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APPLICATION OF STABLE FEM-FDTD HYBRID TO SCATTERING
PROBLEMS

THOMAS RYLANDER AND ANDERS BONDESON

ABSTRACT. A recently developed, stable FEM-FDTD hybrid, that eliminates the stair-
case approximation of complex geometries, is tested by convergence studies for radar cross
sections. For a conducting sphere, 1 dB accuracy in all directions is obtained with 9 cells
per wavelength whereas the NASA almond requires a higher resolution of about 15 cells
per wavelength. For scatterers with a smooth boundary, the results converge quadratically
with the mesh size, but for a horizontally polarized wave incident on the NASA almond,
the order of convergence is lower because of singular fields at the tip.

1. INTRODUCTION

The Finite-Difference Time-Domain (FDTD) scheme [1, 2] is very popular for electro-
magnetics modeling because of its simplicity and efficiency. One drawback of the FDTD is
the staircase approximation of oblique boundaries, which often gives poor accuracy. The
Finite Element Method (FEM) [3] allows good approximations of complex boundaries, and
with edge elements [3, 4] it performs well for Maxwell’s equations. However, FEM requires
more memory and has a higher operation count than the FDTD. An obvious remedy is a
hybrid that applies FDTD in large volumes, combined with FEM near complex boundaries.
Previously attempted hybrids of this type [5, 6] suffer from instabilities known as late time
growth.

We have recently constructed a FEM-FDTD hybrid [7], that is completely stable for
time steps up to the Courant limit of the FDTD. It is also conservative, preserves the
reciprocity of Maxwell’s equations and introduces only small reflection from the interface
between structured and unstructured grids [7]. In this article, we show its performance
in two scattering problems, a perfect electric conducting (PEC) sphere and the NASA
almond.

2. THE METHOD

To compute the radar cross section (RCS) using the hybrid method, we place the scat-
terer in a hexahedral simulation box. A thin layer of unstructured tetrahedral grid around
the scatterer is connected to the structured FDTD grid via a single layer of pyramids. On
the tetrahedrons and pyramids, the electric field is expanded in edge elements [3, 8]. The
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hybrid method [7] is based on the fact that the FDTD follows from FEM, using hexahedral
edge elements and trapezoidal integration. The trapezoidal integration leads to “lumping”
of both the “mass” matrix M, representing eE, and the “stiffness” matrix S, representing
V x u 1V x E. Thus, the hybrid method is constructed by applying FEM concepts ev-
erywhere, and it reduces to the FDTD on the hexahedral grid, where we use trapezoidal
integration.

The resulting mass and stiffness matrices are symmetric everywhere, even at the FEM-
FDTD interface. This is the essential difference of our approach compared to earlier,
unstable hybrids [5, 6]. The symmetric matrices guarantee reciprocity and make it pos-
sible to achieve stability. With an unconditionally stable, implicit (but non-dissipative)
time-stepping [9] in the FEM region, the scheme remains stable for time-steps up to the
maximum for the FDTD, h/+v/3c, where h is the cell size. In the computations reported
here, the implicitness parameter § on the FEM grid is always set to the minimum value
6 = 1/4 [7] that guarantees stability for any time-step, and the maximum time-step of
the FDTD is used. In the FEM region, a sparse matrix must be inverted for each time
step. This is done efficiently by the conjugate gradient method with a zero-fill-in TLU-
preconditioner. Nine iterations per time step typically give an error of order 107°.

An incident plane wave Ej,.(t) = Epexp[—(t — to)?/d%]sin[wo(t — to)] is imposed at
a Huygen’s surface [2]. The radiation field is obtained from the scattered field outside
the Huygen’s surface by a near-to-far-field (NTF) transformation [2]. We apply an NTF
transformation using third order Lagrange interpolation and four point Gauss quadrature.
The transformation converges with an O(h*) error and gives a maximum error of 0.05 %
when A/h = 18. The scattered wave is absorbed at the outer boundary by a “sponge
layer” [10].

3. SCATTERING FROM PEC SPHERE

The code was validated against analytic results for a PEC sphere. The bistatic RCS
for a sphere of radius 1 m was computed on three different meshes with FDTD cell size
h =n/15v/3 m for n = 9, 6 and 4. The wavelength was A = 4.16 m and the time constants
to = 1.73-1078 s, dy = 6.00-10 "% 5. The relative error e(h) = ||0,, —04al|2/||04||2 is shown in
Fig. 1. Here ||-||> = [[,(-)?dQ]*/? and ,, and o, are the numerically computed and analytic
bistatic RCS. A least square fit to the model e(h) = ch® gives @ ~ 2.02. This confirms
that the FEM-FDTD hybrid method converges towards the exact solution with an O(h?)
error. Extrapolation indicates that a root mean square accuracy of 1 dB is obtained with
7.2 cells per wavelength. 1 dB accuracy in all directions requires 9 cells per wavelength.

One potential problem for the hybrid method is scattering at the FEM-FDTD interface.
To investigate this, we replaced the interior of the sphere by vacuum, discretized by tetra-
hedrons. For 12 cells per wavelength, the computed o of this grid was at least 35 dB below
that of the conducting sphere in all directions.
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FIGURE 1. Relative error in the bistatic RCS for a PEC sphere : circles -
computed results, line - fit for extrapolation.

