space of discontinuous piecewise polynomials of degree px
on each element K, i.e.,

={u:ulg € P (K),K € K}, (2)

where P, (K) is the space of polynomials of degree px on K.

Note that the length of the elements hg as well as the order of the polynomials px may
differ from element to element allowing h-p adaptivity.

The discontinuous Galerkin method reads: find v € V* such that

a(u”,v) = 1(v) for all v € V", (3)

where the bilinear form a(-,-) is defined by

a(v,w) = ax(v,w) — ag(v, w) + aag(w, v) + Bbe (v, w), (4)
with
axc (v, w) = (vg, ws)x, (5)
( ) = ((Un>’ [w])fl + (Una w)ED’ (6)
( ) = ( [ ]’ [w])fz + (h_lv’w)c‘:D’ (7)

and the linear functional [(-) by

l(v) = (f’ U) + (gNa U)&v + a(vm gD)ED + ﬂ(h_lgDa U)ED' (8)



Here « is a a real parameter and (3 is a positive real parameter. Further we have used
the following notations: the scalar products (u,v)x = > gex [ruwvde and (u,v)4 =
Yopeaw(E)v(E) with A C £ a subset of nodes; the partion & = & U Ep U Ey, with
&1 the set of interior nodes, £p the nodes on the Dirichlet boundary I'p, and £y the nodes
on the Neumann boundary I'y; the nodal average (u) = (u™ + v ~)/2 and the nodal jump
[u] = u~ —u™, with u* = lim,_,o+ u(EFsn(FE)); the normal derivative u,(EF) = n(E)u,(E),
where n(F) is the nodal normal defined above; and the meshsize h is the average mesh size
(h) for interior nodes and h/2 on the boundary.

3 A two-scale formulation of the dG method

3.1 A splitting of V"

Key to our analysis is a splitting of V* = V!@ V" into a direct sum of continuous functions
V! and discontinuous functions V%, satisfying a special orthogonality relation.

Theorem 3.1 (a) There is a splitting of V":

V=Vt gVt 9)
where V! is the subspace of continuous functions
Vh={veV":veC(Q),v|r, =0} (10)
and V¥ C V! is defined by
Vi ={v e V" ax(w,v) + ag(w,v) = 0 for all w € V"}. (11)

(b) The following identities hold:

a(Ve, ve) = axc(Ve, Ve),
a(ve, vg) = 0,
a(vg,vq) = aax(ve,vq) + Bbe(va, va),
a(vg,ve) = (@ + 1)ax(ve, vq) = (@ + 1)ag(ve, vq),

for all v, € Vf and vy € Vg.

Proof. To prove (a) we first show that VAN V4 =0. If v € V* N V? we have ag(w,v) =0
and thus ax(w,v) = 0. Choosing w = v gives ax(v,v) = 0 and thus v is a constant
function, which together with the boundary condition v =0 on I'p give v = 0.

Next we show that V* = VI + V. For each E € £ U Ep we solve the equation: find
Ya.E € VP such that

(w,(E)) FE €&,

for all w € V. (16)
’U)n(E) E e 5D,

a'IC(wa SOd,E) = {



The solution ¢4 will have support in Uxng.pK; be continuous in Q\ F; [par| = 1;
and (@qm) = 0. See the explicit formulas in Subsection 3.3 below. We now note that
Ve =V — Vg, With

vi= ) ¢anlv(E)]+ Y papv(E),

Ecé; Eeép

is indeed a continuous function which is zero on £p.

