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ADAPTIVE FINITE ELEMENT METHODS FOR INCOMPRESSIBLE
FLUID FLOW

JOHAN HOFFMAN AND CLAES JOHNSON

ABSTRACT. We present recent work on the following issues of CFD: (i) discretization of
the non-stationary incompressible Navier-Stokes equations, (ii) solution of the discrete
system at each time step, (iii) hydrodynamic stability, (iv) adaptive error control and a
posteriori error estimates, (v) transition to turbulence and (vi) turbulence modeling.

1. INTRODUCTION

The Navier-Stokes equations give the basic model for fluid flow and describe a variety of
phenomena in hydro and aero-dynamics, processing industry, biology, oceanography, me-
teorology, geophysics and astrophysics. Fluid flow may contain features of incompressible
and compressible flow, Newtonian and non-Newtonian flow, and turbulent and laminar flow,
with turbulent flow being irregular with rapid fluctuations in space and time and laminar
flow being more organized. Computational Fluid Dynamics CFD concerns the simulation
of fluid flow by solving the Navier-Stokes equations numerically. The basic issues of CFD
is computability relating to errors from numerical computation, and predictability relating
to errors from imprecision in given data. The basic question for a given flow situation may
be formulated as follows: what quantity can be computed/predicted to what tolerance to
what cost? We emphasize the quantitative aspects concerning both the choice of quantity
to compute, the error tolerance and the computational cost. We may expect a turbulent
flow to be more computationally demanding than a laminar flow, and a pointwise quantity
(e.g the viscous stresses at a specific point) more demanding than an average quantity (e.g.
the drag or lift).

In these notes we give a survey of our recent work on this question, continuing in par-
ticular our AGARD 92 lecture notes [15], with focus on adaptive finite element methods
for non-stationary incompressible Newtonian laminar and beginning turbulent flow with
medium large Reynolds numbers in the range 100 —1000. The basic issues entering are the
following: (i) discretization of the incompressible Navier-Stokes equations, (ii) solution of
the discrete system at each time step, (iii) hydrodynamic stability, that is the growth of
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2 JOHAN HOFFMAN AND CLAES JOHNSON

errors/perturbations from computation/data, (iv) adaptive error control and a posteriori
error estimates, (v) transition to turbulence and (vi) turbulence modeling. We now give
an introductory overview of the basic topics (i)-(vi). For an overview of adaptive finite
element methods including references, we refer to the survey articles [2] and [1], see also
[4] and [5], containing many details on various aspects of finite element adaptivity omitted
in these notes. For an overview of finite element methods for the incompressible Navier-
Stokes equations including references, we refer to [23]. For a survey of turbulence modeling
we refer to [6], [27] and [8] and references therein.

1.1. Discretization. To discretize the Navier-Stokes equations to get a discrete system
of equations on each time step, we use the general stabilized Galerkin/least squares space-
time finite element method developed over the years together with Hughes, Tezduyar and
coworkers. With continuous piecewise polynomials in space of order p and discontinuous or
continuous piecewise polynomials in time of order ¢, we refer to this method as cG(p)dG(q)
or ¢cG(p)cG(q). In the computations presented in these notes we use cG(1)cG(1) with con-
tinuous piecewise linears in space for both velocity and pressure on tetrahedral meshes and
Crank-Nicolson time stepping. Discretization introduces discretization errors containing
Galerkin piecewise polynomial approximation errors and quadrature errors. For turbulent
flow, some form of turbulence modeling is necessary, introducing also a modeling error. We
may view the discretization and modeling error together to form the computational error.

1.2. Discrete solvers. The discrete system in velocity-pressure on each time step is solved
using a fixed point/defect correction outer iteration, and for the corresponding inner itera-
tion linear system we use GMRES in the velocity with the pressure solved in terms of the
velocity using a multigrid Poisson solver. We also perform the inner iteration with defect
correction in the velocity with given pressure. This method is efficient and robust for the
non-stationary medium Reynolds number flows considered in these notes. The discrete
solver introduces additional discretization errors from approximate solution of the discrete
equations.

1.3. Hydrodynamic stability. Hydrodynamic stability concerns the stability features
of a given solution of the Navier-Stokes equations (base flow), that is the growth of per-
turbations from data or computation in a given flow. Hydrodynamic stability features
may be expressed by different stability factors measuring the growth of different pertur-
bations/errors from data, modeling or discretization. The Galerkin discretization error
basically has the form of a product of residuals connecting to interpolation errors depend-
ing on the smoothness of the solution, and related stability factors. The stability factors
may be computed by numerically solving linearized (forward or dual backward) Navier-
Stokes equations with appropriate data, linearized at (an approximation of) the base flow.
Stability factors normally increase with increasing Reynolds number Re = %, where U
is a reference velocity, L is a reference length, and v is the kinematic viscosity, and with
increasing time scale 7. The Reynolds number Re may range from small (of size 1) for very
viscous flows, to very large (up to 10° or more) in aero or hydro-dynamics, with turbulent
flow often appearing for Re larger than 102 — 10%. The stability factors may vary from
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small (of size 1) to medium (size 10? say) to large. Stability factors may grow linearly with
KT for laminar flow, and (momentarily) exponentially with K7 for pointwise quantities
in turbulent flow, where K is a measure of the velocity gradient. Typically, K is small for
laminar flow (outside layers) and large for turbulent flow (locally of the order Re®4), and T
is typically large (of the order Re) for laminar flow. Fluid dynamics with Re medium /large,
which is our main focus here, thus usually has KT medium/large, with stability factors
growing linearly with KT for laminar flow and (momentarily) exponentially for pointwise
quantities in turbulent flow. Turbulent flow thus has non-smooth solutions and large sta-
bility factors for pointwise quantities, and thus is pointwise uncomputable in the sense
that the required mesh size would be too small (smaller than say 10~ on the unit cube)
and thus require too many operations and too much memory for todays computers. The
aim of turbulence modeling is to compute solution averages which are smoother and have
smaller stability factors using feasible mesh sizes (say 1072 on the unit cube). The process
of turbulence modeling introduces a modeling error, which together with the discretization
error forms the total computational error.

1.4. Adaptivity and a posteriori error estimates. We present here a general approach
to adaptive error control based on a posteriori error estimates. We then consider a math-
ematical model of the form A(u) = f, where A is a differential operator, f is given data,
and u is the solution. The model is subject to perturbations from data represented by
f , modeling represented by fl, and discretization represented by U viewed as a numerical
approximate solution to a perturbed problem A(&) = f with exact solution 4, with U
obtained using a Galerkin finite element method. We say that the data/modeling error
is equal to u — @ and the discretization error is equal to & — U, and that the total error
u—U = u— 14+ 4 — U, thus has a contribution from data/modeling and a contribu-
tion from discretization. The model perturbation A may represent a turbulence model in
applications to fluid flow.

An adaptive method for solving A(u) = f includes a feed-back process, where the quality of
computed solutions U of perturbed models fl(ﬁ) = f , are investigated with the objective of
decreasing the modeling error v — @ by improving the model fl, and/or the discretization
error 4 — U, the latter typically by appropriately modifying the local mesh size. An
adaptive method is based on a posteriori error estimates estimating the data/modeling
and discretization errors in terms of computable residuals such as f — A(U) or f — A(U),
or estimated residuals such as f — A(a).