4. SCATTERING FROM THE NASA ALMOND

We also calculated the monostatic RCS of the NASA almond [11, 12, 13] when the
wavelength equals the length of the almond, A = 0.2524 m.
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FIGURE 2. The discretized almond and an incident plane wave with vertical polarization.

Here, we chose t; = 3.31-107% s, dy = 1.15-107% s, and the sponge layer was 0.101 m
thick. The unstructured grid, shown in Fig. 2, has increased resolution at the tip of the
almond. For the convergence study, we rescaled the mesh size uniformly.

Following the notation in [2], the complex scattering amplitudes Ny, Ny, Ly and Ly were
calculated for incidence angles ¢,,, = mn /16, m = 0,1,...,16 on 6 different meshes with
FDTD cell size h = \/5n, where we took n = 3, 4, 5, 6, 8 and 12. The RCS for horizontal
and vertical polarization computed on the six different grids are shown in Fig. 3.
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Ficure 3. RCS for horizontal and vertical polarization on the six different

grids, shown by upper and lower sets of curves respectively. The extrapolated
results are shown as circles joined by dashed curves.

Even though the hybrid method is a second order scheme, quadratic convergence cannot,
be expected for the NASA almond because of singular fields at the tip [14]. We anticipate
that the scattering amplitudes converge, to lowest order, as L = Lo+ L,h* for some power
a. To find the order of convergence for horizontal polarization, we minimized the mean
square error e = (S, (| Zo(Ny— Ny)|? +| Lo — Ly|?)]"/? with respect to o (N and Ly denote
numerically computed amplitudes and N¢ and Ly denote the fit). This procedure allows
the order of convergence to be fairly accurately determined, despite some uneven variations
with element size caused by the unstructured grid. We found the order of convergence to
be 2 for vertical polarization and about 1.2 for horizontal polarization. Finally, we fitted
the functions L = Lo 4+ Loh?, for vertical polarization, and L = Lo + Lih*? + Lyh?, for
horizontal polarization, to extrapolate to the result L, for zero mesh size.

Figure 4 shows the computed RCS and the fit versus h for horizontal polarization and
certain angles of incidence. Figure 5 shows the estimated error Ac[dB| = 10log(c/0y)
versus @, for the coarsest (A\/h = 15) and finest (A/h = 60) grids and both polarizations.
The relative errors are the largest near the minima of the RCS. For horizontal polarization
and A/h = 60, the relative error peaks at about 2.5 dB around ¢ = 107°. However, for
most ¢ the estimated error is below 0.25 dB when A\/h = 60. For vertical polarization and
A/h = 60, the estimated error is at most 0.3 dB. For both polarizations, A\/h = 15 gives
an accuracy better than 1 dB for at least 90% of the azimuth angles.

Previous results for the NASA almond have been given by Woo et al. for the FERM
code [11] and Bluck and Walker for the Zeus code [12, 13], both based on the Method of
Moments. For vertical polarization, the difference between our extrapolated results and
those from the Zeus code is less than 1 dB for all ¢, while the FERM results are 2-5 dB
higher than the others in the interval 40° < ¢ < 130°. For the horizontal polarization,
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F1GURE 4. Convergence of RCS for the horizontal polarization with respect
to h for different angles of incidence: circles - computed results, lines - fit for
extrapolation.
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FIGURE 5. Error in RCS for (a) horizontal and (b) vertical polarization on
the finest and coarsest grid.

the differences are larger. The results from FERM and Zeus typically differ by 2 dB, and
the FEM-FDTD hybrid method stays roughly in between the FERM and Zeus results.
After the careful convergence study carried out here, we would tentatively claim that our
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extrapolated values have an accuracy of about +0.1 dB, except near the minima for the
horizontal polarization.

5. CONCLUSIONS

We have applied the stable FEM-FDTD hybrid [7] to compute the RCS of a PEC sphere
and the NASA almond. For the PEC sphere, the bistatic RCS converges to the analytical
solution with an O(h?) error. For ka = 1.5, where k is the wavenumber and a the radius
of the sphere, the maximum error in the bistatic RCS is 1 dB when the FDTD grid has 9
points per wavelength.

For the NASA almond, we found the order of convergence for the hybrid method to be 2
for vertical polarization and about 1.2 for horizontal polarization. The poorer convergence
for horizontal polarization is caused by singular fields at the tip of the almond. The RCS
computed with \/h = 15, and the length of the almond equal to the wavelength, deviates
less than 1 dB from the extrapolated results, except where the RCS has deep minima. The
accuracy of the results extrapolated to zero cell size can be estimated as +0.1 dB except
close to the minima for horizontal polarization.

The stable FEM-FDTD hybrid has many advantages. It combines the high efficiency of
the FDTD with the ability of the FEM to model complex geometry. Since the number of
operations per unit volume is roughly a factor 20 higher for the FEM part, the FEM region
should be small, which can readily be achieved when the grid size is small. Furthermore,
because the time stepping in the FEM region is unconditionally stable, fine details can be
resolved without the reduction of time-step needed for explicit schemes.
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