For (b) we have that [v.] = 0 and thus ag(w,v.) = bg(w,v.) = 0 for all w € V" and
v € V. Thus (12), a(ve, v.) = ax (v, v.), follows immediately. Next the definition of V?
gives

a(Ve, Va) = ax(Ve, va) — ag(Ve, Va) + aag (va, ve) + Bbe(va, ve) = 0,
which proves (13). Using that ax(vg, vq) = as(va, vq) We get

a(vd, va) = axc(va, Va) — ag(va, va) + aag(va, va) + Bbe(va, ve)

= aax (va, v4) + Bbe (v4, va),

which proves (14). Finally for (15) we have

a(Ud, Uc) = aIC(U'da Uc) — Qg (Ud, Uc)
+ aag(ve, ug) + Bbe (ve, Uq)

ax (Ve, ug) + ag(ve, ug)

(
(

1+ a)ag(ve, uq)

1 =+ a)a;c(ud, UC),

where we used the symmetry of ax(-, ). O

3.2 A two-scale formulation of the dG method

Writing v = u® @ u® and using the identities (13) and (15) we write the variational
equation (3) as a triangular system: find v @ u® € V* @ V! such that
a(uca Uc) + (1 + a)aK(ud: Uc) = l(vc)a (17)
a(ug,vq) = l(vg).
We note that with this particular splitting of V" the discontinuous scales, V?, are in fact not
coupled to the continuous scales, V. Furthermore, in the symmetric case, when o = —1,

there is no coupling from the discontinuous scales to the continuous scales. The two scales
are thus completely uncoupled, and the system (17) takes the diagonal form

) = U(we), (18)
l(’Ud).

? ,UC
a(uda Ud)



3.3 Construction of a basis for V"

From the definition of V* we derive the following equations for the basis functions

¢a,j(Ej-1) = ¢aj(Ejy1) = 0,
[4,(Ej)] =1 and (pq,;(Ej;)) = 0,
(4,5, )k = 0 for all v € P, _o(K).

Counting degrees of freedom we find that after the three first conditions are satisfied on
each interval there remains px — 1 degrees of freedom and thus we can make sure that
we have orthogonality to px — 1 functions corresponding to the dimension of the space of
polynomials of order px — 2. Thus the above equations determine a basis for V} uniquely.

Example 3.1 In Figure 1, we show the basis for V? for uniform order of polynomials
p=1,2,3,4. The functions are given by

_ &+l

pal€) =5, 0, p=1,
cule) = EEDLEN), £0, p=2
¢d(§):(§i1)(1j:28§+10§2), <0, p—3,
palé) = (€ £1)(1 £ 15 + 456 + 35€3) <0, p=d

2 7
where £ € [—1,1] and the mapping from K,;_; UK, = [E;_1, Ej41] onto [—1,1] is {(z) |k, =
(37 —.’L‘j)/hk,k :] — 1,]

4 Error estimates in the energy norm

4.1 Norms and preliminaries

We let ||v||s., denote the standard Sobolev norms for v € H*(w) on the set w C Q. For

brevity we write |[v]|s = ||v]s.0, [|V]lwe = [v]low, and |Jv|| = ||v||o for the L? norm. Next we
define the energy norm for, v € V", by
vl* = lllvlllc + vz, (19)
where |||v]|[x and |||v]||¢ are defined by
Wl = ax(v,v) = (vs, va)x, (20)
lolllz = be(v,v) = (A7), [v])e, + (B, v)ey, (21)

where we used the notation introduced in Subsection 2.2.



1/2 1/2

0 0
“1/2 - a ~1/2
j—1 J j+1 E;j_1 E;j Ejt1
(a)p=1 (b)p=2
1/2 1/2
0 0
~1/2 E; E; E; —1/2 E; E; E;
j—1 J j+1 j—1 J j+1
(c)p=3 (d)p=4
Figure 1: Basis functions for V4 forp=1,...,4.

We now state some useful standard inequalities which we will need below. The following
approximation property holds: for each K € K there is a linear operator mx : H'(K) —
Py (K) such that

v — mrculli e < B |ullp g for allv € H(K), 1= 0,1, (22)

where V*(K) = {v : v = w|x,v € V*}. A global interpolation operator 7 : H' — V" is
defined by (mv)|x = 7 (v|k). Further we have the trace inequality

[vllox < cllollxllvllie for all v € HY(K), (23)
see [4], and the inverse estimate

lvnllox < chicPl|vgllx for all v € Py, (K), (24)

where hy is the size of the element K. The inverse estimate is proved using scaling and
the constant will depend on the degree of polynomials p. Finally, we mention the simple
but useful inequality

€

1
2a2 + 2—61)2, (25)

ab <

for any a, b, and € € R with € > 0.



