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Abstract

In this paper we analyze a nonsymmetric discontinuous Galerkin method for
elliptic problems proposed by Oden, Babu§ka, and Baumann. Our main results are a
complete inf-sup stability analysis and, as a consequence, error estimates in a mesh
dependent energy norm allowing variable meshsize and order of polynomials. The
analysis is carried out in two spatial dimensions on an unstructured triangulation.

1 Introduction

Discontinuous Galerkin (dG) methods for numerical approximation of partial differential
equations is a classical technique which have recently received new interest, motivated by
some attractive features including a flexible discretization allowing easy implementation
of h-p adativity , nonmatching grids, and a local conservation property. Of course there
are disadvantages too, the number of degrees of freedom is larger, see [12], and efficient
iterative solvers are not yet developed.

In this paper we are concerned with the analytical and numerical study of the recent
nonsymmetric dG method for elliptic problems proposed by Oden, Babuska, and Baumann
in [16]. This method does not contain the stabilizing (penalty) term as the classical sym-
metric Nitsche method [15]. Plenty of numerical results were presented in [16], showing
that a remarkable stability is hidden in the nonsymmetric form for polynomials of order
higher or equal to two in one and two spatial dimensions. The desire to analytically un-
derstand the stability properties of the nonsymmetric dG method is the motivation for the

*Research supported by The Swedish Foundation for International Cooperation in Research and Higher
Education. The first author was also supported by the Swedish Council for Engineering Sciences.

tCorresponding author, Department of Mathematics, Chalmers University of Technology, Goteborg,
SE-412 96, Sweden, mgl@math.chalmers.se

tDepartment of Applied Mechanics, Chalmers University of Technology, Goteborg, SE-412 96, Sweden,
jonas.niklasson@me.chalmers.se



present paper. In an earlier paper [13] Larson and Niklasson showed complete stability
estimates for a family of dG methods, including both the nonsymmetric method and the
symmetric Nitsche method, in one spatial dimension. These results extended the analytical
stability estimates presented by Babuska, Baumann, and Oden in [4] for polynomials of
order three or higher in one spatial dimensions. The analysis presented in this paper builds
on the ideas in [13].

Our main result in this work is a complete discrete stability analysis, where we prove
that the method is inf-sup stable with respect to a mesh dependent energy norm for
quadratic and higher order polynomials on a general unstructured triangulation in two
spatial dimensions. We present numerical calculations of the inf-sup constant confirming
our analytical estimates. Our analytical and numerical results confirms the numerical
observations reported in [16]. The case of linear ploynomials is also investigated and we
show that the inf-sup constant is either zero or depends on the meshsize (depending on
boundary conditions) if the mesh is of checkerbord type.

From the study of the discrete stability properties we immediately obtain optimal order
a priori error estimates in the energy norm, allowing, local meshsize as well as local degree
of polynomials. We present numerical results illustrating our error estimates. In two
recent papers, Riviére, Wheeler, and Girault [17] and [18], prove an a priori error estimate
of the L? norm of the gradient of the error for the nonsymmetric dG method by relating
it to a method where the discontinuities on each edge have average zero. However, no
stability estimate for the nonsymmetric dG method is presented. We also mention the
comprehensive overview and analysis of a large class of dG methods by Arnold, Brezzi,
Cockburn, and Marini [3].

Key to our analysis is a splitting of the space of all discontinuous piecewise polynomials
into a sum of a space of functions with constrained discontinuities, representing continuous
scales, and a space of discontinuous functions with small spatial mean value. This splitting,
properly constructed, leads to a triangular system which can be analyzed.

The dG method for elliptic problems appears to originate from the work of Nitsche[15],
where a consistent weak treatment of Dirichlet boundary conditions was introduced. Later
methods based on discontinuous approximation and weak enforcement of continuity om
interelement boundaries by means of terms similar to Nitsches method were introduced,
see Douglas and Dupont [10], Baker [6], Wheeler [20], and Arnold [2]. Recently the interest
for dG methods have increased, see the proceedings [9], in part, motivated by the success
of dG methods for hyperbolic problems. Furthermore, extensions of dG methods to second
order problems have been suggested by Bassi and Rebay [7] and Oden et al. [16]. See also
Arnold et al. [3] for an overview.

