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A FINITE ELEMENT METHOD FOR DOMAIN DECOMPOSITION
WITH NON-MATCHING GRIDS

ROLAND BECKER, PETER HANSBO, AND ROLF STENBERG

Abstract. In this note, we propose and analyse a method for handling interfaces between
non-matching grids based on an approach suggested by Nitsche [15] for the approxima-
tion of Dirichlet boundary conditions. The exposition is limited to self-adjoint elliptic
problems, using Poisson’s equation as a model. A priori and a posteriori error estimates
are given. Some numerical results are included.

1. Introduction

In any domain decomposition method, one has to define how the continuity between the
subdomains is to be enforced. Different approaches have been proposed:

• Iterative procedures, enforcing that the approximate solution or its normal derivative
or combinations thereof should be continuous across interfaces. This forms the basis
for the standard Schwarz alternating method as defined, e.g., by Lions [14].

• Direct procedures, using Lagrange multiplier techniques to achieve continuity. Dif-
ferent variants have been proposed, e.g., by Le Tallec and Sassi [13], and Bernadi,
Maday, and Patera [8].

The multiplier method has the advantage of directly yielding a solvable global system.
However, in the latter method, new unknowns (the multipliers) must be introduced and
solved for. The method must then either satisfy the inf-sup condition, which necessitates
special choices of multiplier spaces (such as mortar elements, cf. [8]), or then stabilization
techniques (cf. Baiocchi, Brezzi, and Marini [3]) must be used.

In this paper, we consider a third possibility, i.e. Nitsche’s method [15], which was
originally introduced for the purpose of solving Dirichlet problems without enforcing the
boundary conditions in the definition of the finite element spaces. This method has later
been used by Arnold [2] for the discretization of second order elliptic equations by discon-
tinuous finite elements. In earlier papers [16, 17] we have pointed out the close connection
between Nitsche’s method and stabilized methods and proposed it as a mortaring method.
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In this paper we will give a more detailed analysis of this domain decomposition technique
where independent approximations are used on the different subdomains. The continuity
of the solution across interfaces is enforced weakly, but in such a way that the resulting
discrete scheme is consistent with the original partial differential equation. Under some
regularity assumptions we derive both a priori and a posteriori error estimates. We also
give numerical results obtained with the method.

Although we discuss its application to domain decomposition, the same technique is also
suited for other applications, e.g.,

• to handle diffusion terms in the discontinuous Galerkin method [2, 6];
• to simplify mesh generation (different parts can be meshed independently from each

other);
• finite element methods with different polynomial degree on adjacent elements;
• new finite element methods such as linear approximations on quadrilaterals.

2. The domain decomposition method

In this section we will introduce the mortaring method based on the classical method
of Nitsche. We will perform a classical stability and a priori error analysis. For simplicity,
we consider the model Poisson problem, i.e. of solving the partial differential equation

−∆u = f in Ω,

u = 0 on ∂Ω,
(2.1)

where Ω is a bounded domain in two or three space dimensions and f ∈ L2(Ω).
Likewise for ease of presentation, we consider only the case where Ω is divided into two

non-overlapping subdomains Ω1 and Ω2, Ω1 ∪ Ω2, with interface Γ = Ω1 ∩ Ω2. We further
assume that the subdomains are polyhedral (or polygonal in IR2) and that Γ is polygonal
(or a broken line).

This equation can be written in weak form as: find u ∈ H1
0 (Ω) such that

a(u, v) = (f, v), ∀v ∈ H1
0 (Ω),(2.2)

where

a(u, v) =

∫
Ω

∇u · ∇v dx, (f, v) =

∫
Ω

f v dx,(2.3)

and H1
0 (Ω) is the space of square-integrable functions, with square-integrable first deriva-

tives, that vanish on the boundary ∂Ω of Ω.
Our discrete method for the approximate solution of (2.1) is a nonconforming finite

element method which is continuous within each Ωi and discontinuous across Γ. We start
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by rewriting the original problem (2.1) as two equations and the interface conditions:

−∆ui = f in Ωi, i = 1, 2,

ui = 0 on ∂Ω ∩ Ωi, i = 1, 2,

u1 − u2 = 0 on Γ,(2.4)

∂u1

∂n1

+
∂u2

∂n2

= 0 on Γ.

Here, ni is the outward unit normal to ∂Ωi.
We will perform our analysis under the following regularity assumption.

Assumption 2.1. The solution of (2.2) satisfies u ∈ Hs(Ω), with s > 3/2.