Adaptive feed-back in modeling and discretization may be viewed as one aspect of opti-
mization with the objective of decreasing the modeling and discretization errors. Adding
also aspects of optimization of solutions, which is often the main objective, one gets a
full picture of solution optimization including optimization of modeling and discretization.
This problem is of the same general form with now the equation A(u) = f representing a
Lagrange system of equations characterizing solution optimality.

We now present the key steps in the derivation of an a posteriori error estimate for the
discretization error in a Galerkin finite element method for the equation A(@) = f of the
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~ A

form: Find U € V such that (A(U),v) = (f,v) for v € V}, where V}, is a finite dimensional
subspace, on a mesh with mesh size h, of a Hilbert space V' with scalar product (-,-) and
norm ||-||, and A : V — V is Frechet differentiable with derivative A’ : V' — V. Supposing
that we want to estimate the quantity (e, 1) where e = & — U and v is a given element in
V, we write

A() — AWy = /0 %A(smu_s)wds

1
_ /A’(sﬁ+(1—s)U)dseEA’(a,U)e,
0

and let ¢ € V be the solution to the dual linearized problem (A'(4,U)w, ¢) = (w, ) for
all w € V, and obtain choosing w = e the following error representation

(e,9) = (A'(8,U)e, ) = (A(@) = A(U), ) = (f = A(U), 0) = (R(V), ¢),

in terms of the residual R(U) = f — A(U). We then use Galerkin orthogonality to obtain,
with & € V, an interpolant of ¢ satsifying an interpolation error estimate of the form
1F72(¢ = ®)|| < Cil| D¢,

(e,%) = (R(U), ¢ — ®) < Ci|K*R(U)|| || D*¢|| < CiS|W*RO)|| 1],

where D? represents a second derivative, h(z,t) is the local mesh size, S = ”ﬁ;ﬁ’” is a

stability factor and C; an interpolation constant. Normalizing 1/, we obtain an a posteriori
error estimate of the form

(e, 9)| < CiS|IRR(U)|

estimating the error in terms of the residual R(U ), the mesh size h and the stability and
interpolation factors S and C;. The interpolation factor C; only depends on the finite
elements used, while we have to compute the dual problem, depending on both v and U
and v, to get the stability factor S.

An adaptive method typically involves a stopping criterion guaranteeing that the error
measure is less than a given tolerance, and a modification strategy to be applied if the
stopping criterion is not satisfied. Both the stopping criterion and modification strategy
may be based on an a posteriori error estimates of the form just given, involving the
residuals f — A(U) and f — A(U) of computed solutions, and/or a priori error estimates
involving estimates of the exact solution % or u, and including appropriate stability factors.
A modification strategy may concern quantities related to discretization such as the local
mesh size, or quantities related to turbulence modeling such as turbulent viscosities. The
modification strategy for the local mesh size is often based on equidistribution with the
objective of satisfying the stopping criterion with a minimal number of degrees of freedom,
or largest possible local mesh size.

The dual problem is linearized at a mean value of the exact solution v and the computed
solution U. In practice, when solving the dual problem to compute stability factors, we
have to replace v by U and thus linearize at the computed solution U. In order for the
corresponding linearization effect to be small, we expect to require U to approximate
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pointwise sufficiently well. We return to this issue shortly in the context of turbulence
modeling, where U may be expected to be a pointwise approximation to a local average
u” of u, but not u itself. It appears natural to choose the size of the average so that the
discretization and modeling errors balance, with the discretization error decreasing and
the modeling error increasing with increasing averaging.

1.5. Transition to turbulence. The phenomenon of transition from laminar to turbulent
flow, studied intensively by Reynolds more than hundred years ago in the case of pipe
flow, has long been an outstanding open problem in science, where today computational
methods shed new light. Reynolds observed by injecting dye into water flowing through a
transparent pipe, that sometimes the flow changed quite abruptly from organized laminar
to turbulent fluctuating flow at some point downstream from the inlet, with the transition
being identified by the deviation of the dye from a straight line into a rapidly fluctuating
path. Seemingly similar sudden changes may be observed in the raising smoke from a
cigarett, or in a stock market crash, or a sudden break up of a long-lasting marriage.

The basic question in all these cases is: why does the transition take place at a specific
point in space or time, or not at all? Observing the straight line of the dye in Reynolds
experiment before the transition, does not appear to give any signal of emerging instability,
and a stock market crash necessarily must be a surprise for the majority of the market
actors. The research on transition to turbulence in fluid flow has largely focussed on
finding a relation between the Reynolds number and transition, with ideally a so called
critical Reynolds number for each type of flow, identified by the fact that transition to
turbulence takes place if and only if the actual Reynolds number is larger than the critical
Reynolds number. Reynolds himself had little reason to belive in the existence of such
critical Reynolds numbers noting that in his own experiments the transition took place in
one pipe and not in another at the same Reynolds number. Nevertheless, most text books
in fluid mechanics today present critical Reynolds numbers for various flows, such as 5772
for Pouiseuille flow between two parallel fixed plates (with parabolic velocity profile), and
oo for Couette flow between two moving parallel plates (with linear velocity profile), both
however at severe variance with experiments. For example, Couette flow may go turbulent
in experiments for a wide range of Reynolds numbers starting at around 300, depending on
the experimental set-up, and similarly Pouiseuille flow starting around 1000. The stated
critical Reynolds numbers come out of a so called normal mode stability analysis of 2d
linearized equations, referred to as the Orr-Sommerfeld equations, based on identifying
exponentially growing eigenmodes. The striking difference in the theoretical predictions
and the practical experiments for transition in parallel flow, has driven the classical study
of hydrodynamic stability into a severe crisis.

However, during the last decades new insight on the importance of 3d perturbations
and non-modal growth has been developing, see [26], giving a better understanding of the
process of transition from laminar to turbulent flow in almost parallel flow, such as pipe
flow and boundary layer flow. We will present pieces of this new picture as an appli-
cation of a quantitative mathematical/computational analysis of hydrodynamic stability.
In particular, the analysis will show that even if the dye injected into the pipe indicates
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that fluid particles follow (almost) straight lines prior to the transition, the flow actually
gets considerably reorganized as a necessary preparation before the transition. We will
refer to the reorganization as resulting from the Taylor-Gortler mechanism through which
small transversal velocity perturbations after some time result in big perturbations in the
streamwise velocity, which is the initial and crucial phase of the transition process, and
which results from the non-normality of the linearized Navier-Stokes equations when lin-
earized at parallel flow. Of course we may expect to find similar reorganizations preparing
transitions into stock market and marriage crashes.

