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EDDY CURRENT COMPUTATIONS USING ADAPTIVE GRIDS AND
EDGE ELEMENTS

Y. Q. LIU, A. BONDESON, R. BERGSTROM, C. JOHNSON, M. G. LARSON, AND K.
SAMUELSSON

ABSTRACT. Results are presented from eddy current computations using adaptive tech-
niques, based on rigorous a posteriori error estimates. The adaptivity restores the qua-
dratic convergence with grid size of the magnetic energy, despite singularities occurring
at corners. A new procedure is introduced to satisfy the solvability condition for the curl-
curl equation. The methods are applied to a model of a hydrogenerator, with anisotropic
conductivity and permeability. The ungauged formulation with both vector and scalar
potentials gives very significant improvements in rate of convergence for this problem.
Reasons for the improved convergence are discussed.

1. INTRODUCTION

Three-dimensional eddy current problems in realistic geometry are still demanding, and
improvements in solution techniques are very valuable. In the present paper, we present
results obtained using adaptive FEM techniques based on a recent a posterior: error esti-
mate [1]. We also demonstrate and discuss the advantages of the “ungauged” formulation
with vector and scalar potentials [2, 3, 4] which significantly improves the convergence rate
for iterative solvers.

The methods are applied to a simplified model of a hydrogenerator, assuming a time-
harmonic field. The geometry is shown in Fig. 1. The simulated region contains an angular
segment of the four stacks at the axial end of the hydrogenerator. In the circumferential
direction of the generator, the simulation region includes a slot and half a tooth, and its
physical dimensions are 50 mm x 749 mm x 400 mm. The geometry is described in detail
in [5]. The material properties are listed in Table 1. Both the electric conductivity and
the magnetic permeability are anisotropic. The boundary conditions have been prescribed
as vanishing normal magnetic flux density B,, = 0 on certain symmetry planes (essentially
the surfaces facing the viewer in Fig. 1), and the tangential components of the magnetic

field H , as calculated from the Biot-Savart law for the currents in the rotor coil, on the
remaining surfaces.
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FiGure 1. Geometry of the hydrogenerator model. The simulation region
is half a tooth and a slot of the generator. The region is elongated in the
radial direction of the generator (y) and narrow in the azimuthal direction

Hr 1l Hrzz 011 [S/m] Ozz [S/m]
Stator core | 465 13.9 2 x 10° 0
Finger |3 3 1x10" 1x107

Plate 600 600 O 0
Rotor end | 600 600 O 0
Rotor core | 3255 14.1 0 0

TABLE 1. Material parameters in different regions. 1 refers to the zy-plane.

2. FORMULATION

In simply connected regions where the current density vanishes, we use the magnetic
scalar potential v, such that H= V4, and solve V- i -V = 0. The permeability # is in
general a tensor.

In coil regions, the current density is specified, and the magnetic vector potential satisfies

(1) Vxu'VxA=J,

In conducting regions, the most efficient formulation uses both the vector and scalar
potential, so that E = —jw/i' — VV, and imposes no gauge [2, 3, 4]. Instead of a gauge
condition, it is advantageous to impose the condition that the divergence of the conduction
current vanish:



EDDY CURRENT COMPUTATIONS USING ADAPTIVE GRIDS AND EDGE ELEMENTS 3

=—1 o = -
(2) Vx p VxA+o-(jwA+VV) =0,
(3) —¢V- 0 -(JwA + VV) = 0.

We call this the AV formulation. c¢ is a parameter that can be chosen. The conductivity o
is typically a tensor to model laminations. We have solved (1) together with (2-3) using the
lowest order edge elements for A and piecewise linear, nodal elements for V. The magnetic
scalar potential 1) is also expanded in piecewise linear, nodal elements.

3. SOLVABILITY CONDITIONS

The V x p~'Vx operator in (1) has a large nullspace, to which the source-term J,
must be orthogonal, in order for the equation to have a solution. Within the space of the
lowest order edge elements, the nullspace for the discretized curl-curl operator consists of
gradients of piecewise linear functions. Thus, the right-hand side of (1) must be orthogonal
to the gradients of all piecewise linear functions U. Although the exact coil currents
are divergence-free, the orthogonality will in general not be exact for the finite element
representation. To ensure V - J, =0 numerically, we add a gradient as a correction to the
prescribed current j,

(4) J, =J—-VU.