The remainder of this paper is organized as follows: in Section 1 we introduce the
nonsymmetric dG method and the necessary notation; in Section 2 we introduce the non-
symmetric dG method; in Section 3 we present the splitting of the discontinuous piecewise
polynomial space and the two scale formulation of the dG method; and finally in Section
4 we show the stability estimate and the error estimate in the energy norm.



2 The model problem and dG method

2.1 A model problem

Let Q be a polygonal domain in R? with boundary I' divided into two disjoint parts
' =Ty UTIp. We consider the following linear elliptic model problem: find u : 2 - R
such that

—V-ou)=f inQ, (2.1)
u=gp on[p,

on(u) =gy on I'y.
Here the flux o(u) is defined by
o(u) = AVu, (2.2)

with A a constant (or piecewise constant) symmetric positive definite matrix and o, (u)
denotes the normal flux

on(u) =n- AVu, (2.3)

where n is the exterior unit normal of I'. It is well known that there is a unique solution
in H'(Q) for f € HY(), gp € H'/?>(Tp), and gy € H'/2(T'y) to (2.1), see [11], where
H*(w) denote the standard Sobolev spaces on the set w.

2.2 Discrete spaces

We let I be a triangulation of {2 into shape regular triangles K and we denote the set of
all edges E by £. Further the set of edges is divided into three disjoint sets

£=EUEpUEN, (2.4)

where &7 is the set of all edges in the interior of €2, £p the edges on the Dirichlet part of
the boundary I'p, and £y the edges on the Neumann part I'y. We let h : 2 — R denote
the mesh function such that h|x = hx = diam(K) and h|g = hg = diam(F), i.e., the
length of the edge E. We let

V=P P(K), (2.5)

KeK

where P,(K) is the space of all polynomials of degree less or equal to p defined on K. The
degree of polynomials, as well as the meshsize, may vary from element to element so that
p|xk = pk, and thus we allow h-p adaptivity.



2.3 The nonsymmetric dG method

In [16] Oden, Babuska, and Baumann proposed the following nonsymmetric dG method:

find uj, € V such that
a(up,v) =1l(v) forall v e V.
Here a(-,-) is a bilinear form defined by
a(v,w) = ax(v,w) — ag(v, w) + ag(w,v),
where

ax(v,0) = 3 (0(v), Vo),

Kek

ag(v,w) =Y ((0a(v)), [w])p,

Ee&UED

and [(-) is a linear functional defined by

1(v) = (f,0) + Y (gn: [Ds+ Y (90, (ou(v))s-

Ee€&n Ecép

We employed the notation

(v} = {(v+ +v7)/2 E €é&;,

vt FE e é&p,

for the average and

] vt —wvT E €&y,
vl =
vt EGgD,

(2.6)

(2.7)

(2.10)

(2.11)

(2.12)

for the jump at an edge E, where u*(z) = limy_, 50 u(z Ftn), x € E, and n is the exterior
unit normal to F for F € £p U &y and a fixed, but arbitrary, unit normal to F for E € &,

see Figure 1.

Lemma 2.1 If f € L?, gp € H'*(Tp), and gy € L*(T'y) then the linear functional I(-)

is bounded on V and the exact solution u of (2.1) satisfies
a(u,v) = l(v),

forallv eV.

(2.13)



Figure 1: The plus and minus sides of an edge.

Proof. The first statement is obvious. For the second we note that the normal trace
on(u) of o(u) is well defined in L?(E) on all edges E € & since the stability estimate

lo@)ll + IV - a(u)ll < c(lFll + llgpll/ars + llgnllry) holds. 0

Here and below we let ||v]|s ., and |v|s,, denote the standard Sobolev norms and semi-
norms, respectively, for v € H*(w) on the set w C Q. For brevity we write ||v||s = ||v]
lv]lw = lv]low, and ||v]| = ||v]|o,q for the L? norm.

S,Qa

Remark 2.1 The dG method enjoys a local elementwise conservation property. Restrict-
ing, for simplicity, our attention to an element K such that 0K N'[' = ¢ we obtain the

discrete conservation law
/ f+ / (on(u)) =0, (2.14)
K OK

by choosing v =1 on K and v =0 on 2\ K in (2.6). See, the discussion in [16].