A possible reason for the survival of the classical misleading normal mode stability
analysis for parallel flow, despite its lack of experimental support, is probably the fact that
there are some other cases, where the same type of analysis in fact is correct and conforms
with experiments, namely the bifurcating Benard and Taylor-Couette flows, changing from
one configuration to another at a certain well defined Reynolds number. The bifurcation
of Bernard flow involves the development of organized patterns of convective rolls of fluid
in motion. A bifurcation involves a change from one configuration loosing stability, to a
new stable configuration, which is different from the process of transition to turbulence,
with the new configuration being increasingly unstable. Now, a bifurcation in general may
be detected through a normal mode analysis based on finding for the linearized equations
an eigenvalue with zero real part. In particular, the critical Reynolds number for the first
bifurcations in Taylor-Couette and Bernard flow, may be found analytically this way. As
indicated this approach does however not work for parallel Couette or Poiseuille flow, which
do not bifurcate to find new stable configurations, but instead go into turbulent unstable
motion. It appears that the success of the mathematical theory in the bifurcating cases,
has overshadowed the failure in the non-bifurcating cases.

1.6. Turbulence modeling. The design of turbulence models has been a major open
problem in fluid mechanics since the initial efforts in this direction by Reynolds at end of the
19th century. Turbulent flow appears to be pointwise uncomputable on todays computers
because of the presence of small-scale features and large stability factors. The basic problem
of turbulence modeling is to represent the effects of the unresolved scales on resolvable
scales in computable models. Today, computational methods open new possibilities of
approaching this fundamental problem of mathematical modeling, in the form of Dynamic
Large Eddy Simulation DLES, where the the turbulence model is constructed as a part of
the computational process with dynamic feed-back from the computation.

The problem of turbulence modeling may be described as follows: Let u" be an ap-
proximation of the exact solution u corresponding to a local running average of size h
representing the finest computationally resolvable scale. We seek to compute a pointwise
accurate approximation U of u” using a mesh of size h, in a situation where a pointwise
accurate approximate solution of the exact solution u itself would be impossible because
u contains significant scales finer than h (unresolvable subgrid scales with effects on the
resolvable scales). We start seeking an equation satisfied by u" by making an Ansatz of the
form A(u") + A(u)* — A(u") = f*, where we need to approximate Fj,(u) = A(u)* — A(u")
in terms of u” in a subgrid model F)(u"), with thus F}(u") an approximation of Fj,(u), to
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get a model of the form A(4) = A(d) + Fy(4) = f* = f. The quantity Fj(u) has the
form of a (generalized) covariance and we thus face a problem of modeling covariances.
In the setting of the Navier-Stokes equations, the term Fj,(u) corresponds to (derivatives
of) the exact Reynolds stresses, and the turbulence modeling problem is to find an expres-
sion Fj,(u") approximating Fj,(u) in terms of u". Having determined a turbulence model
in the form of a function F},, we solve the Galerkin equation: Find U € Vj, such that
(A(U) + E, (), ) (f,v) for all v € V,. The total error will then connect to a modeling
residual F},(u) — F),(U) and a discretization residual A(U)+ F},(U) — f in a posteriori error
estimates, where the modeling residual has to be approximated by extrapolation, while the
discretization residual is directly computable from U.

The problem of turbulence modeling thus may be viewed to be to construct the func-
tion F. The basic approaches use similarity models based on extrapolation from coarser
scales assuming a scale regularity, or turbulent viscosity models with the Reynolds stresses
approximated as viscous resolvable stresses given by a turbulent viscosity, or mized models
with a combination of similarity and turbulent viscosity models.

We now return to the question of linearization in connection to a posteriori error esti-
mates, assuming the approximate solution U to be a pointwise accurate approximation of
u®, but not the turbulent solution u itself, because of unresolvable subgrid scales. Aiming
then at an a posteriori error estimate for 4 — U, we will have a modeling error contribution
from the quantity Fj(u), and we will need to estimate this quantity even if we do not use
a turbulence model. Using a turbulence model with F},(U) an approximation of Fj,(u), we
instead need to estimate F},(u) — F'(U). At any rate, we need to estimate or model Fj,(u).
With the terminology used above, we view the turbulence modeling error as a part of the
total computational error with ideally a balance of discretization and modeling errors.

2. THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

The incompressible Navier-Stokes equations expressing conservation of momentum and
incompressibility of a unit density constant temperature Newtonian fluid with constant
kinematic viscosity v > 0 enclosed in a volume €2 in R?, take the form: find (u,p) such
that

Dyyu—vAu+Vp =f in Q x I,
divu =0 in Q x I,
(2.1) U =w on 02 x I,
u(-,0) =u® in ,

where u(z,t) = (u;(z,t)) is the velocity vector and p(z,t) the pressure of the fluid at (z,t),
and f, w, u®, I = (0,T), is a given driving force, Dirichlet boundary data, initial data and
time interval, respectively. Further,

(2.2) Dyww=10+ (u-V)v

is the particle derivative of v(z,t) measuring the rate of change %v(z(t),t) of v(z(t),t)
along the trajectory z(t) of a fluid particle with velocity u, satisfying @(t) = u(z(t),1),
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where as usual ¥ = Qv/0t. The quantity vAu — Vp represents the total fluid force, and
may alternatively be expressed as

(2.3) vAu — Vp = divo(u, p),

where o(u, p) = (0;;(u, p)) is the stress tensor, with components 0;;(u, p) = 2ve;;(u) — pédij,
composed of the stress deviatoric 2ve;;(u) with zero trace and an isotropic pressure: Here
€ij(u) = (ui; + u;;)/2 is the strain tensor, with w;; = Ou;/0z;, and 6;; is the usual
Kronecker delta, the indices ¢ and j ranging from 1 to 3. A Neumann type boundary
condition, corresponding to the boundary stress being prescribed, takes the form o-n = g,
where (0-n); = ), 04n; and g = (¢;) is a given boundary stress with g; the force component
in the z;-direction.

In the model (2.1) we assume that the temperature T is constant. In the general case
with variable density p and temperature 7', (2.1) is modified by replacing D, ; by pD,,
and adding the following equations expressing conservation of mass and energy:

(2.0 Dyyp =0 in Qx I,
' D, T —V-(uVT) =F in Qx I,

together with boundary and initial conditions, where y is a heat conduction coefficient and
F' a heat source, assuming the heat capacity is equal to one. We note that since V-u = 0,
we have D, ;p = p+V - (pu) = 0, which is the usual equation expressing mass conservation.

We assume that (2.1) is normalized so that the reference velocity and typical length
scale are both equal to one. The Reynolds number Re is then equal to v~1. Of course, the
specification of the length scale may not be very obvious and thus the Reynolds number
may not have a very precise quantitative meaning.