With this assumption it holds ∂ui/∂ni ∈ L2(Γ) and the two problems (2.1) and (2.4)
are equivalent (see for example [1]) with:

u|Ωi
= ui, i = 1, 2.(2.5)

In the following we will therefore write u = (u1, u2) ∈ V1×V2 with the continuous spaces

Vi =
{
vi ∈ H1(Ωi) : ∂vi/∂ni ∈ L2(Γ), vi|∂Ω∩∂Ωi

= 0
}

, i = 1, 2.

To formulate our method, we suppose that we have regular finite element partitionings
Ti

h of the subdomains Ωi into shape regular simplexes. These two meshes induce ”trace”
meshes on the interface

Gi
h = { E : E = K ∩ Γ, K ∈ Ti

h }.(2.6)

By hK and hE we denote the diameter of element K ∈ Ti
h and E ∈ Gi

h, respectively.
For the purpose of the a priori analysis, we also define

h = max{hK , hE : K ∈ Ti
h, E ∈ Gi

h, i = 1, 2. }.
We seek the approximation uh = (u1,h, u2,h) in the space V h = V h

1 × V h
2 , where

V h
i =

{
vi ∈ Vi : vi|K is a polynomial of degree p for all K ∈ Ti

h

}
,

choosing for simplicity p constant on all subdomains. On the interface we will use the
notation

[[v]] := v1 − v2(2.7)

for the jump,

{v} :=
1

2
v1 +

1

2
v2(2.8)

for the average and

〈v, w〉S :=

∫
S

v w ds, for S ∈ Gi
h, or S = Γ.(2.9)

Finally, we denote

n := n1 = −n2.(2.10)
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With this notation we have {
∂v

∂n

}
=

1

2

∂v1

∂n1

− 1

2

∂v2

∂n2

(2.11)

and hence {
∂u

∂n

}
=

∂u

∂n
=

∂u1

∂n1

= −∂u2

∂n2

.(2.12)

The methods of Nitsche [15] and Arnold [2] now give the following domain decomposition
method.

Mortar Method. Find uh ∈ V h such that

ah(uh, v) = fh(v) ∀v ∈ V h,(2.13)

with

ah(w, v) :=
2∑

i=1

[
(∇wi,∇vi)Ωi

+ γ
∑

E∈Gi
h

h−1
E 〈[[w]] , [[v]]〉E

]
(2.14)

−
〈{

∂w

∂n

}
, [[v]]

〉
Γ

−
〈{

∂v

∂n

}
, [[w]]

〉
Γ

and

fh(v) :=
2∑

i=1

(f, vi)Ωi
,(2.15)

where γ > 0 is chosen sufficiently large, see Lemma 2.5 below.

The first observation is that this formulation gives a consistent method.

Lemma 2.2. The solution u = (u1, u2) to (2.4) satisfies

ah(u, v) = fh(v) ∀v ∈ V.(2.16)

Proof. Multiplying the first equation in (2.4) with vi, integrating over Ωi, using Greens
formula and the relations (2.12) yields

fh(v) =
2∑

i=1

(f, vi)Ωi
=

2∑
i=1

[
(∇ui,∇vi)Ωi

−
〈

∂ui

∂ni

, vi

〉
Γ

]

=
2∑

i=1

(∇ui,∇vi)Ωi
−

〈{
∂u

∂n

}
, [[v]]

〉
Γ

.(2.17)

Since [[u]] = 0 on Γ we have

0 = −
〈{

∂v

∂n

}
, [[u]]

〉
Γ

+ γ

2∑
i=1

∑
E∈Gi

h

h−1
E 〈[[u]] , [[v]]〉E .(2.18)

Adding (2.17) and (2.18) the gives the claim.
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For the stability analysis below we need the following mesh-dependent dual norms. To
emphasize that Γ is to be considered as a part of ∂Ωi we write Γi.

‖v‖2
1/2,h,Γi

=
∑

E∈Gi
h

h−1
E ‖v‖2

L2(E)(2.19)

and

‖v‖2
−1/2,h,Γi

=
∑

E∈Gi
h

hE ‖v‖2
L2(E) ,(2.20)

which satisfy

| 〈v, w〉Γ | ≤ ‖v‖1/2,h,Γi
‖v‖−1/2,h,Γi

.(2.21)

We further define the norms

‖v‖2
1,h,Ωi

= ‖∇vi‖2
L2(Ωi)

+ ‖[[v]]‖2
1/2,h,Γi

,(2.22)

‖v‖2
1,h =

2∑
i=1

‖vi‖2
1,h,Ωi

,(2.23)

and

|‖v‖|21,h,Ωi
= ‖v‖2

1,h,Ωi
+

∥∥∥∥∂vi

∂ni

∥∥∥∥
2

−1/2,h,Γi

,(2.24)

|‖v‖|21,h =
2∑

i=1

|‖vi‖|21,h,Ωi
.(2.25)

The following estimate is readily proved by local scaling.