2.4 The energy norm and some useful inequalities

We equip V with the following mesh dependent energy norm

[[olll* = [Jolll% + [Kon())IZ + 1R [0]1|F, (2.15)
where
vl =D (AVo, Vo), (2.16)
KeK
lwlz= > A0} (2.17)
Ec&UED

Next we recall some useful standard inequalities which we will need in our developments.
First we have the trace inequality

ol = clioll (B vl + ol i)~ for v e H'(K), (2.18)



where ¢ is a constant independent of h. This inequality follows by mapping to the unit
size reference element K, employing the trace inequality

loli3g < cllvllzllvll, &z for v e H'(K), (2.19)

see Brenner and Scott [8], and finally transforming back to K. Furthermore, the following
inverse estimate will be useful

[{on(@))lle < Clllvfl forveV, (2.20)

with constant C' dependent on the degree of polynomials p but not on the meshsize h.
This estimate can be shown by scaling, see Thomée [19] for details. Finally we mention
the useful inequality

1
ab < %aQ + 5 (2.21)

for any a, b, and € € R with € > 0.

3 A two-scale formulation of the dG method

3.1 A splitting of V

Theorem 3.1 For p > 2 there is a decomposition of V into a direct sum

V=V, 4V, (3.1)

where
Va={v eV :ax(w,v) —ag(w,v) =0 for all w € V}, (3.2)
V.={veV:a(wv)=0 for al w e V;}, (3.3)

with bilinear forms defined in (2.8) and (2.9). Furthermore, for p > 2 the following norm
equivalence holds

alllvlll* < llvelllk + [llvalllk < eallfofll?, (3.4)
with constants c¢; and co tndependent of h but dependent on p.

For the proof of Theorem 3.1 we need the following two lemmas.

Lemma 3.1 For each edge E € &1 U Ep there is a function pr € Vy such that
lpu] =1 onE, (3.5)
/ [oglv =0 forallve P, (E') and E' € £\ E, (3.6)
El

where Pp_1(E") denotes the space of polynomials of order p— 1 defined on E'.
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Proof. We consider the case E € &;, the case E € &p is similar, and it is also easy to
see that the proof does not work out for £ € £y. We construct ¢g elementwise. Let
K*, K~ € K be the triangles which share an interior edge F. Let z denote the coordinate
orthogonal to E and H* be the height of K*, and let

vk = Lp(2(z/H*) F1)/2, (3.7)

where L, denotes the Legendre polynomial, see [1], of order p defined on [—1, 1]. We begin
by verifying that ¢ € V;. Note that the condition

a'lC(w7 U) - af(wu U) = Oa (38)
for all w € V, is equivalent to
_(V ’ O-(w)v U)K = (Un(w)a <v>)3K7 (39)

for all w € Vi and K € K. Note that it follows from the fact that the Legendre polynomial
L, is orthogonal to all polynomials of order p — 1 that ¢g satisfies

—(V-o(w),¢p)x =0, (3.10)
(on(w), (¢E))ax =0, (3.11)
where in the last equality we also used that (¢g) = 0 on E. Thus ¢g is in V,;. The
properties (3.5) and (3.6) of ¢g are direct consequences of the construction. O

Lemma 3.2 Forp > 2 there is a w € Vg for each v € V such that

IR PlllE = ) ((on(w)), Pole]) s, (3.12)

Ec&UED
llwlllx < el Po[v]lle, (3.13)

with constant ¢ independent of h and p, and P, the edgewise L?>-projection on constant
functions.

Proof. Let K be a triangle, E one of the edges of K, H the height of K orthogonal
to E, and z € [0, H] the coordinate orthogonal to E. Then the normal derivative of the
function z(z/H — 1) is one on E and has average zero on the two other edges. Based on
this observation and the fact that A is positive definite we conclude that for p > 2 we can
construct a w' € YV, for each v € V such that

Y (ou(), Polo])s = Ik Ro[v]lIZ, (3.14)

Ee&UED

llw'lllc < ellh" Po[v]le- (3.15)



Next, for p > 2, we define w € V; by
ax(w,v) = ax(w',v) for all v € V,. (3.16)

We note that setting v = w and using the Cauchy-Schwarz inequality gives

llwllle < [llw'lx, (3.17)
and thus it follows that
llwlllx < ellh™" Po[v]||e- (3.18)
Using the definition of V; we get
ag(w,v) = ag(w',v) for all v € Vg, (3.19)

and choosing v = ¢g, see Lemma 3.1, we find that
Py{on(w)) = Py(on(w')) on E, (3.20)

for each edge £ € £ U Ep. 0

Remark 3.1 The construction of w' is a consequence of the classical nonconforming
quadratic Morley element [14]. The degrees of freedom of the Morley element is the nodal
values and the values of the normal derivative at the midpoints of the edges.