2.1. Existence and uniqueness of solutions. Existence and uniqueness of solutions of
the 3d incompressible Navier-Stokes equations (2.1) is an outstanding open problem in the
mathematical literature, now on the Clay Institute’s list of $10° prize problems. One may
argue, that little progress has been made on this problem since the work by Leray [20] from
1934 proving existence, but not uniqueness, of a certain type of weak solution. In contrast,
it is known that for various so called regularized Navier-Stokes equations, existence and
uniqueness of classical solutions may be proved mathematically using standard techniques
from the theory of partial differential equations and functional analysis, see [9]. A common
regularization consists in replacing the constant viscosity v by the modified viscosity

(2.5) b= v+ h2e(u)]?,

depending on the strain e(u) and the positive regularization parameter h, representing a
smallest possible spatial scale. The regularization introduces a modification of the viscosity
for highly strained flows, away from the Newtonian constant viscosity. In this model the
basic energy estimate (assuming f = w = 0) obtained by multiplying the momentum
equation by u and integrating:

[utenrarsa [ [ @ s wdr) e < [ popa,
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is strong enough to prove uniqueness using a standard Gronwall type argument based on
a Sobolev inequality of the form

v C
(w- Vu,w) < C||Vw|**[lw]|'le(u)]| < §||Vw||2 + ;llE(u)ll‘lllUJHQ,

with (,-) and || - || appropriate Ly(2)-scalar products/norms, w = u — v the difference of
two solutions u and v, and C' a constant of moderate size. The resulting estimate of the
difference (perturbation) w(t) has the form

lw()I? < Cexp(g ) [w (O]

We note that the growth factor is extremely large in the case of main interest with v and
h small, which puts doubts to the physical meaningfulness of the uniqueness proof. If a
similar mathematical uniqueness proof was possible for the limiting case of the Navier-
Stokes equations with A = 0, which would seem to give the Clay prize, it would most likely
suffer from the same presence of enormous constants, and the value of the proof could be
seriously questioned.

The uniqueness question is of course intimately connected to hydrodynamic stability,
which concerns the growth of perturbations (such as w(t) in the above discussion) in the
Navier-Stokes equations. Only solutions which are stable in some sense may be expected
to exist as observable flows. Hydrodynamic stability has a long tradition going back to
Reynolds, Rayleigh and Lord Kelvin, but offers surprisingly few concrete results of signifi-
cance. In general, both the perturbation growth and the complexity of the flow increases
with increasing Reynolds number (decreasing viscosity), with eventually the flow becoming
turbulent with very strong perturbation growth and very fine scales developing. We shall
show below that for even for basic types of parallel laminar flow, the growth of pertur-
bations may be linear in the Reynolds number, indicating that the 3d Euler equations,
corresponding to vanishing viscosity, cannot have any meaning.

3. HYDRODYNAMIC STABILITY

Hydrodynamic stability concerns the quantitative stability properties of the incompress-
ible Navier-Stokes equations, which are of basic importance for both error control in com-
putation and modeling, and for the understanding of phenomena of fluid flow such as
bifurcation or transition to turbulence. The basic study of hydrodynamic stability con-
cerns the linearized Navier-Stokes equations for perturbations (¢, q) of a given solution
(u, p) of (2.1) corresponding to the initial data uy and right hand side f, obtained by sub-
tracting (u, p) from the solution (u + ¢, p + ¢) corresponding to the perturbed initial data
u® + ° and right hand side f + g, and omitting the quadratic perturbation term (¢ - V):

Dyo+ (p-Vu—vAp+Vq =g in Qx I,
V.op = in Q x I,
(3.1) ¢ =0 on 002 x I,
0(-,0) = ¢° in Q,

where (¢ - V)u = (Z?Zl ojui)ey with v; = 0v/dx;.
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The basic question in hydrodynamic stability is to estimate the solution (¢, ¢) of (3.1) in
various norms in terms of appropriate corresponding norms of the data (g, ¢p), for example
in terms of certain stability factors. A basic example is given by the weak stability factor
So(u, T) depending on the base flow u, final time T and the perturbation ¢°, defined by

(32) S()(U,T, (pO) = ||g0(|)|1a

1]
or the factor Sy (u, T') depending on the base flow v and the final time 7" with a maximization
over all perturbations, defined by

(3.3) So(u,T) = sup M,

woeLy ||l
where ¢ is the solution of (3.1) with ¢ = 0 and initial data ¢° # 0, and |[v]| = ||v||1,),
|lvllr = supgcier ||lv(-8)]]- The factor Sp(u, T, ¢°) measures the growth over the time
interval (0,7 of the perturbation ¢° of initial data, and the factor Sy(u,T) measures the
maximal growth over the time interval (0,7") of an initial perturbation of initial data.
We refer to these stability factors as weak because we measure the solution itself and not
derivatives thereof. Strong stability factors measure derivatives of the solution of dual
linearized equations, connect to Galerkin discretization errors and occur as multiplicative
factors in a posteriori error estimates.

We now give estimates of the stability factor Sy(u,T’) in two extreme cases: a worst
case with exponential dependence in KT related to non-smooth turbulent flow, and a best
case with linear dependence in KT related to smooth laminar flow. The strong stability
factors coupled to Galerkin discretization show the same span of variation. Assuming
that K = 1 and T = v~! = Re, the dependence can be expressed as an exponential or
linear dependence in the Reynolds number Re, with the exponential dependence indicating
uncomputability even for moderately large Reynolds numbers, while the linear dependence
make smooth laminar flows computable.

3.1. Worst case exponential perturbation growth. Multiplying the first equation of
(3.1) by ¢ and integrating over Q x (0, t), using the incompressibility of both v and ¢, one
gets for ¢t > 0:

t
lo(o)lI? < =2 / / (0 VYu- pduds + ).

from which follows by the Gronwall inequality that So(u,T) < exp(CKT), with C ~ 1,
which is a worst case exponential estimate. We note the exponential growth is generated
by the presence of the zero order term (¢ - V)u, as in the simple scalar ode ¥ = K with
solution t(t) = ¥(0) exp(Kt). A flow with this very strong perturbation growth cannot
exist as a stable flow. Since there are some more or less stable flows observable in nature,
it must be possible in special cases to obtain reduced growth rates by using particular
features of the zero order coupling term (- V)u. A basic such case arises in nearly parallel
flow, with a particular coupling of the perturbations of the velocities in streamwise and
transversal directions, which we now turn to.
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3.2. Linear perturbation growth for nearly parallel flow. Nearly parallel flow is a
basic type of flow, also referred to as shear flow, occuring in pipe flow and boundary layer
flow, where the streamlines are almost parallel straight lines and the transversal variation
of the streamline flow velocity is balanced by a shear force. We now show that for such
flows the weak stability factor Sp(u,T’) defined by (3.3) satisfies Sp(u,T’) ~ KT. This
estimate underlies the first crucial step in the scenario of transition to turbulence in nearly
parallel flow to be presented, showing that a perturbation growth ~ v~! over time intervals
of length Tv~! is possible even if for smooth flows with K = 1, indicating that a small
initial perturbation (of size v say) in fact may cause the base flow to change significantly
if we only wait long enough (over a time interval ~ v~!).

