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A HYBRID METHOD FOR THE WAVE EQUATION

LARISA BEILINA, KLAS SAMUELSSON, AND KRISTER AHLANDER

ABSTRACT. Hybrid finite element/finite difference simulation of the wave equation is
studied. The simulation method is hybrid in the sense that different numerical methods,
finite elements and finite differences, are used in different subdomains. The purpose is to
combine the flexibility of finite elements with the efficiency of finite differences.

The construction of proper geometry discretisations is important for the hybrid ap-
proach. A decomposition of the computational domain is described, which yields simple
communication between structured and unstructured subdomains.

An explicit hybrid method for the wave equation is constructed where the explicit finite
difference schemes and finite element schemes coincide for structured subdomains. These
schemes are used in the hybrid approach, keeping finite differences on the structured
subdomains and applying finite elements on the unstructured domains. As a consequence
of the discretisation strategy, the resulting hybrid scheme can be regarded as a pure finite
element scheme. Any numerical difficulties such as instabilities at the interfaces are thus
avoided.

The feasibility of the hybrid approach is illustrated by numerous wave equation simu-
lations in two and three space dimensions. In particular, the approach can easily be used
for implementing absorbing boundary conditions.

The efficiency of different approaches is a key issue of the current study. For our test
cases, the hybrid approach is about 5 times faster than a corresponding highly optimised
finite element method. It is concluded that the hybrid approach may be an important
tool to reduce the execution time and memory requirement for this kind of large scale
computations.

1. INTRODUCTION

When simulating partial differential equations in three space dimensions, it is important
to use efficient implementation strategies, in particular with respect to memory usage.
This motivates our research on hybrid methods, which combine the flexibility of the finite
element method with the efficiency of the finite difference method. Finite differences are
used where the geometry is simple, and finite elements are used where the geometry is
more complex. Hybrid approaches has also been studied in [4, 5].
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In order to evaluate our hybrid approach, we simulate the wave equation in two and
three dimensions. The computational domains for this kind of problems often exhibit large
regions where the geometry is simple, and small regions where the geometry is complex.
This suggests that a hybrid approach might be beneficial. In this paper, we discretise the
scalar wave equation in time with explicit methods. Both absorbing boundary conditions
and Dirichlet boundary conditions are used.

The finite difference stencil is constructed by applying the finite element method with
node based quadrature rules on a structured Cartesian grid which cells have regularly
subdivided into triangles and tetrahedra, in two and three space dimensions, respectively.
By this construction will the proposed hybrid method and the finite element method give
identical results, which is validated in numerical experiments of our implementation.

A main concern for hybrid methods is the possible instability of the method at interfaces
between regions with different methods. In our case this issue is resolved by the following
observation: Since the hybrid computations are identical to the finite element method,
the stability of the hybrid method is determined by the stability of the underlying finite
element method.

Another important research topic for our project is to implement appropriate software
for the hybrid method. We present a set of C++ classes, developed in order to handle
space discretisations that consist of both structured, Cartesian, grids, to be used with finite
differences, and unstructured grids, for usage with finite elements. Techniques supporting
the necessary communication between subdomains are also presented.

When comparing our hybrid approach with a pure finite element method, our results
show that the hybrid method is faster, in particular for problems where the memory de-
mands are high.

We conclude that our hybrid approach is especially useful for large problems where
the computational domain consists of big, simple, regions, where Cartesian grids can be
used, together with relatively small regions, where the geometry is more complex and
unstructured grids have to be used.

2. THE MATHEMATICAL MODEL

The model problem is the wave equation

82
(2.1) 8—;’; = V- (a*Vu) + f, t€QCR? t>0,
(2.2) u(z,0) = 0, z€Q,
(2.3) %u(m, 0) = 0, z€9Q,
(2.4) w =10, z€l, t>0

where u(z,t) is unknown, a is the wave velocity, x ranges over the points of the space
domain, ¢ over the time, f is the source function, and I' denotes the boundary of the
domain €2. We can rewrite this second order equation as a system of first order equations
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FIGURE 1. Domain decomposition. The hybrid mesh (c) is a combination
of the structured mesh (a) and the unstructured mesh (b) with a thin over-
lapping of structured elements. The unstructured grid is constructed so that
the grid contains edges approximating an ellipse.

in time using the substitution u; = %u and uy = u, thus obtaining

0

(2.5) Friche V- (a®Vuy) = f, z€Q,
0

(2.6) Stz = U, TE Q,

(2.7) u1(z,0) = ug(x,0) = 0, z€Q.