4.2 Stability analysis

Our main result in this section is a complete characterization of the values of the parameters
« and [ for which the inf-sup constant, is positive and independent of the meshsize. This
stability result is key for proving existence and energy norm error estimates.

We start with a result which gives a crucial equivalence between the edge and interior
parts of the energy norm for functions in V.

Lemma 4.1 For p > 1 the following estimate holds

ol < elljvlle v e Ve, (26)
and, for p > 2 we also have the reverse estimate

llvllle < ealllvlllxc v e Vg, (27)
where ¢y and ¢y are constants independent of h but dependent on p.
Example 4.1 The constants ¢; and ¢, are independent of the meshsize h but depends

on the degree of polynomials p used. Here we calculate approximate values of these con-
stants in the case of 'p =T for p = 1,2, 3, 4. The values are summarized in the table below.

| [p=1[p=2[p=3| p=4 |
cp | 1.00 | 3.00 | 6.00 | 10.00
Co o0 1.33 | 0.50 | 0.27

Note that c; < oo only for p > 2 since, depending on the boundary conditions, for p =1
there may be piecewise constant functions in V* forcing ¢, = 0 or there may exist sequences
of functions such that ¢c; — 0 as h — 0.

Proof. The first inequality follows by setting w = v in (11) and the following estimates
il = ax(v,v)
= —ag(v,v)

< d[[v]llxll[vllle;

where we used the inverse inequality (24). Finally dividing by |||v||| yields the estimate.
To prove the second estimate we consider an interior element K and assume that w is
supported in K and use partial integration in (11) to obtain

a(w,v) + ag(w,v) = (=Wa, V) Kk + ([Wel; (V) ok

Using the fact that (v) = 0 we obtain (—wge,v)x = 0. For p > 2 we may take w such
that —w,; > 0 and thus we conclude that v must be zero somewhere in K. The second



inequality now follows immediately from scaling and finite dimensionality. 0
To prove the main result we first study the stability properties on V* and V). We
sumarize our results in the following lemma.
Lemma 4.2 (a) for all «, B there is a constant m., such that
a(ve, ve) > me|||vell]> for all v, € V. (28)
(b) If a, B satisfy one of the following inequalities:
o, 206 forp>1,

B—cila| >6 forp>1,
a—cy|B] >0 forp>2,

for some positive constant 06 > 0. Then there is a constant mg > 0, such that
a(va, vq) > mylllvalll>  for all vg € VY. (29)

The constants ¢, and co are defined in Lemma 4.1.

Proof. To prove (a), we use (12) and the fact that |||v.|||¢ = 0 to get

a(ve, ve) = axc(ve, ve) = [[loellic = lllvel”
Hence (a) follows with m,. = 1.
Next we turn to (b). Using (14) we obtain
a(va, va) = aax(Va, va) + Bbe(va, va)
= aflvalllx + Bllvalllz.

For a, 3 > § we get (29) with my = §. Next for a < 0, we obtain

a(va, va) = of||vallic + Blllvallz
= ma[lvall[* + (e = ma)||vall[c + (8 — ma)llvall[2
> mal||val||* + ((8 = ma) — ex(|e| + ma)) [[lvalllz,
where we used (26). Thus for p > 1 and «, 3 such that 5 —c¢;|a| > § > 0, we get (29) with

mg = 5/(1 + Cl)-
Finally, for p > 2, we instead use (27) to get

a(va; va) = al[valllk + Blllvallle
= malllvalll® + (& — ma)[lvalllk + (8 — ma)[lvalllz
> mall|valll” + (0 = ma) — e2(|8] + ma))ll|val Ik

Thus for p > 2, and «, 3 such that o —c3|3| > 0 > 0, we get (29) with mg = /(1 +¢2).