Lemma 2.3. There is a positive constant CI such that∥∥∥∥ ∂vi

∂ni

∥∥∥∥
2

−1/2,h,Γi

≤ CI ‖∇vi‖2
L2(Ωi)

∀vi ∈ V h
i .(2.26)

For linear elements ∇v is constant on each element and then it is particularly easy to
give a bound for the constant CI , see Remark 2.11 below.

A immediate consequence of the above lemma is the equivalence of norms in the finite
element subspace.

Lemma 2.4. The norms ‖ · ‖1,h and |‖ · ‖|1,h are equivalent on the subspace V h.

The stability of the method can now be proved.

Lemma 2.5. Suppose that γ > CI/4. Then it holds

ah(v, v) ≥ C|‖v‖|21,h ∀v ∈ V h.
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Proof. From the definition (2.14), the relation (2.12), and the preceeding lemmas we get

ah(v, v) =
2∑

i=1

[
‖∇vi‖2

L2(Ωi)
+ γ ‖[[v]]‖2

1/2,h,Γi

]
− 2

〈
[[v]] ,

{
∂v

∂n

}〉
Γ

=
2∑

i=1

[
‖∇vi‖2

L2(Ωi)
+ γ ‖[[v]]‖2

1/2,h,Γi

]
−

〈
[[v]] ,

∂v1

∂n1

〉
Γ

+

〈
[[v]] ,

∂v2

∂n2

〉
Γ

≥
2∑

i=1

[
‖∇vi‖2

L2(Ωi)
+ γ ‖[[v]]‖2

1/2,h,Γi
−

∣∣∣∣
〈

[[v]] ,
∂vi

∂ni

〉
Γ

∣∣∣∣
]

≥
2∑

i=1

[
‖∇vi‖2

L2(Ωi)
+ γ ‖[[v]]‖2

1/2,h,Γi
− ‖v‖1/2,h,Γi

∥∥∥∥ ∂vi

∂ni

∥∥∥∥
−1/2,h,Γi

]

≥
2∑

i=1

[(
1 − CI

2ε

)
‖∇vi‖2

L2(Ωi)
+ (γ − ε

2
) ‖[[v]]‖2

1/2,h,Γi

]
≥ C1‖v‖2

1,h

≥ C2|‖v‖|21,h,

for γ > ε/2 and choosing ε > CI/2.
The following interpolation estimates holds, cf. Thomée [18].

Lemma 2.6. Suppose that u ∈ Hs(Ω), with 3/2 < s ≤ p + 1. Then it holds

inf
v∈V h

‖u − v‖1,h ≤ Chs−1 ‖u‖Hs(Ω)(2.27)

and

inf
v∈V h

|‖u − v‖|1,h ≤ Chs−1 ‖u‖Hs(Ω) .(2.28)

We are now able to prove the following a priori error estimate.

Theorem 2.7. Suppose γ > CI/4. Then it holds

|‖u − uh‖|1,h ≤ C inf
v∈V h

|‖u − v‖|1,h.

If u ∈ Hs(Ω), for 3/2 < s ≤ p + 1, then

|‖u − uh‖|1,h ≤ Chs−1 ‖u‖Hs(Ω) .

Proof. Since the bilinear form ah is bounded with respect to the norm |‖ · ‖|1,h, the first
inequality follows from the stability estimate of Lemma 2.5 and the triangle inequality.
The second estimate then follows from Lemma 2.6.

Remark 2.8. As [[u]] = 0 on Γ the error estimate gives ‖ [[uh]] ‖−1/2,h,Γi
= O(hs−1). For

quasi-uniform meshes it then holds ‖ [[uh]] ‖L2(Γ) = O(hs−1/2).
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Remark 2.9. The presented method resembles a mesh-dependent penalty method, but with
added consistency terms involving normal derivatives across the interface. Note that the
formulation allows us to deduce optimal order error estimates with preserved condition
number of O(h−2) for a quasiuniform mesh. Pure penalty methods, in contrast, are not
consistent, and optimal error estimates require degrading the condition number for higher
polynomial approximation (cf. [5]).