In many wave equation applications, only a small part of the computational domain
) is complex enough to motivate a more complex unstructured discretisation, whereas
quite large regions of the computational domain are sufficiently discretised with simple,
Cartesian grids. For our exposition, our model domain consists of two regions, Qrgys and
Qrpur, not necessarily simply connected. In the relatively small Q2zg), domain, we assume
that an unstructured discretisation is appropriate. In the 2z pj), domain, we assume that
a structured, Cartesian, grid is suitable. Fig. 1 illustrates the principle in two dimensions.
Our three-dimensional geometries are built up similarly. The FEM grid is generated such
that the thin overlapping domain consists of simplexes obtained by splitting the structured
cells as described in Fig. 2. In the interior part of the FEM grid the discretisation is allowed
to be truly unstructured.

In most of our test cases, we have used Dirichlet boundary conditions. We have also
used an absorbing boundary condition, taken from [6]. At a boundary I', we then use
d d

U — z-ulp = 0, where 0/0n is the normal derivative.

3. THE NUMERICAL METHOD

With a hybrid discretisation of the computational domain as described in the previous
section, we are now in a position to formulate our hybrid algorithm. We observe that the
interior nodes of the computational domain belong to either of the following sets:

we: : Nodes interior to 2gpys and boundary nodes to Qrga,
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(b) A hexahedron,  split into six tetrahedra.

FIGURE 2. In the overlapping domain the finite element grid is created by
splitting the structured cells into simplexes as depicted in (a) and (b) for 2D
and 3D, respectively.
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Ficure 3. Coupling of FEM and FDM. The nodes of the unstructured FEM
grid of (a) is shown in (b), where rings and crosses are nodes which are shared
between the FEM and FDM grids. The remaining nodes are marked with
stars. The ring nodes are interior to the FDM grid, while the nodes crosses
are interior to the FEM grid. At each time iteration, the FDM solution
values at ring nodes are copied to the corresponding FEM solution values.
At the same time at cross nodes the FEM solution values are copied to the
FDM solution values.
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wy: : Nodes interior to Qrgy and boundary nodes to Qppars,
wy: : Nodes interior to Q2rgas and not contained in Qrpay,
wp: : Nodes interior to Qrpys and not contained in Qrgay.

Fig. 3 illustrates the situation for a two-dimensional domain where some nodes are confined
to an ellipse, which requires an unstructured discretisation. The exterior and the interior
of the ellipse may use a structured discretisation. For clarity, nodes belonging to {2p are
not shown.

In our algorithm, we store nodes belonging to w, and €2, twice, both as nodes belonging
to Qrpy and Qppys. For explicit time stepping schemes, the main loop of the simulation
can be sketched:

For every time step

(1) Update the solution in the interior of Qppys, i.e. at nodes wp and w,
using FDM

(2) Update the solution in the interior of Qpgys, i.e. at nodes w, and wy
using FEM

(3) Copy values at nodes wy from Qpgy to Qppy

(4) Copy values at nodes w, from Qppy t0 Qg

The FEM and the FDM schemes that we use are well-known. For the sake of complete-
ness, we present them below, and we also point out that we can regard the FDM sheme as
a reformulation of the FEM scheme for a structured grid. Therefore, our hybrid approach
can be analysed as a pure FEM scheme.

3.1. Finite element formulation. In the Qpg), domain where an unstructured grid is
assumed, we use FEM. To formulate the finite element method for problem (2.1) we use the
standard Galerkin finite element method with linear elements in space and a centralised
finite difference approximation for the second order time derivative. We introduce finite
element space V}, for u, consisting of standard piecewise linear continuous functions on a
mesh and satisfying Dirichlet boundary conditions. Let V}? denote the corresponding finite
element spaces satisfying homogeneous Dirichlet boundary conditions. The finite element
method now reads: find wu, in V}, such that

k+1 _ o,k 4 o k=1
uy 2uyp + uy
2

(3.1) ( ,v) + (a®Vub, Vo) = (f%,v), Yo eV

T

This produces the system of linear equations
(3.2) MuFt™t = 72FF L 2MuF — PP Kuf — Muh

with proper initial and boundary conditions. Here, M is the mass matrix, K is the stiffness
matrix depending on a possible varying wave velocity a, £ = 1,2,3... denotes the time
level, F'* is the load vector, u is the unknown discrete field values of u, and 7 is the time
step.



6 LARISA BEILINA, KLAS SAMUELSSON, AND KRISTER AHLANDER

The explicit formulas for the entries in system (3.2) at the element level can be given as:

(3.3 MG = (0ior)e
(3.4) Ki; = (Vi Vei)e
(3.5) Fy = (f,¢5)e

(3.6) where (a,b), = /ab dQQ,

where (), is domain of the element e.

The matrix M*® is the contribution from element e to the global assembled matrix M,
K*¢ is the similar contribution to global assembled matrix K, F'¢ is the contribution from
element e to the assembled source vector F'.