Theorem 4.1 If the assumptions in Lemma 4.2 hold. Then there is a constant m > 0,
independent of h, such that

inf sup M Z m.
weV e [[[ull] [||v]]

Proof. Writing v = u, + ug and v = v, + vg, with u., v, € V! and ug, vq € V%, we have
a(te + tg, Ve + vg) = a(te, ve) + (@ + 1)ax (e, va) + a(ug, va),
where we used (13) and (15). Next setting
Ve + Va = Ue + YU, (30)
where v € R is a parameter, we get

a(Ue + Ug, Ve + V) = a(te, ue) + (@ + 1)ax (ug, ue) + va(uqg, ua).
> me||ucll” = 11 + af [[[uall| el + may|ludll
> (me — |1+ ale)|lucl[[® + (mey = [1+ afe™)|[|udl||*.
Here we used Lemma 4.2, the Cauchy-Schwarz inequality, and finally (25). Choosing €
such that m. — (1 + a)e > m'/2 and v > 1 such that m.y — (1 + a)e”t > m//2, we get
m' 2 2
alute + ttay ve + va) = o (uell* + wal 2)- (31)
for v, 4+ vg4 defined in (30). Next we note that, for v > 1, we have

[uwelll* + Mualll* _ 1 ( 1
> o (Muelll + Hlud\l\) > o lllue + ualll (32)
el | +y[lluall] — 27 2y

where the first inequality is proved using (25 ) and the second is just the triangle inequality.
Combining (31) and (32) we immediately get the desired inf-sup bound

) a(u,v) m'
inf sup ———— > — =m.
uevh yeyn [[[ulll [[Jv]]] — 4y

4.3 Computations of the inf-sup constant

In this section we verify our analytical results by numerical computations of the inf-sup
constant for various values of the parameters o and (3, the meshsize h, and the order of
polynomials p.
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The inf-sup constant can be calculated as follows
m = v/ Amin, (33)
where A, is the smallest eigenvalue of the eigenvalue problem
Ax = \Bzx. (34)

Here B is the matrix associated with the energy norm, i.e., |||v]||* = 6" Bo, A= K"B™'K
with K the stiffness matrix, i.e., a(v,w) = 97 K1), and © denotes a coordinate representa-
tion of v € V". See [7] for details on the derivation of the eigenvalue problem (34).

Example 4.2 We calculate the inf-sup constant m(a, 3) as a function of a € [-2,2]
and 3 € [—2,10]. We also demand that the discrete operator has no eigenvalues in the
left half-plane. Whenever there is an eigenvalue in the left hand half plane we define
m = 0. Further we consider the case of homogeneous Dirichlet conditions on the boundary
and we discretize with uniform partion of €2 into 10 elements and polynomials of degree
p=1,...,3. Results are presented in Figure 2.

4.4 Energy norm error estimates

Based on the inf-sup stability analysis presented above we can now derive optimal order
energy norm error estimates.

Theorem 4.2 Under the assumptions on « and B in 4.2, the following energy norm error
estimate holds

1/2
&
llu =il < o1+ ) (Z hKQ”KHquKH,K) -
KeK

h h

Proof. First we add and subtract the interpolant 7u of u to get u—u" = u—7mu+7u —u".

Here the first term is easily estimated:

1/2
|WL_Wumf£C<§:hK%KWMiHLK> : (35)

Kek

using the trace inequality (23) followed by the approximation property (22). Next for the
second term it follows from Theorem 4.1 that

1 _ h
Il — ] < L sup % (36)
m

vevh [oll

11



Figure 2: Contours corresponding to the following values of the inf-sup constant m =
0.05,0.25,0.5,0.75,0.95, from left to right, for p =1, 2, 3, 4.