Remark 2.10. The form ah(·, ·) in (2.14) is symmetric and positive definite, which is
natural as the problem to be approximated has the same properties. With this there exists
fast solvers for the resulting matrix problem. If the bilinear form is changed to

ah(w, v) :=
2∑

i=1

[
(∇wi,∇vi)Ωi

+ γ
∑

E∈Gi
h

h−1
E 〈[[w]] , [[v]]〉E

]
(2.29)

−
〈{

∂w

∂n

}
, [[v]]

〉
Γ

+

〈{
∂v

∂n

}
, [[w]]

〉
Γ

,

then one obtains a method which is stable for all positive values of γ:

ah(v, v) ≥ C|‖v‖|21,h ∀v ∈ V h, ∀γ > 0.

If the Laplace operator is a part of a problem which is not symmetric, then it might be
practical to use this nonsymmetric bilinear form. See [10, 11] for applications to convection
diffusion problems.

Remark 2.11. For linear elements ∇vi (vi ∈ V h
i ) is constant on each element and hence

for K ∈ Ti
h with the base E ∈ Gi

h we have∥∥∥∥∂vi

∂ni

∥∥∥∥
2

0,E

= meas(E)
∣∣∣ ∂vi

∂ni

∣∣∣2(2.30)

and

‖∇vi‖2
0,K ≥

∥∥∥∥∂vi

∂ni

∥∥∥∥
2

0,K

= meas(K)
∣∣∣ ∂vi

∂ni

∣∣∣2(2.31)

and hence it holds

hE

∥∥∥∥∂vi

∂ni

∥∥∥∥
2

0,E

≤ hE meas(E)

meas(K)
‖∇vi‖2

0,K .(2.32)

Hence, once the shape regularity of the mesh is specified, one has a bound for CI . In
a practical implementation easier would be to replace the weight γh−1

E in (2.14) with a
parameter

αK = α
meas(E)

meas(K)
,(2.33)

with α > 1/4 fixed. With this all results of the paper hold.
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3. A posteriori error estimates

We will first consider control of the error e = u−uh in the mesh dependent energy norm
|‖ · ‖|1,h. We define the local and global estimators as

EK(uh)
2 = h2

K ‖f + ∆uh‖2
L2(K) + hK

∥∥∥∥
[[

∂uh

∂nK

]]∥∥∥∥
2

L2(∂K)

+ h−1
K ‖[[uh]]‖2

L2(∂K)(3.1)

and

E(uh) =

[ ∑
K∈Th

EK(uh)
2

]1/2

.(3.2)

To be able to control the normal derivatives across the interface, we introduce a ”satura-
tion” assumption similar to the one used by Wohlmuth [19] in the context of a posteriori
error estimates for the mortar element method. (We also remark that the assumption is
consistent with the interpolation estimates of Theorem 2.6).

Assumption 3.1. There is a constant C such that∥∥∥∥∂(ui − ui,h)

∂ni

∥∥∥∥
−1/2,h,Γi

≤ C‖ui − ui,h‖1,h,Ωi
.(3.3)

A consequence of this assumption is the bound

|‖u − uh‖|1,h ≤ C‖u − uh‖1,h.(3.4)

The a posteriori estimate is now the following.

Theorem 3.2. Suppose that the Assumption 3.1 is valid. Then there is a positive constant
C such that

|‖u − uh‖|1,h ≤ CE(uh).(3.5)

Proof. We denote e = u − uh. By Lemma 2.2 we have

‖e‖2
1,h = ah(e, e) + 2

〈
[[e]] ,

{
∂e

∂n

}〉
Γ

+ (1 − γ)
2∑

i=1

∑
E∈Gi

h

h−1
E 〈[[e]] , [[e]]〉E

:= R1 + R2,(3.6)

with

R1 := ah(e, e),

and

R2 := 2

〈
[[e]] ,

{
∂e

∂n

}〉
Γ

+ (1 − γ)
2∑

i=1

‖[[e]]‖2
1/2,h,Γi

.
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Since [[e]] |Γ = [[uh]] |Γ Assumption 3.1 gives