To obtain an explicit scheme we approximate M with the lumped mass matrix M%, the
diagonal approximation obtained by taking the row sum of M, see e.g. [8]. By multiplying
(3.2) with (M*)~! we obtain an efficient explicit formulation:

(3.7) = (MY 4 20t — (M) T Kub — ot

where matrix M’ is the approximation of the global mass matrix M by
L __ Zn Mi,n ; i = ja

(38) M= { 0 it

that is the diagonal elements of the matrix M7’ are the row-sums of M. In Section 4.1
we describe how the term 72(ML) 'F* can be efficiently implemented without using the
standard assembly procedure at each time step.

To formulate the finite element method for system (2.5 -2.7) we use the standard Galerkin
finite element method in space and the forward finite difference approximation to the first
order time derivative. We introduce finite element spaces V},, W}, for uq, us, consisting of
standard piecewise linear continuous functions on a mesh and satisfying Dirichlet boundary
conditions. Let V)2, W2 denote the corresponding finite element spaces satisfying homoge-
neous Dirichlet boundary conditions. The finite element method now reads: find (uyp, uop)
in (V x W},) such that

k+1 k

(3.9) (2 v) + (a2Viiby, Vo) = (f50), Yo eV,
s — uf, k 0
(310) (7: w) = (ulha w)) Vw € Wh'

This produces the system of linear equations for model (2.5-2.7) at each time step :

(3.11) Mub™t = (FF - ®?Kub)7 + Mu?,
(3.12) Muft = Mufr + Mub,

(3.13) wWir =0

(3.14) wlr = 0
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In these equations, M and K are the same matrices, as in the system (3.2), k denotes
the time level, u; and uy are the unknown discrete field values of u; and us, 7 is the time
step size, I' is the boundary of the inner region.

To obtain an explicit scheme we approximate M by M* and multiply the first of the
system equations by (M*)~! so that the system can be rewritten in the more efficient form:

(3.15) utt = (MY)TEER — o(ME) K uE) T + uf,
(3.16) it = ufr4+ub.

The disadvantage with explicit schemes is of course that we must choose small time steps
to respect a CFL criterion:

h
3.17 <=
(3.17) TS
where h is the minimal local mesh size of the elements, and c is a constant.

3.2. Finite difference formulation. In the Qppy domain, we use FDM. The FDM
stencil can be derived via the FEM schemes presented in the previous section, when applied
to a structured Cartesian grid. For problem (2.1) we obtain

1+1 2/ gl 20,1 l -1
(3.18) Ui = T (i + 0 B je) + 2055, — w3 53,
where uﬁjk is the solution on time iteration [ at point (i, j, k), f},jyk is the source function,

7 is the time step, and Avij’k is the discrete Laplacian. In three dimensions, we get the
standard seven-point stencil:

! l ! ! ! !
At = gk = gt Vicngk | Vigrik = 2Vt Vi
Vijk = 2 + 2 +

dx dy

l l l

Vg1 — 2V T Vijk
(3.19) : ,

dz

where dz, dy, and dz are the steps of the discrete finite difference meshes in the directions
x, Y, z, respectively.

3.3. Absorbing boundary conditions. We have also simulated a variation of the prob-
lem (2.1-2.4) with Dirichlet boundary condition replaced by the absorbing boundary condi-
tion. It means, that this boundary conditions approximate the solution on the boundaries.
We use the following boundary condition taken from [6] :

3.20 —UuU— — =0.
(3:20) ot oz =0
We are using forward finite difference approximation in the middle point of the condition
(3.20), which gives a numerical approximation of higher order than ordinary (backward or
forward) approximation. For example, for the left boundary of the outer domain we obtain:

+1 ! +1 ! l l +1 +1

(3.21) ik ~ Yigh | Yit1gk ~ Yirtgk Mgk T Uik Yitlgk — Yk

dt dt dz dz

=0,
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which can be transformed to

dr — dt dr — dt
I+1 l l +1
(3.22) Ui = Uipr ik T Ui gk~ ULk

For other boundaries of the outer domain we find analogous boundary conditions.

4. IMPLEMENTATIONAL ISSUES

We have chosen C++ as the implementation language. It allows us to implement the
problem and the algorithms on a high level of abstraction without much loss of efficiency.
We have implemented important notions such as grid, boundary, operator, and grid func-
tion as C++ classes. For FEM, we have reused Kraftwerk, an existing in-house FEM
framework. The software package PETSc [2] is used for matrix vector computations. For
FDM, new classes were developed, called ABCD. They are specialised for Cartesian grids
with cavities. The cavities may be filled with unstructured grids. The ABCD grid class
represents its nodes in a memory efficient way, by only storing index sets of contiguous
nodes along one axis. The matrix multiplication described by (3.18) is performed by loop-
ing over the index sets and applying the finite difference molecule. See Appendix for more
information on Kraftwerk and ABCD. Here, we report only on the hybrid layer of the
implementation.