We consider a smooth parallel stationary base flow (u,p) in an infinitely long straight
pipe 2 = R X w, where w in the (x5, x3)-plane is the cross-section (with smooth boundary)
of the pipe of diameter of size 1, and the axis of the pipe is oriented along the z;-axis, and
u vanishes on the boundary of the pipe. We assume that the base flow (u, p) is independent
of x; and satisfies the following assumptions

(3-4) lull 1, [Vullw=C,  lullo + IVl < cv,

where || - || denotes the maximum norm, % = (up,u3), and V = (8/0zy,0/0x3) is the
gradient with respect to (zo,z3). Here and below, ¢ and C' denote positive constants of
moderate size, which are independent of v. The assumption (3.4) including a smooth
streamwise velocity u; ~ 1 in the z; direction being independent of z;, and smooth small
transversal velocities @ of size &~ v, may be viewed as a basic characteristic of nearly parallel
flow. A further characteristic may be that the derivatives in the streamwise direction z
are one order smaller in v, so that u;; ~ v and ug,u3; ~ v?. We will return to this
feature below in the presentation of the scenario of transition to turbulence. We further
assume as already indicated that 7"~ 1/v = Re.

Assuming that also the perturbation (¢, ¢) are independent of 1, the linearized equations
(3.1), take the following form:

Dyior+ (- V)uy —vAp; = 0 inwx1I,

Dyp+(p-V)u+Vg—vAg = 0 inwxI,

(3.5) V-g=pr2+twsz = 0 inwxI,
% 0 on Ow x I,

o(-,0) = ¢ on w.

These equations have a very particular structure. First, the equations for the transversal
velocity ¢ are fully decoupled from the equation for the streamwise velocity ¢;, and have
zero order terms with small coefficients because |Vi| < cv. Secondly, the zero order term
(@ - ?)ul in the equation for ¢; does not contain ¢;, because u;; = 0. This means that
the zero order terms in (3.5) have a special form, which makes it possible to reduce the
general worst case exponential growth of Sy(7'), to a linear growth. The basic structure of
the equations (3.5) is present in the system of ordinary differential equations ¢; — ¢y = 0,
P9 = 0, for t > 0, ©° = (0,9) with solution i (t) = te), vs(t) = ¢, showing a linear
growth of ;. The growth in this system is very different from the exponential growth
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obtained changing the first equation to ¢; —¢; = 0, with the exponentially growing solution
©1(t) = exp(t)p?, assuming now ¢V # 0. Clearly, the change from linear to exponential
growth is related to the nature of the coupling, with the direct coupling ¢; = ¢; being
much stronger than the indirect coupling ¢, = @5, where @9 = 0.

We now prove a basic estimate giving a linear growth bound in time of the streamwise
velocity perturbation ¢, generated by a small transversal perturbation @°. We refer to the
physical phenomena causing this perturbation growth as the Taylor-Gortler mechanism,
which has a crucial role in transition to turbulence. The bound is based on an energy
estimate using the decoupling of ¢; and @, resulting from the fact that ¢; = 0 and
¢1, = 0. Below we present computations showing that the bound is sharp and that
linear perturbation growth actually occurs.

Theorem 1. The stability constant Sy(u,T), defined by (3.3) in the contezt of x1-independent
nearly parallel pipe flow (u,p) satisfying (5.4), satisfies the following bound for T = v=':
(3.6) So(u,T) < Cv7,

where C depends on the constant c in (3.4). If the constant c is small enough, then the
estimate (3.6) holds for T > v=" with v=" replaced by T.

Proof. First, multiplying the equation for ¢ by @, and integrating over w using the fact
that V-4 =V - ¢ = 0, shows that
1d
2dt
Using Gronwall’s inequality, we then find that

lell* +v[IVel® < evligl*.

I3(-, 1)||2 < exp(Cwt)||E°|>, O0<t<T.

Next, multiplying the equation for ¢; by ¢; and using again the fact that V-2 = V-@ = 0,
we get

1d, ., _ 1 1

ol Vo2 < = 2 11512

Sl + Vel < Sullen? + v,
from which the desired estimate follows by integration. The modification with c sufficiently
small is left to the reader. (I

A challenge is to extend the above result to different base flows (u,p) with slight z;-
dependence. As a small contribution to this problem we present the following example: we
assume in addition to (3.4) that

(3.7) Junillee <ev, e < e,

where c is a positive constant, and we allow the perturbation velocity ¢ to depend on z1,
but we assume for the pressure part g that ¢; = 0 and that correspondingly the incompress-
ibility condition reduces to @29 + ¢33 = 0, which corresponds to a slight compressibility
of the original fluid with a pressure perturbation ¢, which is constant in the z;-direction.
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In this case the linearized perturbation equations take the form:

Dyio1+ (p-V)ug —vAp; = 0 in Qx 1,
Do+ (p-V)i+Vqg—vAg = 0 in Qx I,
P22+ ¢33 = 0 in Q x 1,
p =0 on 0 x I,
©(0) = ¢  onQ,
which again decouples and thus is amenable to analysis as above.

Remark 1. The Orr-Sommerfeld equations are the linearized Navier-Stokes equations lin-
earized at x1-directed parallel flow u = (uq(x2),0,0) between two parallel plates with normal
in the xo direction, assuming the perturbations are independent of the transversal direction
x3 parallel to the plates and also that 3 = 0: find (¢(x1,29,t), p(x1,x9,t) such that for
|zo| < d, 21 €R, t >0

P1+ U202 — VAL +p1 = 0,
(3.8) G2~ VApy +ps = 0
Y11t p22 = 0,

with ¢(z1,+£d) = 0, and the initial condition ©(z1,12,0) = @°(z1, o), and where 2d is the
distance between the plates. In the case of Couette flow ui(x2) x xo and for Pouiseuille flow
u1(z2) o< (1 — (w2/d)?). The stability factor So(u,T) turns out to be much smaller than the
corresponding factor for the linearized problem (3.5) with x1 independent perturbations. We
conclude that zo-independent perturbations seem to be less significant than x1-independent
perturbations, and thus conclude that the Orr-Sommerfeld equations do not seem to be so
relevant in initial transition to turbulence in nearly parallel flow.

7

4. COMPUTABILITY OF THE LORENZ SYSTEM

The meteorologist E. Lorenz presented in his famous 1972 talk Does the flap of a but-
terfly’s wings in Brazil set off a tornado in Texas?, the following 3 X 3-ode model of the
Navier-Stokes equations with the purpose of explaining well-known uncertainties in weather
prediction:

z = o(y—uz),
(4.1) Y o= rxr—y—2xz,
z = xy— bz,

with initial data (z(0),y(0),2(0)) = (1,0,0), and ¢ = 10, b = 8/3 and r = 28. The
solution u(t) = (z(t), y(t), 2(t)) turns out to be very sensitive to perturbations and in our
terminology thus has stability factors with very rapid (exponential) growth in time. The
computational challenge is to solve the Lorenz system accurately on a time interval [0, 7]
with T as large as possible. We present results on this question from [21], which we expect
to be of some relevance also for the Navier-Stokes equations.

In Figure 1 we plot the z-component of the Lorenz system on [0,40] computed using
cG(q) and dG(q) with ¢ = 1,2,3,4, 5,10 using a constant time step £ = 0.001 and double
precision arithmetic. We indicate a correct solution with a solid line, and an incorrect
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solution with a dashed line. We note that increasing ¢ does not help to produce a correct
solution beyond T = 40, nor does it help to decrease the time step. This is because at
every time-step we make a relative round off error of at least 10~'¢ using double precision,
and the only possibility to get beyond T' = 40 would be to take fewer time-steps using a
very high order method.
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FIGURE 1. The z-component of Lorenz solutions on [20, 40] computed with
different methods using the constant time-step £ = 0.001

In Figure 2 we present solutions with high order ¢G(q) with the larger time step £ = 0.1,
which are accurate to almost 7" = 50. Increasing the time step further does not help to get
beyond T = 50.