Using Galerkin orthogonality (3) we obtain a(mu — u”, v) = a(7u — u,v). Since v € V", we
may apply the inverse trace inequality (24) to get the following estimate

lax (mu — u, v)| + alag (v, Tu — u)| + Blbe(Tu — u, v)| < cf||u — 7ul|||||v]]|- (37)

1/2
|1,K> [2]l]- (38)

Combining (36), (37), and (38), and finally using the approximation property (22) we
obtain

Furthermore, using the trace inequality (23) we obtain

Jag(mu — u,v)] < c(z il — mullclju — 7o

KekK

1/2
C
[l = wt]| < E(Z hﬁ”llullzﬁl,;{) , (39)

KekK

which together with (35) proves the theorem. 0

12



5 Error estimates in the L2 norm

In the remainder of the paper we assume that the a uniform mesh with parameter h and
order of polynomials p.

5.1 Preliminary estimates
Introducing the continuous dual problem: find ¢ € V such that
(v,e) = ax(v, ¢) — ag(¢p,v) forallv eV, (40)

where e = u — u" € L?(Q) is the error. We note that ¢ will be the solution of the Poisson
equation. Setting v = e and using that [¢] = 0 we get the error representation formula

lell” = a(e, @) — (o + 1)ae (g, e)
=ale,¢p —1d) — (a+ 1)ag(o,e), (41)

where we used the Galerkin orthogonality (3) to subtract an interpolant 7¢ € V* of 4.
Note that we cannot subtract an interpolant from the last term.

Using the Cauchy-Schwarz inequality and the approximation property (22) for the first
term and observing that ag (¢, e) = —ag (¢, uq) and using the Cauchy-Schwarz followed by
the trace inequality (23) for the second we obtain

1/2q 11/2
lell> < Chlllell[ 18llz + (e + DI 16l l[ual I
Finally, invoking the standard regularity estimates
[l < Cllell, l¢llz < Cllell, (42)

we get
lell < C(nllelll + (@ + V)l luall). (43)

Note that the important part is the second term which vanish for the symmetric formulation
but gives a nonzero contribution for o # 1. In the symmetric case, « = —1, we immediately
get the standard L? error estimate

lell < CRPlullps, (44)

by using (4.2). We next turn to an estimate of the remaining term occurring for o # —1.

5.2 The nonsymmetric case: uniform mesh

We shall now prove an L? error estimate for the nonsymmetric case, which gives an im-
proved rate of convergence for odd order approximation provided the solution enjoys some
additional regularity assumptions. We start with an improved estimate of the energy norm
of the discontinuous part of the solution.

13



Lemma 5.1 If the assumptions in Lemma 4.2 part (b) holds and the mesh is uniform.
Then we have the estimate

llugll < ch?* 7 Nlullpsiss, (45)

where 0 < s < 1, and the function B(s) is defined by

B(s) = { p odd (46)

0 p even.

Proof. By Lemma 4.2 and the equation for u® we get

malllug|l* < a(ug, uq)

= 1(ul)
<l sl(f van)l,

Ec&

where we used the expansion u}y = Yo . ﬂg,Ecpd, E-

We shall now study the orthogonality properties of ¢4 . Let Ly = supp(¢ar). First
we observe that ¢4 i is orthogonal to discontinuous piecewise polynomials of order p — 2,
thus in particular to polynomials of order p — 2 on Lg. Furthermore, for odd p we note
that o4 g is also orthogonal to (z — zg)?~!. This extra orthogonality holds since when the
mesh is uniform ¢4 5 is an odd function and for odd p, (z — zg)P~" is even.

Thus for odd p we have

(f, SOd,E) = (f - I.f, SOd,E),

where Il denotes an interpolation operator on L onto polynomials of order p — 1 for odd
p and p — 2 for even p.