We sketch the use of the hybrid method on problem (2.1). In order to have a flexible
implementation, we introduce an auxiliary class WaveEqProblem, which are configured ei-
ther to use FDM in the whole region (using a structured grid), or to use FEM in the whole
region (using a hybrid or a structured grid), or to use the hybrid method. The main pro-
gram which uses Kraftwerk for the unstructured regions and ABCD for structured regions
can then be written in this schematic form (Compare with the algorithm in Section 3):

WaveEgProblem p(femGrid, fdmGrid); // initialise with grids
// for FEM and FDM
dt = p.initTime(t); // get time step and init time
p-initFDMQ) ; // initialise FDM
p-initFEMQ); // initialise FEM
p.initExchangeFEM(Q) ; // make data structures
p-initExchangeFDM(); // for overlap exchanges
for(k = 0; k < noTimeSteps; k++) // main loop
{
p.solveFDM(t); // solve one time step with FDM
p-solveFEM(t) ; // solve one time step with FEM
p-applyExchange() ; // perform overlap exchanges
p-applySwap(); // swap solutions vectors
t += dt; // increment time
}

Apart from initialisation, the essential work is done for each time step in p.solveFDM(t)
and p.solveFEM(t) where the source function f is evaluated and matrix vector multipli-
cations are performed.
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4.1. Notes on optimisations. One of the central issues of our project has been to study
the efficiency of the hybrid method, and it is therefore important for a just evaluation
to optimise the implementation of the involved methods. Here, we comment on some
optimisations.

First, we observe that in (3.7) we can write 2u* — 72(ML)"1Ku* = Auf, where A =
21 —7?(M")~'K is a sparse matrix, and I the identity matrix. If the timestep T is constant,
A is independent of time and can therefore be computed in the initialisation step. A similar
optimisation is used for FDM.

Regarding the computation of the load vector F* in (3.7), a standard assembly com-
putation using Gaussian quadrature is expensive. By instead using nodal quadrature, the
load vector will be F¥ = (M) 'f* where the vector f* is the source function evaluated at
the nodes of the grid at time t;. Alternatively, the source function can be approximated
by the finite element function obtained by interpolating the source function at the nodes.
In this case, exact quadrature yields that F* = Mf*.

Thus, the FEM computation of the solution u**' becomes

(4.1) uth = 725 4 Auk - ufL

Note that the FDM scheme (3.18) coincides with (4.1) in regions where the grid is struc-
tured, see [9].

In the interior of a structured FEM grid with constant wave velocity a, the nonzero
components of the sparse stiffness matrix K will reduce to the FDM five and seven point
stencils, for 2D and 3D, respectively. This property can be used to replace the sparse
matrix A with a matrix where the zero components are eliminated. The size of the reduced
matrix is in 2D 5/7 times the size of the original matrix. In 3D the corresponding factor
is 7/15, which is quite significant. A matrix vector product with the new matrix has
a correspondingly smaller cost. However, in general for an unstructured grid the zero
elements in the stiffness matrix will not occur and hence the described matrix reduction is
not possible.

Regarding the finite difference region, three different strategies were considered:

(1) Allocate memory all over €2 and compute all over €.
(2) Allocate memory all over €2 but compute only in Qppyy.
(3) Allocate memory only in Qrpys and compute only in Qppay.

If the Qpg)s region is very small relative to €2, the first strategy may be advantageous. Even
though some unnecessary computations would be carried out, the overhead of administering
the loop boundaries would be avoided. If, on the other hand, the (Qrgj, region is very large
relative to €2, the third strategy may be advantageous, because no unnecessary memory is
allocated. The disadvantage with the third strategy is a more complicated communication
pattern, with negative effect on the performance. However, for the main problems of our
present study, we found that strategy two was most advantageous. This strategy uses
direct addressing all over the domain and avoids unnecessary computations. Compare also
with [1, 3] which are dealing with optimizing C++ code and studying the effect of the
cache sizes of the computer, respectively.
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3D solutions for Wave eq. with Dirichlet b.c. in the point (0.34,0.5,0.5) 3D solutions for Wave eq. with Dirichlet b.c. in the point (0.4,0.4,0.4)

08 1 12 14 16 18 2 ) 02 04 06 08 1

FIGURE 4. Solutions for three dimensional wave equation at one point. We
use one source function in the inner domain. In the graphs (a) - (b) we
present the FEM, FDM and hybrid solutions, which coincide at both points.
We used the same structured mesh to test all these three methods.