In Figure 3 we plot the stability factor S(7") measuring the accumulation of round-off or
quadrature errors over the time interval [0, T'], which is computed by solving an appropriate
dual linearized problem. The stability factor grows with an overall exponential rate, but the
growth is different in different parts of the trajectory. We see that S(7) reaches the value
10'¢ for T = 50, which agrees with the double precision limit found above. Computing in
quadruple precision would allow accurate computation to 7" = 100.

We note that a worst case estimate using a relevant Lipschitz constant (which is of size
100), would give an upper bound of the form S(7T") < exp(1007), indicating that we could
only compute accurately to 7" = 1, which would be a gross underestimate. Even in this
case with considerable exponential growth, we are far from a worst case Gronwall estimate.
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FIGURE 2. The z-component of Lorenz solutions on [0, 50] computed with
high-order methods using the constant time-step £ = 0.1.

5. DISCRETIZATION: GENERAL GALERKIN G2

In this section we present the general space-time Galerkin least squares stabilized finite
element method, referred to as the General Galerkin G- method, for the incompressible
Navier-Stokes equations (2.1). This method includes the streamline diffusion method on
Eulerian space-time meshes, the characteristic Galerkin method on Lagrangian space-time
meshes with orientation along particle trajectories, and Arbitrary Lagrangian-Eulerian
ALFE methods with different mesh orientation. Further, the least-squares stabilizations
present in the G?-method, does take care of the two difficulties traditionally met in the
discretization of the incompressible Navier-Stokes equations, namely

e instabilities from Eulerian discretization of convection terms,
e pressure instabilities in equal order interpolation of velocity and pressure.

Altogether, we are able to present a general flexible methodology for the discretization of
the incompressible Navier-Stokes equations applicable to a great variety of flow problems
from creeping viscous flow to slightly viscous flow, including free or moving boundaries.
Let 0 =ty < t; < ... <ty =T be a sequence of discrete time steps with associated time
intervals I, = (t,_1, t,] of length &, = ¢, — t,_1 and space-time slabs S,, = Q x I, and let
W, C H'(Q) be a finite element space consisting of continuous piecewise polynomials of
degree p on a mesh 7, = {k} of mesh size h,(z) with Wy, the functions in W,, vanishing
on I'. To define the G -method for (2.1) with homogeneuos Dirichlet boundary conditions
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FI1GURE 3. The stability factor S(7") measuring accumulation of round-off
and quadrature errors in the Lorenz system

for the velocity (w = 0), let for a given velocity field 8 on S,, = Q X I,, vanishing on I x I,,
the particle paths z(Z,t) be defined by

dx _
= = ,t t € In;
(5.1) g~ A)
(T, t,) =%, T€Q,
and introduce the corresponding mapping F? : S, — S, defined by (z,t) = F(z,f) =
((Z,t),t), where z = z(Z, t) satisfies (5.1). Define for a given g > 0, the spaces

VP ={ve H'(S,)? : v(z,7) = Z(t‘— ) U; (), U; € [Wonl?},

Qﬁ = {Cj € Hl(Sn) : Q(j’i) = Z(En - tn)jqj(i)a gy € Wn}:

together with their analogs in (z,t)-coordinates:
(5.2) VP ={v:veVF}, Q% ={q:q€Q°},

where v(z,t) = v(z,t) and q(z,t) = q(z,t). Defining finally V# x Q% = [[. V. x Q&,
we can now formulate the G:-method as follows: Find (U, P) € V? x Q¥ such that for
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n=1,2,..., N,
(U + (U -V)U,v), — (P,dive), + (¢, divD), + (2ve(U), €(v))n
(5.3) + (61a(U; U, P),a(U; v, q))n + (82div U, divv), + (U], 077
= (f,v+0aU;v,9)n Y(v,q) €V xQp,

where a(w; v, q) = Dy, v+ Vq—vAv with the Laplacian defined elementwise, 6; = %(kf +
\U|?h;72)~'/2 in the convection-dominated case v < Uh,, and &, = k;h? otherwise, 0y = Koh
if v < Uh, and §, = kyh? otherwise, with x; and k9 positive constants of unit size, and

@)= [ o), @u)= Y [ oowds,
In KeT, " K
3
((v),c(w)) = 3 (e (v), €55w)).
ij=1

Further, [v"] = v} — o™ is the jump across the time level ¢, with v% the limit from
t > t,/t < t,. In the Eulerian streamline diffusion method we choose = 0, which means
that the mesh does not move in time. The characteristic Galerkin method is obtained
choosing B = U (and then &; = k;h?), which means that the mesh moves with the fluid
particles. We may also choose [ differently which gives various versions of ALE-methods,
with the mesh and particle velocity being (partly) different; for example we may move
the mesh with the particle velocity at a free boundary, while allowing the mesh to move
differently inside the domain.

The variational formulation (5.3) with é; = d; = 0 is obtained multiplying the momen-
tum equation by v, integrating over S, including integration by parts, and adding the
incompressibility equation multiplied by ¢ and integrating over S,,. Choosing ¢; and d,
positive as indicated introduces stabilizing least-squares terms. Note that the viscous term
(2ve(U), €(v)),, may alternatively occur in the form (vVU, Vo), = 320 (vVU;, Vv;),. In
the case of Dirichlet boundary conditions the corresponding variational formulations will
be equivalent, but not so in the case of Neumann boundary conditions, see below. Note fi-
nally that we may write the term —(P, divv) alternatively in the form (V P, v) if v vanishes
on the boundary.

In extreme situations, we may add residual dependent shock-capturing artificial viscosity,
replacing v by # = max(v, k3| R(U, P)|h?), where R(U, P) = Y+ | R;(U, P) with

R(UP) = |U+U-VU+VP— f—vAU|,

Ry(U,P) = vDy(U),

R3(U,P) = |[U""|/k, on Sy,

R,(U,P) = |divU]|,

where Dy (U)(z,t) = maxyear (ha(2)) H|[3E (y,1)]| for z € K, with [] the jump across the
element edge 0K, and k3 is a positive constant of unit size. Note that Ry (U, P) is defined
elementwise and that with piecewise linears in space, the Laplacian AU is zero. In the
computations presented below, we chose k3 = 0 corresponding to shutting off the artificial

(5.4)
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viscosity. Note that R; (U, P) + Rs(U, P) bounds the residual of the momentum equation,
with the Laplacian term bounded by the second order difference quotient Do(U) arising
from the jumps of normal derivatives across element boundaries.

The special case of the Stokes equations is of course obtained omitting the nonlinear
terms (U - V)U and (U - V)v, and setting &; = x1h?, 83 = koh?®. This method contains the
pressure stabilizing term (§; VP, Vq), which corresponds to a weighted Laplacian equation
for the pressure in terms of the velocity.