We assume that (1) holds in a region Q with the boundary conditions 7 x A = A x A, (to
specify By,) on 9§24 and 7 x p 'V x A=nx H on 0Qy. U is determined by multiplying
(1) by all gradients VU of piecewise linears, and integrating over :

(5) VU - (3 x H)dS = / VU - (J — VU)dv

0
(U of course vanishes on all nodes on surfaces where A, is specified.) Equations (4-5)
remove any projection of J, on the null space of the curl-curl equation and guarantee that
(1) has a solution. Iterative solvers converge also for singular systems of equations if the
right-hand side is consistent.

Another procedure to achieve consistency was given by Ren [6], who constructed a vector
potential for the current. However, the new procedure is somewhat simpler, and, more
importantly, includes the boundary conditions for H,. The left-hand side of (5) vanishes if
H= V1) on the entire boundary of €.

Solvability has to be considered also in connection with the divergence condition (3).
Since we do not want (3) to add any new information that is inconsistent with Ampere’s
law (2), the weak form of (3) is constructed by projecting (2) on test functions VV that
span the null space of the curl-curl operator, giving:

(6) YV - (3 x H)dS +/ VV- 7 -(jwd + VV)dv = 0

Ny Q
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4. EFFICIENCY OF ITERATIVE SOLVERS

It has already been established for eddy current problems that iterative solvers con-
verge much faster in the ungauged AV formulation (2-3) than in the pure A formulation
or other gauged formulations [2, 3, 4]. Our study confirms this. In fact we find even
larger improvement from the ungauged formulation than previous authors, presumably be-
cause the A formulation gives very badly conditioned matrices in the regions of anisotropic
conductivity, as discussed in Sec 5

We have used the PETSc package for preconditioned Krylov methods [7]. For these
eddy current problems, TFQMR (Transpose-Free Quasi-Minimized Residuals) is generally
the most efficient solver. As preconditioner we used the ILU decomposition of a matrix
obtained from the system matrix by multiplying the diagonal elements for A by a factor
~ 1.1. Without such a multiplication, the preconditioning fails, apparently because of
the null space of the curl-curl operator. The incomplete LU decomposition has been tried
with different levels of fill in (ratio of the number of fill ins to the number of nonzero
diagonal elements in the original matrix, indicated in parenthesis). Although the default
ILU(1) works well for simple test problems, ILU(3) was considerably more efficient for
the hydrogenerator problem. To reduce the memory requirement, we used ILU(2) for the
largest grids, at the expense of a larger number of iterations.

Table 2 shows the number of iterations for the different grids, generated by adaptive mesh
refinement, and different formulations in the conducting and non-conducting regions. In
the coil region, we always use the A formulation in (1), with the source current modified
according to (4-5).

Repr. | Freq- | Number of | Itera-
(o0 # 0, | uency | unknowns | tions
o=0) (complex)
(AA) 0 16590 49
26786 81
(A,A) | 50Hz | 16590 1622
26786 6943
18336 269
(AV,A) | 50Hz | 22640 327
59134 453
12987 67
(AV,)) | 50Hz | 27948 163
67542 221

TABLE 2. Number of iterations for different formulations in the conducting
and nonconducting regions for the static and time-harmonic hydrogenerator
problem.

Notably, the number of iterations is very high for the A formulation at 50Hz. However,
the AV-formulation achieves a very significant reduction in the number of iterations. The
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number of iterations is further reduced by using the magnetic scalar potential in the non-
conducting regions.

5. EIGENVALUE DISTRIBUTION

Insights into why the AV formulation speeds up the convergence can be gained by con-
sidering the eigenvalue distribution for the different formulations. When the discretization
is free of “spurious solutions” (as are the discretizations using edge elements for the vector
potential), it is sufficient to consider the eigenvalues of the analytic operators applied to
complex exponentials exp(jlg - ), where 7/|k| ranges from the longest spatial scale of the
problem to the smallest, i.e., the grid size.

For isotropic ¢ and pu, the eigenvalues of the A formulation, where the operator is V x
p 'V X +jwo, are \i2 = k*/p + jwo (electromagnetic) and A3 = jwo (electrostatic