5. NUMERICAL EXAMPLES

We illustrate the use of the hybrid method in several examples. In all examples we
simulate model problem (2.1) in domain Q = [0, 1], n = 2,3, with homogeneous Dirichlet
boundary conditions, and with initial conditions u = % = 0. The domain €2 is decomposed
into the two domains Qrgy and Qppyr with two overlapping layers of nodes. The inner
domain is Qppy = [0.4,0.6]",n = 2,3 in two and three dimensions respectively. In the
Qppy domain we apply FDM with homogeneous Dirichlet boundary conditions. The
space mesh for FEM in two dimensional examples in the Qpg) domain is unstructured
and consists of triangles. In three dimensions we use tetrahedra for the unstructured grid.
The wave is in our examples driven by source functions which generate pulses at different

points:
[ 103sin?at if 0 <t <0.1and |z — x| < 0.1,
(5-1) hi(z,20) = { 0 otherwise;

_f sin(103sin (407t))e~10(@=20)* if |z — z4| < 0.05,
(5:2) fol@, o) = {0 otherwise;

(5.3) f3(z, o)

First, we present a few model applications in two and three dimensions. Next, we present
performance measurements, where we compare the efficiency of the hybrid method with
FDM and FEM.

sin(103 sin (407t))e 0 @) if |z — 24| < 0.05,
0 otherwise;

5.1. Two-dimensional examples. In the first example we solve the problem (2.5-2.7)
with Dirichlet boundary conditions on the outer domain boundary. We have chosen the
explicit scheme (3.7) to implement the FEM and the explicit scheme (3.18) to implement
FDM. We choose source function f; located at the centre of the inner domain and with
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time step 7 &~ 0.000097, which we compute from criterion (3.17) with the constant ¢ = 0.1.
This time step makes the explicit scheme stable. We plot the hybrid method solutions in
Fig. 5. The solutions in the point with coordinates (0.34,0.5) plotted in Fig. 14-a and the
solutions in the same point, but with source functions f; and f; shown in Fig. 14-b and
Fig. 14-c, respectively.

The same example but with absorbing boundary conditions on the outer boundary we
show in Fig. 7. The solution at the point with coordinates (0.34,0.5) plotted in Fig. 14-d.

We perform the same test but now the source function is located in the structured outer
domain. We compute with time step 7 ~ 0.00019, which we get from criterion (3.17) with
the constant ¢ = 0.2. We present result of the computation for hybrid method in Fig. 6.

The second example we present a computation of wave propagation in the inhomogeneous
inner domain composed of different material types having different wave velocities (the
coefficients a in (2.2)). We tested with different coefficient a® = 4,2.25,6.25 inside the
unstructured sub-domain, and a? = 1 outside it.

We assume absorbing boundary conditions at the all boundaries of the structured do-
main.

We show results for the hybrid method in Fig. 8. We can clearly see difference in the
wave speed between two materials.

In the third example we present a plane wave propagation. We define a plane wave on
the left boundary of the outer domain as the function

(5.4) f(z,t) |g=o= 0.1sin (25 t — 7/2) + 0.1

and solve with the hybrid method with the time step 7 = 0.001. We present results in
Fig. 9.

In the fourth example we present the hybrid method with two source functions : one
located in the unstructured inner domain and another in the structured outer domain. We
use explicit schemes (3.7),(3.18) and apply absorbing boundary conditions on the outer
domain. We compute with time step 7 ~ 0.00097, which we get from criterion (3.17) with
the constant ¢ = 0.1. We present result of the computations for the hybrid method in
Fig. 10.

5.2. Three-dimensional examples. We demonstrate the use of the hybrid method on
the domain Q = [0,1]3. For the numerical simulations we have chosen a finite element
mesh with element size 0.04 and perform computations in the time interval [0, 2].

In the first example we are solving the model problem (2.5-2.7) with Dirichlet boundary
conditions and with the source function f; located at the centre of the three dimensional
domain. We show the hybrid method solutions in Fig. 12 and solution at the point of
the domain with coordinates (0.4,0.4,0.4) in Fig. 4-a and in the point with coordinates
(0.34,0.5,0.5) in Fig. 4-b.

The second example is solution of model problem (2.5-2.7) with Dirichlet boundary
conditions and with two source functions. One of them, located in the inner domain, and
another, located in the outer domain. The solution of this problem we present in Fig. 13.
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a) time is 0.3884 b) time is 0.4855

c) time is 0.5827 d) time is 0.6798

e) time is 0.7769 f) time is 0.8740

Ficure 5. Example of the hybrid method for the two-dimensional wave
equation with Dirichlet boundary conditions. We choose a source function
located at the centre of the unstructured domain. We can see the effect of
the Dirichlet boundary conditions in the graphs (c¢) and (d). The values of

the solution are represented both by the high of the graph and by the gray
scale.
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time is 0.3884

e) time is 0.4661

Ficure 6. Example of the hybrid method for the two-dimensional wave
equation with Dirichlet boundary conditions. We choose a source function
located in the outer domain at point (0.5, 0.3). We can see how smoothly
passes the solution through the inner domain in the graphs (a)-(d). We
show how the Dirichlet boundary conditions works in the graphs (e) and (f).
The values of the solution are represented both by the high of the graph and
by the gray scale.