R2 =

〈
[[uh]] ,

∂e1

∂n1

〉
Γ

−
〈

[[uh]] ,
∂e2

∂n2

〉
Γ

+ (1 − γ)
2∑

i=1

‖[[e]]‖2
1/2,h,Γi

≤ C
2∑

i=1

(‖[[uh]]‖1/2,h,Γi

∥∥∥∥ ∂ei

∂ni

∥∥∥∥
−1/2,h,Γi

+ ‖[[uh]]‖1/2,h,Γi
‖[[e]]‖1/2,h,Γi

)

≤ C‖e‖1,h

( 2∑
i=1

‖[[uh]]‖1/2,h,Γi

)
≤ C‖e‖1,hE(uh).(3.7)

Next, let πhe be the Clément interpolant to e, which satisfies

( ∑
K∈Th

(
h−2

K ‖e − πhe‖2
L2(K) + h−1

K ‖e − πhe‖2
L2(∂K)

))1/2

≤ C‖e‖1,h(3.8)

and

‖e − πhe‖1,h ≤ C‖e‖1,h.(3.9)

From the consistency (2.2) we have ah(e, πhe) = 0. Hence

R1 = ah(e, e) = ah(e, e − πhe)

=
2∑

i=1

(
(∇ei,∇(ei − πhei))Ωi

+ γ
∑

E∈Gi
h

h−1
E 〈[[e]] , [[e − πhe]]〉E

)

−
〈{

∂e

∂n

}
, [[e − πhe]]

〉
Γ

−
〈{

∂(e − πhe)

∂n

}
, [[e]]

〉
Γ

:= S1 + S2 + S3 + S4.(3.10)

Integrating by parts on each K ∈ Th yields

S1 =
2∑

i=1

(∇ei,∇(ei − πhei))Ωi
(3.11)

=
∑

K∈Th

(
− (∆e, e − πhe)K + 〈 ∂e

∂nK

, e − πhe〉∂K

)
:= T1 + T2.
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Since on K ∈ Th it holds −∆e = −∆u+∆uh = f +∆uh, the first term above is estimated
using (3.8)

T1 = −
∑

K∈Th

(∆e, e − πhe)K(3.12)

≤
( ∑

K∈Th

h2
K ‖∆uh + f‖2

L2(K)

)1/2( ∑
K∈Th

h−2
K ‖e − πhe‖2

L2(K)

)1/2

≤
( ∑

K∈Th

h2
K ‖∆uh + f‖2

L2(K)

)1/2

‖e‖1,h.

Let Ih be the collection of element sides in the interiors of the subdomains Ωi. The
boundary integrals in (3.11) above we now split into those in Ih and those lying on the
interface Γ:

T2 =
∑

K∈Th

〈 ∂e

∂nK

, e − πhe〉∂K =(3.13)

∑
E∈Ih

〈 ∂e

∂nE

, e − πhe〉E + 〈 ∂e1

∂n1

, e1 − πhe1〉Γ + 〈 ∂e2

∂n2

, e2 − πhe2〉Γ.

The integrals over the interior sides can now be grouped together two by two yielding the
estimate

|
∑
E∈Ih

〈 ∂e

∂nE

, e − πhe〉E|(3.14)

≤ C
[ ∑

K∈Th

hK

∥∥∥∥
[[

∂uh

∂nK

]]∥∥∥∥
2

L2(∂K)

]1/2[ ∑
K∈Th

h−1
K ‖e − πhe‖2

L2(∂K)

]1/2

≤ C
[ ∑

K∈Th

hK

∥∥∥∥
[[

∂uh

∂nK

]]∥∥∥∥
2

L2(∂K)

]1/2

‖e‖1,h,

where (3.8) was used.
Using the definition (2.11) we have

S3 = −
〈{

∂e

∂n

}
, [[e − πhe]]

〉
Γ

= −
〈

1

2

∂e1

∂n1

+
1

2

∂e2

∂n2

, e1 − πhe1 − (e2 − πhe2)

〉
Γ

= −
〈

1

2

∂e1

∂n1

− 1

2

∂e2

∂n2

, e1 − πhe1

〉
Γ

+

〈
1

2

∂e1

∂n1

− 1

2

∂e2

∂n2

, (e2 − πhe2)

〉
Γ

.(3.15)
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Combining these terms with two last terms in (3.13) gives

〈 ∂e1

∂n1

, e1 − πhe1〉Γ + 〈 ∂e2

∂n2

, e2 − πhe2〉Γ −
〈{

∂e

∂n

}
, [[e − πhe]]

〉
Γ

=

〈
(1 − 1

2
)
∂e1

∂n1

+
1

2

∂e2

∂n2

, e1 − πhe1

〉
Γ

+

〈
1

2

∂e1

∂n1

+ (1 − 1

2
)
∂e2

∂n2

, (e2 − πhe2)