Lemma 3.3 It holds
|h~ (I = Po)[v]lle < clljvlllx  for allv €V, (3.21)
with constant ¢ independent of h and p, and P, the edgewise L*-projection on constant

functions.

Proof. Note that we may subtract the projection of v onto piecewise constants myv as
follows

1P — Po)[v]llz = Ih~" (1 — Po)[v — mo]|2 (3:22)
<eS - 7r0v||K(h_1||v — mov| e + |lv — W”LK) (3.23)

KexK
< c|[ollI%, (3.24)

where we finally used the interpolation estimate (4.12) together with the fact that the
H'-seminorm can be estimated by the energynorm. n



Proof of Theorem 3.1 Clearly V = V. 4+ V; by the definition. Assume that v € V. N V.
Then we conclude that ax(v,v) = 0 and thus v is a piecewise constant function. It follows
that ag(w,v) = 0 for all w € V,, invoking Lemma 3.2 we find that v = 0. Therefore the
sum is direct for p > 2.

Starting with the left inequality in (3.4) we first observe that, using the inverse inequal-
ity (2.20) and the triangle inequality, we have

oll* < elllofllk + 1R~ [o]llz
< c(lleallE + lloall2) + 1511, (3.25)
and thus we need to estimate ||h™'[v]||2. Using the triangle inequality we have
1h ollle < 1A (I = Po)[wllle + [IB* Po[v]lle- (3.26)
For the first term on the right hand side in (3.26) we have, using Lemma 3.3,

Ih=(I = Po)[w]lle < cfllvlllx < C<|||Ud|||lc + |||vc|||zc)- (3.27)

Next for the second, invoking Lemma 3.2 gives

b Pollllz = Y ({oa(w)), Polv])e (3.28)
= Y (ou@),De— Y. ({ou(w)), (I — Po)u])s (3.29)

For the first term on the right hand side in (3.27) we have the estimate

Y. (o), [De= Y ({on(w) [va)e (3.30)

Ee&rUép Ee&rUEp
= (o(w), Vua)x (3.31)
KeK
< fwlllc/lvalllx (3.32)
< c|h™ Po[v]llellvalllx (3.33)

where we used the fact that w € V; in (3.30); the definition of V; in (3.31); the Cauchy-
Schwarz inequality in (3.32); and finally the stability estimate (3.13) in (3.33). For the
second term

Y (ou(w)), (I = Ro)lo)s < [Kou(w)) el (I = Po)h™"[v]le (3.34)

Ec&rUEp
< dfffwlllxllv][x (3.35)
< cl|h Pol] [lellv]l[x (3.36)



where we used the Cauchy-Schwarz inequality in (3.34), the inverse inequality (2.20) and
Lemma 3.3 in (3.35), and finally the stability estimate (3.13) in (3.42).

Starting from (3.29) and using the triangle inequality together with estimates (3.33)
and (3.42), and finally dividing with ||h ' Py[v]||¢, give

I8~ Polollle < e(lleall + lvellic), (3.37)

which together with (3.26) and (3.27) prove the left inequality in (3.4).
We now turn to the proof of right inequality in (3.4). Starting from the definition (3.2)
of V; in Theorem 3.1, and setting w = v, we get

H'UdH|12C = ax(Va, Va)
= ag(vg,v)
< [{on(wa)llellh™ V]l
< cfl|valllxc[[lv]]],

where we used the Cauchy-Schwarz inequality, and at last, the inverse inequality (2.20
and the obvious fact that ||~ [v]||¢ < ||[v]||. Finally, dividing by |[/|va|||x, and squaring
both sides, give

[Jvall[x. < cll[oll]*. (3.42)
Next for v. we simply have
lvelllic = llv = valll (3.43)
< (Il + leallZ) (3.44)
< c[[l]l?, (3.45)

which together with (3.42) prove the right inequality in (3.4). At last tracing constants we
find that both ¢;! and ¢, are of the form cC? + ¢, where ¢ denote constants independent of
both A and p, and C' is the constant in the inverse inequality (2.20), which depends on p.