13
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¢) time is 0.5827 d) time is 0.6798

Ficure 7. Example of the hybrid method for the two dimensional wave
equation with absorbing boundary conditions. The source function is located
in the unstructured domain. We apply Engquist-Majda absorbing boundary
condition on the outer boundary of the structured domain. The graphs (c)
and (d) show the effect of this condition.
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Ficure 8. Example of the hybrid method for two dimensional wave equa-
tion in the inhomogeneous inner domain composed of different material types
having different wave velocities (the coefficients a in (2.2)). This coefficient
is taken as a® = 4 at the a) - b), a® = 2.25 at the c) - d), a® = 6.25 at the
e) - f) inside the unstructured subdomain, and a®> = 1 outside it. We can

clearly see in the graphs (a)—(c) that the wave propagates faster inside the
unstructured domain, than outside it.
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time is 0.5 time is 0.6

time is 0.8 time is 0.9

FIGURE 9. A plane wave. We define a plane wave on the left boundary of
the outer domain and solve the wave equation with the hybrid method.
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a) time is 0.2913 b) time is 0.3884

¢) time is 0.4855 d) time is 0.5827

Ficure 10. Two pulses. Example of the hybrid method for the two dimen-
sional wave equation. We start with one pulse in the inner and one in the
outer domains. We apply absorbing boundary conditions on the boundary
of the structured domain, as can be observed on (b)—(d).
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a) time is 0.105 b) time is 0.140

¢) time is 0.175 d) time is 0.210

FiGure 12. Example of the hybrid method for the three dimensional wave
equation. We apply Dirichlet boundary conditions on the outer domain. We
test the hybrid method with one source function located in the centre of the
inner domain, see graph (a) and (b). We can see in the graph (b) that the
finite element solution goes through the inner domain into outer domain.
We show the effect of the Dirichlet boundary condition in the graphs (c)—(d).
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time is 0.105 time is 0.140

time is 0.175 time is 0.210

time is 0.245 time is 0.275

FiGurE 13. Solutions of the three dimensional wave equation with Dirichlet
boundary conditions, two pulses. We define one pulse in the inner domain,

where we apply FEM, and another in the outer domain, where we apply
FDM.
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FIGURE 14. Solutions for the two dimensional wave equation at one point
(0.34, 05). In the graph (a) we present the FEM, FDM and hybrid solutions.
As we have explained in section (4.1), the three solutions are to be identical
on the whole time range. In the graphs (b)—(c) we present two dimensional
wave equation solution at one point (0.34, 05). We solved the problem by the
hybrid method first on the unstructured and then on the structured mesh.
We show the solution of the two dimensional wave equation with absorbing
boundary conditions found by the hybrid method, at one point, in the graph

(d)-
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5.3. Performance comparisons. We investigate the performance of the different meth-
ods by computing, with each method, the wave equation on structured grids, and measuring
the cpu time per node and per iteration.

The size of the used computational grids are shown in Table 1. The performance tests
were performed on a Sun workstation with free memory size 773Mb and 2048Mb real
memory.

Table 2 and Table 3 present efficiency results, in terms of cpu time per node and iteration.
The fractions FEM /Hybrid and FEM/FDM are also presented in the tables. We note that,
for two dimensions, the fraction FEM /Hybrid = 3.2 and the fraction FEM/FDM = 3.7. In
our three-dimensional tests, the corresponding fractions have increased. Here, the fraction
FEM/Hybrid ~ 4.4, and the fraction FEM/FDM is around 6.7.

The tables show that the fractions increase with the size of the grid. This can be
explained by cache effects, since the required memory of the FEM sparse matrix is much
larger than the corresponding FDM difference molecule. Another effect of importance is
that the nodes at the boundary is making up a smaller part of the total number of nodes.
For the hybrid method, the relative cost associated with computing the solution in the
overlap region with both methods and exchanging solution values, decreases as the grid
sizes increase, compare with Table 1.

5.4. Remarks on the performance comparisons. For our test cases, the source func-
tion evaluations in the simulations are a minor part of the execution time, since f; is
nonzero only in a small fraction of the time steps. Since the source function evaluations
are, by Section 4.1, identical for FEM and FDM methods, would an expensive source
function evaluation results in a decreased fraction FEM/FDM.