〉
Γ

=
1

2

〈
∂e1

∂n1

+
∂e2

∂n2

, e1 − πhe1

〉
Γ

+
1

2

〈
∂e1

∂n1

+
∂e2

∂n2

, e2 − πhe2

〉
Γ

=
1

2

〈
∂(e1 − e2)

∂n
, e1 − πhe1

〉
Γ

+
1

2

〈
∂(e1 − e2)

∂n
, e2 − πhe2

〉
Γ

=
1

2

〈[[
∂e

∂n

]]
, e1 − πhe1

〉
Γ

+
1

2

〈[[
∂e

∂n

]]
, e2 − πhe2

〉
Γ

(3.16)

=
1

2

〈[[
∂uh

∂n

]]
, e1 − πhe1

〉
Γ

+
1

2

〈[[
∂uh

∂n

]]
, e2 − πhe2

〉
Γ

≤ 1

2
E(uh)

[ ∑
K∈Th

h−1
K ‖e − πhe‖2

L2(∂K)

]1/2

≤ CE(uh)‖e‖1,h.

From (3.11) to (3.16) we now get

S1 + S3 ≤ C‖e‖1,hE(uh).(3.17)

From the Clément estimate (3.8) have

S2 = γ
2∑

i=1

∑
E∈Gi

h

h−1
E 〈[[e]] , [[e − πhe]]〉E ≤ C‖e‖1,hE(uh).

To estimate the last term S4 we use Lemma 2.3 and the Assumption 3.1

S4 = −
〈{

∂(e − πhe)

∂n

}
, [[e]]

〉
Γ

= −
〈{

∂e

∂n

}
, [[e]]

〉
Γ

+

〈{
∂πhe

∂n

}
, [[e]]

〉
Γ

≤ C‖e‖1,hE(uh).(3.18)

Hence, collecting the estimates (3.10) to (3.18) yields

R1 ≤ C‖e‖1,hE(uh),(3.19)

which together with (3.7) proves the estimate

‖u − uh‖1,h = ‖e‖1,h ≤ CE(uh).(3.20)

The claim then follows from (3.4).
Next, we consider the error in the L2-norm. This is measured with the estimator

L(uh) =

[ ∑
K∈Th

h2
KEK(uh)

2

]1/2

.(3.21)
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For the a posteriori estimate we as usual, need the H2-regularity but not Assumption 3.1.

Theorem 3.3. Let z be the solution to the problem

−∆z = g in Ω,

z = 0 on ∂Ω,
(3.22)

and suppose that the shift theorem

‖z‖H2(Ω) ≤ C ‖g‖L2(Ω)(3.23)

is valid. Then there is a positive constant C such that

‖u − uh‖L2(Ω) ≤ CL(uh).(3.24)

Proof. We again write z = (z1, z2) and note that

∂z1

∂n1

+
∂z2

∂n2

= 0 and

{
∂z

∂n

}
=

∂z1

∂n1

= − ∂z2

∂n2

.

Choosing g = u − uh in (3.22) we then get

‖u − uh‖2
L2(Ω) =

2∑
i=1

[
(∇zi,∇(ui − ui,h))Ωi

− 〈 ∂zi

∂ni

, ui − ui,h〉Γi

]

=
2∑

i=1

[
(∇zi,∇(ui − ui,h))Ωi

+ 〈 ∂zi

∂ni

, ui,h〉Γi

]
(3.25)

=
2∑

i=1

(∇zi,∇(ui − ui,h))Ωi
+ 〈

{
∂z

∂n

}
, [[uh]]〉Γ.

We let πhz ∈ V h be the Clément interpolant to z satisfying

( ∑
K∈Th

(
h−4

K ‖z − πhz‖2
L2(K) + h−3

K ‖z − πhz‖2
L2(∂K) + h−1

K

∥∥∥∥∂(z − πhz)

∂nK

∥∥∥∥
2

L2(∂K)

))1/2

≤ C ‖z‖H2(Ω) .(3.26)
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From the consistency condition we have ah(u − uh, πhz) = 0, and since [[z]] = 0, [[u]] = 0,
on the interface, we get

0 = ah(u − uh, πhz)(3.27)

=
2∑

i=1

[
(∇(ui − ui,h),∇πhzi)Ωi

+ γ
∑

E∈Gi
h

h−1
E 〈[[u − uh]] , [[πhz]]〉E

]

−
〈{

∂(u − uh)

∂n

}
, [[πhz]]

〉
Γ

−
〈{

∂πhz

∂n

}
, [[u − uh]]

〉
Γ

=
2∑

i=1

[
(∇(ui − ui,h),∇πhzi)Ωi

+ γ
∑

E∈Gi
h

h−1
E 〈[[ uh]] , [[z − πhz]]〉E

]

+

〈{
∂(u − uh)

∂n

}
, [[z − πhz]]

〉
Γ

+

〈{
∂πhz

∂n

}
, [[uh]]

〉
Γ

.