Using the Cauchy-Schwarz inequality followed by a variant of the approximation prop-
erty (22) we get

|(fa ¢d,E)| = |(f - HLfa SDd,E)|
< |If = Uzfllz leaellz
< ch?™ PO £l p

|€0d,E||L-

Collecting the estimates we get

((F,ug)| = Y kP PO £l g gllaell

Ec€
1/2 1/2
<o(Swernsz,) (S ahe lal? )

< chP PO 115 gl

14



where at last we used the estimate

S (i ) llpasl < c(z h(ai.:,Emd,E(E)F)

EcE Ec&

< (Y o))

EcE
< || uglIlz-

Finally dividing by |||u?]|| yields the desired result. O

Using this lemma we immediately obtain the following L? norm error estimate.

Theorem 5.1 If the assumptions in Lemma 4.2 (b) holds and the mesh is uniform. Then
we have the following error estimate

lell < € (A llullpsa + lo+ 1ROl full 1) (47)

where ((s) is defined in Lemma 5.1.

Proof. Combining the L? error estimate (43) with the energy norm error estimate in
Theorem (4.2) and Lemma 5.1 gives the estimate. 0

Example 5.1 We calculate the rate of convergence as a function of o € [—2, 2], by using
a least squares fit on numerically computed L? errors obtained from uniform meshes with
25,50, and 100, elements for p =1,...,4. To insure a stable scheme for all « € [—2,2] we
have chosen 3 = 8, 15,40, 80, for p = 1,2, 3,4, respectively. The underlying equation is (1)
with f = sin(wz)/m* and homogeneous Dirichlet conditions. We thus have u € H*® for any
s and Theorem 5.1 predicts that we will obtain convergence of order p + 1 for odd p and
all a;, and order p for even p and o # —1, for which we expect order p + 1. The numerical
results presented in Figure 3 confirmes the prediction.

6 Estimates of the error in the flux

Introducing the numerical flux
oM(E) = (u,(F)) — ph~[u(E)], E €& UE&p. (48)

n

We observe that for each element K € K the conservation law

/ a::+/ gN+/f=0, (49)
8K\FN OKNI'y K
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Figure 3: The convergence in the L? norm for p=1,...,4 for -2 < o < 2.

holds, by choosing the test function in (3) to be one on K and zero elsewhere.

We shall now derive an estimate for the error in the numerical flux o”(u")—o,, (1), where
0n(u) = u,. Note first that if I'y is non empty then it follows from (48) that o = o,,, i.e.,
the flux is exact. In the case of I'p = I' the same reasoning shows that

on(u) = op(u") = ¢, (50)

for some constant c, i.e., the error must be constant.
We first observe that given 1/ there is a unique v € V" such that [v] = ¥, [v,] =
0, vz |k = 0. We then have

ax(w,v) — ag(v,w) =0, (51)
for w = u and any w € V". Using this identity we conclude that
(ot (w), v) = ag(w,v) — Bb(w,v)
= a(w,v) + (1 + a)ag (v, w). (52)

h

Furthermore, setting w = v — u" we get

(on(u) — o (u"), ) = a(u — u",v) + (1 + a)ag (v, u — u"),

= (14 a)ag(v,u — u"), (53)
since a(u — u” v) = 0 for v € V" by Galerkin orthogonality (3). Finally, using that
ag(v,u — u") = —ag (v, ul) we obtain the error representation formula

(on(u) — o™ (uh), ) = —(1 + a)ag (v, uk). (54)

Using our earlier estimates we obtain the following error estimate.

16



Theorem 6.1 If the assumptions in Lemma 4.2 (b) holds and the mesh is uniform. Then
we have the following error estimate

1/2
2
(Z (on() — oli(u)) ) < cloc 1RO (53)

where [3(s) is defined in Lemma 5.1.

Proof. Starting from the error representation formula we have

(o (1) — op(u"), ¥)] < 1+ of |ag(ug)]
< 1+ af va(E))| |[ug(E)]
< C1+ ol [lug(E)]],

since |(v;(E))| < C. Combining this estimate with Lemma 5.1 we obtain the desired result.

O

Thus we note that for the symmetric case we have @ = —1 and the error is identically

zero, while in the nonsymmetric case the error will not be zero but it will have high order
of convergence.
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