The experiments are made on structured grids for which it was possible to use reduced
FEM matrices as was described in Section 4.1. The ratios FEM/FDM in Tables 2 and 3 are
essentially due to the difference in execution time of multiplying a row of a sparse matrix
compared to applying the corresponding finite difference molecule. Numerical experiments
(not presented here) indicate that the execution time for a sparse matrix multiplication in-
creases linearly with the number of coefficients per row. Therefore, experiments performed
with unreduced FEM matrices would result in an increase of the fraction FEM/FDM, ap-
proximately with the factors 7/5 and 15/7, for 2D and 3D simulations, respectively. The
factors come from the matrix reduction sizes of Section 4.1. A corresponding increase
would occur for the fraction FEM /Hybrid.

5.5. Memory consumption. An important issue, which in this paper has not been stud-
ied in detail, is the memory consumption of the FEM version versus the FDM and hybrid
implementations. The FDM implementation is here advantageous in two respects. Firstly,
the FDM grid representation uses much less memory than the corresponding unstructured
FEM grid, and secondly a finite difference molecule is used instead of a memory consuming
sparse matrix. These two advantages for the hybrid method regarding the memory con-
sumption is probably, for many applications, more important than the speed-up presented
above.
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] number of .
size of | number of des in th spatial
the  mesh | nodes in numbe-r of | nodes e dimen-
elements, h | Qg nodes in | overlapping sion

’ layers
0.0025 6561 160801 3192 2
0.005 1681 40401 1592 2
0.01 441 10201 152 2
0.02 121 2601 72 2
0.01 9261 1030301 4348 3
0.02 1331 132651 988 3
0.04 216 17576 208 3

TABLE 1. Meshes for the performance test.

h Hybrid FEM FDM FEM/Hybrid | FEM/FDM
0.0025 | 9.70385e-7 | 3.25877e-6 | 8.11587e-7 3.3582 4.0153
0.005 | 9.25238e-7 | 3.05127e-6 | 8.09583e-7 3.2978 3.7689
0.01 | 9.27085e-7 | 2.81574e-6 | 8.09961e-7 3.0372 3.4764
0.02 | 9.31629e-7 | 2.69945e-6 | 7.90749e-7 2.8976 3.4138

TABLE 2. Performance for the 2D wave equation

h Hybrid FEM FDM FEM/Hybrid | FEM/FDM
0.01 | 4.84596e-6 | 2.21148e-5 | 3.05454e-6 4.5636 7.2400
0.02 | 4.88609e-6 | 2.15223e-5 | 3.28249e-6 4.4048 6.55670
0.04 | 4.73657e-6 | 2.02856e-5 | 3.17052e-6 4.2828 6.39819

TABLE 3. Performance for the 3D wave equation

6. CONCLUSIONS

We have presented explicit hybrid methods for the scalar wave equation. The hybrid
approach can be derived from FEM, which is rewritten as a FDM method in parts of the
domain where the discretisation is Cartesian. Thus, we combine the efficiency of FDM
with the flexibility of FEM. Moreover, since our algorithm is equivalent to a pure FEM
approach, stability results from FEM are valid, and no interface instabilities are introduced.

Regarding the implementation, we emphasize that object-oriented abstractions made it
easy to develop our application as independent modules.

Numerical examples are presented, validating that the hybrid approach is equivalent to
a pure FEM algorithm, and on a structured grid also to a pure FDM simulation. We also
present examples illustrating the capabilities of our approach in 2D and 3D. Our examples
use both Dirichlet boundary conditions and absorbing boundary conditions.

One of the most important questions of this study is whether the hybrid approach really
gives better performance, compared to pure FEM. Our test cases for structured grids
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indicates that this is the case. In our examples, the hybrid method is 2.9-4.6 faster, than a
highly optimized pure finite element version. The relative efficiency of the hybrid method
is somewhat better for larger problems and when the unstructured part of the domain
becomes relatively smaller. Both these effects are typical for 3D problems.

We conclude that the hybrid approach is advantageous, in particular for memory de-
manding problems where large parts of the computational domain may be discretised by
uniform Cartesian grids, while unstructured grids are more suitable in small regions of
the domain. Our present study has been concerned with explicit time stepping methods.
Further investigations to extend the hybrid method to implicit methods is an area of future
research.
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APPENDIX A. DESCRIPTION OF THE MAIN KRAFTWERK CLASSES

A HYBRID METHOD FOR THE WAVE EQUATION

Base class | methods description
GridB grid base class which represents the ge-
ometry of the domain.
getNoSpaceDim get space dimensions
getNoElms get number of elements in the grid
getNoNodes get number nodes in grid
getMaxNoNodesInElm get max number of the nodes in element
getMaterialType get material type of the elements in grid
setMaterialType set type of the material
getCoor get coordinate of the node n with index
d
putCoor put coordinate of the node n with index
d
loc2glob get global node number of the element
e and local node number i
putLoc2glob put global node number in element
oneElementTypeInGrid | type bool
getElementType get element type for element e
getNoNodesInElm get number of nodes in element
getNoNodesForElmType | get number nodes in element for differ-
ent element types
print print to file
scan scan from file
getNeighbor neighbour information about elements
in grid
getElmFromNodes get element from two nodes with global
numbers nl and n2
getNoNodesForElmType | get nodes number from type of the ele-
ment
NeighborFE represents the neighbour information in
a finite element grid.