Substracting (3.27) from (3.25) gives

‖u − uh‖2
L2(Ω)

=
2∑

i=1

[
(∇(zi − πhz,∇(ui − ui,h))Ωi

− γ
∑

E∈Gi
h

h−1
E 〈[[ uh]] , [[z − πhz]]〉E

]

−
〈{

∂(u − uh)

∂n

}
, [[z − πhz]]

〉
Γ

+

〈{
∂(z − πhz)

∂n

}
, [[uh]]

〉
Γ

(3.28)

:= R1 + R2 + R3 + R4.

Using Schwarz inequality and the Clément estimate (3.26) we get

R2 + R4

≤ C

( ∑
K∈Th

(
h−3

K ‖z − πhz‖2
L2(∂K) + h−1

K

∥∥∥∥∂(z − πhz)

∂nK

∥∥∥∥
2

L2(∂K)

))1/2( ∑
E∈Gi

h

hE ‖[[uh]]‖L2(E)

)1/2

≤ C ‖z‖H2(Ω) L(uh) ≤ C ‖u − uh‖L2(Ω) L(uh).
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Integrating by parts yields

R1 + R3 =
2∑

i=1

[
(∇(zi − πhz,∇(ui − ui,h))Ωi

−
〈{

∂(u − uh)

∂n

}
, [[z − πhz]]

〉
Γ

=
∑

K∈Th

{
(z − πhz, ∆(uh − u))K +

〈
∂(u − uh)

∂nK

, z − πhz

〉
∂K

}
−

〈{
∂(u − uh)

∂n

}
, [[z − πhz]]

〉
Γ

=
∑

K∈Th

(z − πhz, ∆uh + f)K +
∑
E∈Ih

〈
∂(u − uh)

∂nE

, z − πhz

〉
E

+
2∑

i=1

〈
∂(ui − ui,h)

∂ni

, zi − πhzi

〉
Γ

−
〈{

∂(u − uh)

∂n

}
, [[z − πhz]]

〉
Γ

.

The boundary terms in the second term above are grouped together two by two yielding
jump terms in the normal derivative. This gives the estimate

∑
K∈Th

(z − πhz, ∆uh + f)K +
∑
E∈Ih

〈
∂(u − uh)

∂nE

, z − πhz

〉
E

(3.29)

≤ C

( ∑
K∈Th

(
h−4

K ‖z − πhz‖2
L2(K) + h−3

K ‖z − πhz‖2
L2(∂K)

))1/2

×
( ∑

K∈Th

h4
K ‖f + ∆uh‖2

L2(K) + h3
K

∥∥∥∥
[[

∂uh

∂nK

]]∥∥∥∥
2

L2(∂K)

)1/2

≤ C ‖z‖H2(Ω) L(uh) ≤ C ‖u − uh‖L2(Ω) L(uh).
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The remaining two terms are estimated as follows
2∑

i=1

〈
∂(ui − ui,h)

∂ni

, zi − πhzi

〉
Γ

−
〈{

∂(u − uh)

∂n

}
, [[z − πhz]]

〉
Γ

=
2∑

i=1

〈
∂ui

∂ni

, zi − πhzi

〉
Γ

−
2∑

i=1

〈
∂ui,h

∂ni

, zi − πhzi

〉
Γ

−
〈

∂u

∂n
, [[z − πhz]]

〉
Γ

+

〈{
∂uh

∂n

}
, [[z − πhz]]

〉
Γ

= −
2∑

i=1

〈
∂ui,h

∂ni

, zi − πhzi

〉
Γ

+

〈{
∂uh

∂n

}
, [[z − πhz]]