3.2 A two-scale formulation of the dG method

Here we shall derive a system of equations corresponding to (2.6) using the splitting given
in Theorem 3.1. Writing v = u, + u4 and v = v, + v4 and using the following identities

a(te,vq) =0, (3.46)
a(ug, ve) = 2ax(ug, ve), (3.47)
a(uq, va) = ax(Ud, va), (3.48)
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which are direct consequences of Theorem 3.1, we obtain a triangular system of the form:
find v = u. + ug € V. + V4 such that

a(te, ve) + 2ax (ug, ve) = U(ve), (3.49)
a;c(ud, Ud) = l(’l)d).

We note that with this particular splitting of V' the discontinuous scales, V;, are in fact
not coupled to the continuous scales, V..

3.3 Checkerboard solutions for p=1

For p = 1 the splitting (3.1) in Theorem 3.1 is not direct and the norm equivalence (3.4)
does not hold in general. This fact can be seen as follows. Using Green’s formula we have

Z(Vw, AVv)g = Z(—V -Vw,v)g

KeK KeK

+ Y ([oa()], ()& + (on(@), W)e+ Y (on(w),)s.

Eecé&r EcEpUEN

Now if v is a piecewise constant function then Vv = 0, and if w is a piecewise linear
function then —V - AVw = 0 (recall that A is piecewise constant). Using these facts we
get

ag(w,0) == ([on(w)], (W))e — Y (ou(w), v)s,

Ec&r Eetn

and thus if €y is empty and (v) = 0 on each edge then ag(w,v) = 0 for all w € V. Going
back to the splitting V = V, + V,, in Theorem 3.1 we find that v € V. N V; and thus the
splitting is not direct. Further it is easy to see that |[|v[||x = 0, while |||v|||* # 0 and thus
c; must be zero, i.e., (3.4) does not hold. However, a piecewise constant function v, with
(v) = 0 on each E € &r, does only exist on a checkerboard mesh, i.e., a mesh which could
be colored as a checkerboard with two colors. In Figure 2 we give an exampel of such a
function v on an unstructured checkerboard triangulation of the unit square. In the case
when €y is not empty but the mesh is a checkerboard mesh we instead get that ¢; — 0 as
h — 0. However, a general unstructured triangulation, is usually quite far from being a
checkerboard mesh and in such a situation the norm equivalence will in general hold even
for p = 1. See the computations of the inf-sup constant presented below.

4 Stability analysis and error estimates in the energy
norm

4.1 Stability analysis

Our main result in this section is a proof that the inf-sup constant, see for instance [8],
is positive independent of the meshsize. This stability result is, as is well known, key for

11



(a) (b)

Figure 2: (a) Checkerboard solution with black = —1 and white = 1 and (b) the corre-
sponding triangulation of the unit square

proving existence and uniqueness of the discrete solution as well as error estimates in the
energy norm.

Theorem 4.1 If p > 2 then there is a constant m > 0, such that

inf sup _alu,v) > m. (4.1)
weV ey |[[[ull] [||v]]
The constant m is independent of h but depends on p.
Proof. Using identities (3.46-3.48) we have
a(te + Ug, Ve + vg) = a(te, ve) + 2a(te, va) + a(ug, va)- (4.2)
Setting
Ve + Vg = Ue + YUg, (4.3)
where v € R is a parameter, we get
a(ue + ta, Ve + va) = |||ucll + 2ax (ua, ue) +|[ualll (4.4)
> [[fuelllE = 2 [[[ealllicl[wel e + ¥ llual % (4.5)
> (1= e)Juclll + (v — e [ualllk- (4.6)

!