Since in the local Lagrangean coordinates (Z,t) on each slab S, with 8 = U,

ou 0

ot ot
the convection term U - VU effectively dissappears in the characteristic Galerkin method,
when expressed in the characteristic coordinates (Z,t), and thus the discrete equations on
each time step effectively correspond to a Stokes problem.

The order of the G?>-method with polynomials of degree p in space/time is generally
p+1/2, see [3]. The time stepping method in (5.3) is dG(q), the discontinuous Galerkin
method with piecewise polynomials of order ¢, which is of order 2¢+1 seen as an ode-solver,
see [21].

Ulz(z,1),)) =U+U - VU,

5.1. Neumann boundary conditions. If we change to Neumann boundary conditions
o+n = g on a part ['; of the boundary ', then Wy, is chosen to be the functions in
W,, vanishing on the remaining Dirichlet part T'y of the boundary, and the right hand
side is supplemented with an integral over I'; of g - v. As usual this implements the
Neumann boundary condition in weak form through the presence of the term (—P, divv)+
(2ve(U), e(v)) = (0,€(v)) on the left hand side, which when integrated by parts generates
an integral over 'y of (o - n) - v. If the viscous term appears in the form (vVU, Vv), the
corresponding Neumann boundary condition has the form v2% — pn = 0, where g—:ﬁ is the

on
derivative in the unit outward normal direction n.

5.2. Outflow boundary conditions. To simulate an outflow boundary condition we may
use a Neumann condition with g = 0 corresponding to a zero force at outflow, simulating
ou

outflow into a large empty reservoir. The alternative condition v3* — pn = 0 acts slightly

differently as an approximation of a transparent outflow boundary condition.

5.3. The Eulerian cG(1)dG(0) method. We now consider the the G2-method (5.3)
with p = 1, ¢ = 0 and 8 = 0 for (2.1), which is the Eulerian ¢G(1)dG(0) method with
continuous piecewise linears in space (cG(1)) and piecewise constants in time (dG(0))
corresponding to the backward Euler method). We then seek an approximate velocity
U(z,t) such that U(z,t) is continuous and piecewise linear in x for each ¢, and U(z,?)
is piecewise constant in t for each x. Similarly, we seek an approximate pressure P(z,t)
which is continuous piecewise linear in  and piecewise constant in ¢. More precisely, we

seek U" € V2 =W, and P" € Q2 =W, for n =1,..., N, and we define
Ulz,t) =U"(z) €9, te€ (th 1,tnl,

(5-5) P(z,t) =P"(z) z€Q, te€ (ty 1,ts-
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We can now write the cG(1)dG(0) method without stabilization as follows: Forn =1,..., N,
find (U™, P") € V2 x Q2 such that
Un _ Un—l
(5.6) ( k,
+ WVU, Vo) = (f%,0) V(,q) € V2 x Q.
The ¢G(1)dG(0) method with d;-stabilization takes the form: For n = 1,..., N, find
(U™, P") € V.2 x Q° such that
Ur — Unfl
%
+ WVU", Vo) = (f*, v+ 8, (U"- Vv +Vq)) VY(v,q) € V) x Q°,

where & = 1(k,? + |U|?h,?)'/? in the convection-dominated case v < Uh,,. Note that if
k =~ %, which is a natural choice of time step respecting a CFL-condition, then §; ~ %
Note that the stabilized form of the ¢G(1)dG(0) method is obtained by replacing v by
v+ 6, (U™ - Vv + Vgq) in the terms (U™ - VU™ + VP™,v) and (f",v). In principle, we
should make the replacement throughtout, but in the present case of the cG(1)dG(0), only
the indicated terms get involved because of the low order of the approximations. The
perturbation in the stabilized method is of size ¢;, and thus the stabilized method has the
same order as the original method (first order in A if k ~ h).

Letting v vary in (5.7) while choosing ¢ = 0, we get the following equation (the discrete
momentum equation):

(Un _ Un—l
(5.8) kn

+ (wVU", V) = (f", v+ U™ - Vv) Vv eV,
and letting ¢ vary while setting v = 0, we get the following discrete “pressure equation”
(5.9) (6, VP, Vq)) = =(6,U" - VU™, Vq) = (V-U",q) + (6", Vq) Vg € Qj.

The c¢G(1)dG(0) has a backward Euler first order accurate time stepping, and thus in
general is too dissipative.

5.4. The Eulerian cG(1)cG(1) method. We now present the a ¢G(1)cG(1) variant of
the above ¢G(1)dG(0) method using the continuous Galerkin method ¢G(1) in time instead
of dG(0). With ¢G(1) in time the trial functions are continuous piecewise linear and the
test functions piecewise constant. The ¢G(1)cG(1) variant with d;-stabilization reads: For
n=1,..,N,find (U, P") € V? x Q° such that

(Un _ Un—l
(5.10) ky,

+ WVU", Vo) = (f*, v+ 6,(U" - Vo +Vq)) Y(v,q) €V’ xQ°,

)+ (U™ - VU + VP v)+ (V-U",q)

(5.7) ,0) + (U™ -VU" + VP v +6(U"- Vv +Vq)) + (V-U", q)

,0)+ (U™ -VU" + VP v+ 5U" - Vo)

)+ (O - VU™ + VP, v+ 6,(U"-Vu+Vq))+ (V-U",q)

where U" = %(U n 4+ Un 1), This method corresponds to a second order accurate Crank-
Nicolson time-stepping, but the stabilization suffers from an inconsistency up to the term
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01% resulting from the piecewise constancy of the test functions. The inconsistency seems
to be be acceptable unless 1 is large, and we use ¢G(1)cG(1) in the computations presented
below. The Eulerian ¢G(1)dG(1)-method would have consistent stabilization, but has two
degrees of freedom in time per time step and thus twice as many degrees of freedom.

6. DISCRETE SOLVERS

The ¢G(1)cG(1)-method with d;-stabilization leads to a system of the following principal
form in each step of an outer fixed point iteration with the convection velocity being given
from the previous iteration:

AU" + k,BP" = k,F",

—-B'U"+CP" =G",

where A = M,, + k, N,, — k,vA, with M, a mass matrix, IV,, representing a discrete analog
of the convection term with frozen velocity from the previous iteration, 4, is a discrete
Laplacian, B is a discrete gradient, B a discrete divergence, and C' = —6;A,. In the

computations presented below we solved this system using a fixed point inner iteration,
where we first solve for P™*! in terms of U™/ from the equation

CpP™tt =G+ BTU™
using a multigrid method, and then solve for U™/*! from the equation

AU = | F™ — k, BP™ 1!

(6.1)

using GMRES. The inner iteration converges if k,/d; is small enough. Since typically
01 ~ hy, /U™, we need %f" to be small enough, which is a CFL-like condition.

We may also apply GMRES directly to the equation AU™ + k,BP™ = k,F"™ with P"
solved in terms of U™ from the equation BT U™ + C P" = G™ using multigrid. The number
of GMRES iterations would then depend on the condition number of the matrix M, +
ko N, — k,vA, + ’;—TBAngT, which is bounded with k,,/h,,, k,v/h2 and k, /6.