〉
Γ

= −
〈

∂u1,h

∂n1

, z1 − πhz1

〉
Γ

−
〈

∂u2,h

∂n2

, z2 − πhz2

〉
Γ

+
1

2

〈
∂u1,h

∂n1

, z1 − πhz1〉Γ − 1

2
〈∂u1,h

∂n1

, z2 − πhz2

〉
Γ

−1

2

〈
∂u2,h

∂n2

, z1 − πhz1

〉
Γ

+
1

2

〈
∂u2,h

∂n2

, z2 − πhz2

〉
Γ

= −1

2

〈
∂u1,h

∂n1

, z1 − πhz1

〉
Γ

− 1

2

〈
∂u2,h

∂n2

, z2 − πhz2

〉
Γ

−1

2

〈
∂u1,h

∂n1

, z2 − πhz2〉Γ − 1

2
〈∂u2,h

∂n2

, z1 − πhz1

〉
Γ

(3.30)

= −1

2

〈
∂u1,h

∂n1

+
∂u2,h

∂n2

, z1 − πhz1

〉
Γ

− 1

2

〈
∂u1,h

∂n1

+
∂u2,h

∂n2

, z2 − πhz2

〉
Γ

= −1

2

〈[[
∂uh

∂n

]]
, z1 − πhz1

〉
Γ

− 1

2

〈[[
∂uh

∂n

]]
, z2 − πhz2

〉
Γ

≤ CL(uh)
( ∑

K∈Th

h−3
K ‖z − πhz‖2

L2(∂K)

)1/2

≤ CL(uh) ‖z‖H2(Ω) ≤ CL(uh) ‖u − uh‖L2(Ω) .

Combining (3.29) and (3.30) gives

R1 + R3 ≤ CL(uh) ‖u − uh‖L2(Ω)

which together with (3.29) and (3.28) proves the claim.

4. Numerical examples

4.1. Numerical verification of the a priori estimates. To verify the a priori estimates,
we choose the model problem of a unit square with exact solution

u = x y (1 − x) (1 − y)
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corresponding to a right-hand side of f = 2(x − x2 + y − y2). The domain is divided by
a vertical slit at x = 0.7. Two different triangulations were used: one matching and one
non-matching, see Figure 1.

In Figure 2 (left-hand side) we give the convergence in the broken energy norm. The
dashed line is the non-matching grid computation. Both meshes show the same convergence
with slope 0.95. which is close to the theoretical value of 1. On the right-hand side we
show the convergence of the L2−norm of the jump term (dashed line for the non-matching
grid). Here we obtain a better convergence (slope 2.15) for the matching grids than for
the non-matching grids (slope 1.57, close to the theoretical value of 3/2).

4.2. Adaptive computations. We present results of adaptive computations on the L-
shaped domain

Ω = (0, 1) × (0, 1) \ (1/2, 1) × (0, 1/2).

The problem is boundary driven (f = 0), with boundary data corresponding to the ex-
act solution u = r2/3 sin (2θ/3) in polar coordinates (with origin at (1/2, 1/2)). We let
Ω1 = (0, 1/2) × (0, 1) and Ω2 = (1/2, 1) × (1/2, 1), and use a non-matching triangulation.
The purpose of this example is not to obtain exact error control, but rather to show how
the adaptive algorithm behaves with respect to the elements adjacent to the interface. We
consider adaptive control of the L2-norm error, but we have not made any attempt to mea-
sure the constant in the inequality (3.23); instead we have simply tuned the interpolation
constants to approximately match the exact error.

In Figure 3 and 4 we show the first and last (adapted) meshes resulting from equilibrating
the error distribution over the set of elements (for details, see [12, 7]). In Figure 5 we show
the exact and estimated L2−errors on the sequence of meshes, which show a reasonable
agreement. For more exact error control, more computational effort must be invested.

4.3. Difference between matching and non-matching meshes. In the previous ex-
ample, the adaptive algorithm produced a slightly finer mesh on the interface. One natural
question is then whether the effect of non-matching actually does lead to larger errors. In
Figure 6 and 7 we show two different meshes for solving the problem described in Section
4.1, and the corresponding nodal interpolants of the errors. The interface is sitauted at
x = 1/2, and it is noted that the error on the interface is markedly larger than in the
interior of the domains only in the case of non-matching meshes.
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Figure 1. Matching and non-matching grids.
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Figure 2. Convergence in energy and convergence of the jump term.
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Figure 3. First mesh and final adapted mesh.
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Figure 4. Elevation of the solution.
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Figure 5. Estimated and exact errors in the L2(Ω)−norm.
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Figure 6. Matching meshes and nodal errors.
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Figure 7. Non-matching meshes and nodal errors.
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