Here we used the Cauchy-Schwarz inequality and (2.21). Choosing e such that 1 —e > m
and v > 1 such that v — e ! > m’, we get

a(ute + ttay e +7ua) = (Il + a1 ). (4.7)

12



Next we note that, for v > 1, we have

calllue + yualll® < [lluelllk + 7*lllualllk (4.8)
<92 (1lwell + el E). (4.9)
and thus we conclude that
[1ue + ualll l[ue + yuall] < CI17<|||uc|||;2c + |||Ud|||12c)- (4.10)
Combining (4.7) and (4.10) we imediately get the desired inf-sup bound
!
inf sup alu, v) > am _ . (4.11)
ueV ey [[[ull[ [0l =~
(|

Example: Computation of the inf-sup constant We compute the inf-sup constant
for the discrete Laplacian defined by (2.6) on the unit square Q = [0, 1]? with homogenous
Dirichlet conditions on I'. The triangulations are quasiuniform unstructured with N ele-
ments. For details on such computations we refer to Oden et al. [16]. In Table 1 we present
the inf-sup constant m for a variety of triangulations and p = 1,...,4. We note that the
inf-sup constant is independent of the number of elements (or meshsize) and decreases with
increasing p > 2, as expected. Note also, that for p = 1 the inf-sup constant is indeed
strictly positive due to the fact that these computations are done on an unstructured grid
in two spatial dimensions, which is typically not close to a checkerboard mesh.

N |p=1|p=2|p=3|p=4

72 | 0.054 | 0.116 | 0.071 | 0.047
290 | 0.022 | 0.115 | 0.068 | 0.044
1300 | 0.022 | 0.115 | 0.067 | 0.044
2604 | 0.021 | 0.116 | 0.070 -
5366 | 0.023 | 0.115 -

Table 1: The inf-sup constant m for different p and meshes with N elements.

4.2 FError estimates in the energy norm

We first recall that given u € H®(K), there is mgu € P,(K) such that the following
estimate holds

lu — macullnie < Pl Rl (4.12)

where 0 < r < s, 4 = min(p + 1, s) and ¢ is a constant independent of h and p, see [5].
Further we let mu € V be defined by (7v)|x = 7k (v|k). Using (4.12) we get the following
lemma.

13



Lemma 4.1 Let u € H? then

1/2
—(25—=3) ; 2(pu—1
mu—m\HSc(ZpK‘ TR >\u|§,K) : (4.13)

KeK

where mu € V 1is defined in Subsection 2.2.

Proof. With n = u — mu we have

linll* = lnllk + Kon DIz + 17 on(m)]llz-

Using the boundedness of A, we get ||n||x < c||n|l;. For the second term we invoke the
trace inequality (2.18), elementwise to obtain

o)z <) hIIWIIK(h‘IIIVnHK

Kek

<3 Illue(Inllxe

KeK

For the third term we get in the same way

I mll2 < e 2 A Ml (B Il

KeK

Now (4.13) follows directly from the interpolation error estimate (4.12). O

Using the stability estimates and interpolation error estimate we obtain the following
energy norm estimate.

Theorem 4.2 The following energy norm error estimate holds

1/2
e = unll* < (1 +m™) (Z P 2 ) ,

Kek

where ¢ denotes constants independent of h and p. The constant m, defined in Theorem
4.1, is independent of h but depends on p.

Proof. First we write

[lv = wunll| = [llw = 7ull| + [[lwu — walll, (4.14)

14



—— p=1
—_— p = 2
—= p= 3
- p=4
=
10°
Figure 3: The energy error as a function of the average meshsize hy, for p=1,...,4.

where 7 is the local L? projection on each element. Since mu — u, € V it follows from
Theorem 4.1 that the second term can be estimated as follows

a(mu — up, v)

v/l

< [l = mull], (4.15)

m|||7mu — upl]| < sup
veEV

where in the second inequality we used Galerkin orthogonality (2.6) to get a(mu — up,v) =
a(mu—u,v), and then the Cauchy-Schwarz inequality gives a(mu —u, v) < |[|7u—ul|], |||v]|-
Together (4.14) and (4.15) give

e = unlll < (14 m H)[lu = wull,

and the right hand side can be now be immediately estimated using Lemma 4.1. 0

Example: The error in the energy norm. We consider the Poisson equation (2.1) on
the unit square, Q = [0, 1]?, with homogeneous Dirichlet boundary conditions, v = 0, on
the boundary I' and the right hand side f chosen so that the exact solution is u(z,y) =
sin(7z) sin(my). The triangulation is unstructured and all triangles are of approximately
the same size. We plot the error as a function of the average meshsize h,, defined by
haw =1/ V2N where N is the number of elements.
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