A=V¢).
For the AV operator in a homogeneous medium
(7) VX pu'VxA+o-(jwA+VV) = M
(8) ~V-co-(jJwA+VV) = AV
the eigenvalues in the isotropic case are Ao = k*/pu + jwo (electromagnetic), A3 =

cok? + jwo (electrostatic) and )\, = 0 (gauge transformation). Thus, in addition to creat-
ing zero eigenvalues connected with gauge transformations, the AV formulation gives the
electrostatic eigenvalues a real part. This brings them closer in the complex plane to the
electromagnetic eigenmodes. Since all the non-zero eigenvalues have a part proportional to
k%, the AV formulation makes the problem elliptic (excepting the gauge transformations,
of course). Since eigenvalues that are exactly zero do not affect iterative solvers if the
right-hand side is consistent, and the non-zero spectrum for the AV formulation covers a
smaller region of the complex plane, this formulation gives faster convergence. The gain
from the AV formulation depends on the size of the imaginary part in comparison to the
smallest and largest real parts, i.e., on the relation of the skin depth to the macroscopic
scales and the grid size. Figures 2 and 3 show the eigenvalue distributionsfor a the test
case of a discritized cube, for the A and AV formulations, respectively. Close examination
shows that the separation between the electrostatic and electromagnetic eigenvalues of the
matrix for the A formulation is not perfect (it would be if the normalization included the
“mass matrix” M;; = [ N; - N;dv where N denote the edge basis functions for the vector
potential). However, when the number of elements is large enough to resolve the skin
depth well, the eigenvalues separate as found analytically, and there is one “electrostatic”
set very close to the imaginary axis.

For an anisotropic conductivity corresponding to laminations in the xy-plane, o= (i +
77), the differences are even more significant. For the A formulation the eigenvalues are:
A1 = k?/p+ jwo (electromagnetic), while Ay 3 (mixed electromagnetic/electrostatic) satisfy
the quadratic equation

9) N — ANk p+ jwo) + jwok? /=0
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FIGURE 2. Numerical spectrum in the complex plane for a discritized con-
ducting cube with the A formulation. The side of the cube is 1 m, the
frequency 50 Hz, the conductivity 10* S/m, ¢ = 1/(uo), and the number of
edges is 250.
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FI1GURE 3. Numerical spectrum in the complex plane for a discritized con-

ducting cube with the AV formulation. The parameters are the same as in
Fig. 2.

with &7 = k2 +k?. Equation (9) shows that numerically small eigenvalues occur (for nearly
electrostatic modes) when k? > k?
A3 ~ jwok? [k

Since the largest possible k is inversely proportional to the element size h, we see that
the effective condition number (ratio of largest to smallest non-zero eigenvalue) of the A
formulation, varies as h~* to be compared with the h~2 scaling for the isotropic case. Thus,
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the A formulation gives an unfavorable scaling of the number of iterations when the grid
is refined in the anisotropic case. This is confirmed by our numerical results.
For the AV formulation, the two mixed electromagnetic/electrostatic eigenvalues satisfy

(10) N — MNK?/p + jwo + K} co) + jwok? [+ kT cok® /=0

[which reduces to (9) when ¢ = 0]. These eigenvalues are well behaved when k2 > k2 | in the
sense that the small eigenvalues approach k2 co, which is bounded from zero when the mesh
is refined, and the condition number scales as h~2. Thus, for laminated materials, the AV
formulation strongly reduces the condition number in comparison with the A formulation.

6. ADAPTIVITY

We have implemented a scheme for adaptive mesh refinement, based on an error estimate
in energy norm [1]. Which elements are to be refined is decided from their contributions
to the total error. For the AV-formulation, the contribution /(e) from element e is:

4
hy . 1
I(e) = L aloH,)?+ —|6J,* ) A
(e) ; 5 (,u| l +w5| |) f
(11) +h2AlT, + T2V

where 6H, is the jump in tangential H across element boundaries, §.J, the jump in the
normal component of the conduction current, A; the area of face f, V, the volume of
the element, and bars refer to averages defined in [1]. Similar estimates have been applied
previously, on more heuristic grounds [8]. For the v formulation, we used the error indicator

9]

4

hy 4 2
I(e) = — 0B, Ay.
€ = X 0B 4
Figure 4 shows that the energy [ H - Bdv converges for the hydrogenerator problem as
O(h?), where h is an average element size defined as N~/3, and N is the number of
elements. Because of singular behavior at corners where the permeability is discontinuous,
(B o r7P, where r is the distance to the corner, and p ~ 1/3 if p has a large jump),
computations with uniform grids only give O(h*/?) convergence, so that adaptivity clearly
improves the convergence. In addition to refining the grid at corners, the adaptivity also
refines regions of the stacks where the skin effect makes the solution vary rapidly. Figure
5 illustrates how the magnetic field along a stator pole varies in the direction across the
stacks. The skin effect is in clear evidence.
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FiGURrE 4. Convergence of the magnetic energy with adaptive grid for the
hydrogenerator at 50 Hz.
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FIGURE 5. The radial component of the flux density along an axial line, crossing
the stacks of the generator.
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