SparseDS defines the data structure and a pub-
lic interface for general sparse matrix
storage.

Mapper implements iso-parametric mapping for
each elements in the finite element grid
into a centre of coordinates, compute
the Jacobian of the mapping and lo-
cal assembled integral over elements de-
pending of the quadrature rule

mapIsoparametric make iso-parametric mapping for ele-

ment e and quadrature rule ¢
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Base class | subclass, methods description
QuadRule abstract base class which determines
the number of the Gauss points and
their coordinates
getGPntCoord get coordinates of the Gauss points
QuadRuleTet4PntGauss | It computes the integral for tetrahe-
dron with 4 Gauss points.
QuadRuleTrilPntGauss | It computes the integral for triangles
with 1 Gauss point.
QuadRuleTri3PntGauss | It computes the integral for triangles
with 3 Gauss points
Equation abstract base class which computes the
local assembled matrix for each element
of the grid.
integrateJacobian computes the local assembled matrix
for main equation without a right hand
side.
integrateResidual computes the local assembled vector for
right hand side of the equation.
EquationLaplace2D represents the Laplace operator
EquationMass represents the mass equation
EquationWaveCDE represents the wave equation as a sys-
tem of the two equations for implicit
scheme
EquationWavefnimpl represents the right hand side for wave
equation for implicit scheme
EquationWavefnexpl represents the right hand side for wave
equation for explicit scheme
Element base class which initialise the type of
the elements, the numbers of the basis
functions, values for basis functions and
its derivatives, the global numbers of
the nodes for elements of the grid.
getCoord get coordinates for node
loc2glob get global node number from local
glob2loc get local node number from global
getNoNodes get number of the nodes in element
getElmNo get number of the element
getMaterialType get material type for element
setNoGPnts set number of Gauss points for element
getNoGPnts get number of Gauss points for element
setGPntCoord set Gauss points coordinates
gPntCoord get Gauss points coordinates
setDetJac set determinant of Jacobian for element
detJac determinant of Jacobian
ElementTetLin sets the basis functions and its deriva-
tives for tetrahedron
ElementTriLin sets the basis functions and its deriva-
tives for triangle
ElementQuadLin sets the basis functions and its deriva-

tives for square




A HYBRID METHOD FOR THE WAVE EQUATION

APPENDIX B. DESCRIPTION OF THE ABCD CLASSES

Base class

subclass

description

SDGeometry

SDIndexes

SDOperator

SDMaskIndexes

DplusDminusOp
DplusDminusVec20p
LaplacianOp
DirichletOp

AssignmentOp
AssignFunctionOp

AssignTimeFunctionOp

ComputeTimeDerivative

ApplyFunctionOp

OutputOp
AVSOutputOp

DifferenceCheckOp

WaveEqInteriorexpll

WaveEqInteriorexpl2

represent a structured, equidis-
tant grid for FDM.

represent indexes for a subdomain
in SDGeometry. We can represent
our domain and boundaries with
help of SDIndexes.

produces indexes for various
curvilinear domains or boundary
depending on the codes of the
nodes.

make all operations with FDM:
from discretisation of the PDE
to output of the results. The
SDOperator contains an associa-
tion to an SDIndexes object and
contain subclasses:

supplies DplusDminus-stencil in
the prescribed direction

supplies DplusDminus-stencil in
the prescribed direction

supplies five-point-stencil in 2d
and seven-point-stencil in 3d
supplies Dirichlet BCs. The value
is a constant.

assigns a value to y.

assigns values to y as a function
of the coordinates

assigns values to y as a function
of space and time

compute time derivative for y us-
ing a formula (u*=? + 3ufF — 4 %
ukb~1)/2dt

adds values of the two functions
in points of the FD grid

outputs for y

outputs the grid and the value of
Y

is a simple operator that com-
pares x[IX] with y[IY]. The in-
dexes IX and IY are supplied to
the constructor.

to compute the wave equation as
system, use explicit scheme, solve
first equation of system

to compute the wave equation as
system, use explicit scheme, solve
second equation of system
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