In both variants the full iterative procedure converges in a few iterations in our typical
applications of non-stationary high Reynolds number flow with k,/h, and k,/§; bounded
by 1.

7. A POSTERIORI ERROR ESTIMATES WITH STABILITY WEIGHTS

As an example, we now prove an a posteriori error estimate for (5.6) following our general
methodology. Aiming at error control of (e(T),) with e = u — U and ¢ € [Lo(Q)]?® given,
we introduce the following linearized dual problem: find (i, ) € Lo(I; [H(Q)]® X Lo(Q)) =
W such that in @ = Q x (0,7)

—p—(u-V)p+VU-p+Vl—eAp =0 in Q
divep =0 in @

¢ =0 onlxI,
(P('a T) = ¢ in Qa

(7.1)
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where (VU - ¢); = U - ¢. Multiplying the first equation by e, integrating over @) together
with integration by parts, using that (v - V)u — (U -V)U = (u- V)e + (e- V)U, gives
N
(e(T),9) =Y {(=¢ = (u-V)p+VU-@,e)n + (V0,), + (vVe, Ve),}
n=0

= Z{(% et)n + ((U : V)@, SO)n + ((6 : V)U, Qp)n

— (0, dive), + (Ve, Vel — (p— P dive)a} + ) (U™, 1)

n=1

N
Z{(u +u-Vu+Vp,¢),+ (eVu, Vo),
n=1

U+

U-VU+VP,0), — (€YU, V@),

+(0,divU)} + D (U™ 0t

n=1
N

==Y {(U+U-VU+VP - f o),

n=1

N
— (WU, V(o = @) + (divU,0 — ©),} + Y (U™ '], ¢! — @),
n=1
Estimating now the interpolation errors ¢ — ® and § — ©, and recalling the definition (5.4),
we obtain an estimate of the form

(e(T), )| < Z/ Ri(U)(CH™| D™ | + Ck|¢|)da dt
(7.2) i=1 "¢

+/ R4(U)(Ch™|D™| + Ck|0|)dz dt,
Q

for m = 1,2, where D™ measures derivatives with respect to x of order m, and C represents
interpolation constants. To get a concrete a posteriori error estimate, we solve the dual
problem numerically and compute approximations of the derivatives of the dual solution
involved. With adaptive choice of meshing, we choose h,(z) and k, from a principle of
equidistribution with the derivatives of the dual solution entering as weights.

8. A POSTERIORI ERROR ESTIMATES WITH STABILITY FACTORS

In the a posteriori error estimate (7.2), certain derivatives of the the dual solution appear
as a weights in a space time integral over the residuals R;. We may estimate the space-time
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integral in various ways; for instance using Cauchy’s inequality with Lo(7; (L2(2))-norms
|| - ||z with I = [0,T], we obtain an a posteriori error estimate of for example the form

(e(T), ) < Cligls Y IkR:(U, P)]Is

3
+ClID%¢llr Y IW*Ri(U, P)|lx
=1

+ C|l6ll:|kRa(U, P)||r + ClID*0||: || hR4(U, P)|I1

with [|¢]l7, [|D2¢llz, ||0]l; and ||D'6||; entering as multiplicative stability factors. The
equidistribution now works on e.g. the product kR; with a mesh size factor and a residual
factor.

9. COMPUTATION OF LIFT AND DRAG

Suppose we want to compute an approximation of the quantity

(9.1 Nawm) =7 [ [ 3 otupmids,

Lij=1

where I' = ' UT'; is a decomposition of the boundary I', and ¢ = (1;) is a given function on
'y, and (u,p) solves (2.1). The quantity N(o) may represent the mean value over [0, 7] of
the drag or lift on a body with boundary I'; immersed in a flow, depending on the choice of
¢ with for example 1, = 1y = 0,13 = 1 to give the lift if the x5 is oriented vertically (and
ug = 0). Instead of directly using (9.1), we may use the following alternative expression
with the idea of increasing the precision, see [7],

No(uw.p)) = 7 / (i + u- V), ) — (p, divep) + (2ve(w), e(®)) db,

where 1 is an extension of the given v into €2 with ¢ = 0 on I'y, which follows by integrating
by parts in the last two terms, and using the momentum equation for the solution (u,p).
We see that the representation does not depend on the particular extension of ¢ being
used. We are thus led to approximate N(o(u,p)) by the quantity
T
Np(o(U,P)) = %/ (U +U - VU, ) — (P,div ) + (2ve(U), e(¥))) dt
0

where U is a finite element function satisfying ¥ = 1) on I'y, assuming ¢ is the restriction
to I'; of a finite element function and (U, P) is a finite element solution of (2.1). Again, the
discrete momentum equation shows that N,(o(U, P)) is independent of the extension W.
Let now (i, ) be the solution of the linearized dual problem ¢(7") = 0 and ¢(+,t) = % on
['y and ¢(-,t) = 0 on Ty for ¢ € [0,T]. Reasoning as above we then obtain an a posteriori
error estimate for N(o(u,p)) — Np(o(U, P)) of the same form as (8.1) with corresponding
associated stability factors.
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TABLE 1. Stability factors, where || - ||; corresponds to the L;(I; L1(f2))-norm

Sop So2  Sin Si2  Si Sia4

lelr N0l I¥elr el 1IVOllr 116l

10. GALLERY OF STABILITY FACTORS AND DUAL PROBLEMS

In this section we present computed stability factors for a set of problems including flow
around a bluff body, drag of a bluff body, channel flow with a step down and a channel
flow with jets. The dual solution carries information on the growth and propagation of
perturbations, and in particular underlies the mesh selection in adaptive methods, and
we present, plots of some dual solutions below. The dual solution may be vastly different
depending on the data of the dual problem, with smooth data corresponding to large
mean values. We present a selection of stability factors using the L;(0,7T; L1(2))-norm
in space-time, denoted by || - || with I = [0,T], for the dual solution corresponding to
L(0,T; Lo(2)) for the residuals, see Tab. 1. A variety of combinations of norms in
space/time for the residuals and the dual solution are possible. The purpose of computing
stability factors is to get a rough measure of relevant stability features. For more precise
error estimation, the form of the a posteriori error estimates with (more or less local)
stability weights, is advantageous.

We compute on tetrahedral meshes with mesh size h = 1/32 — 1/64, and the viscosity v
varies from 1072 to 10~%. The stabilization introduces a numerical vicosity, which may be
of size h*/? at best, indicating that we compute with effective viscosities in the range 102
to 1073. We note that in this study we have linearized the dual problems at computed
approximations of the primal solutions averaged over a regular tetrahedral mesh of size
h = 1/16, which in the case of a highly irregular primal solution might lead to an under
estimation of the stability factors.

10.1. Bluff body. We consider channel flow with no slip walls in a 1 x 1 rectangular cross
section of length 4 containing a cubic body of side length 0.25 with center at (0.5,0,0),
where z = 0 is the inflow boundary. We impose a parabolic inflow condition u = (16y(1 —
y)z(1 — 2),0,0), a transparant outflow condition, and we set » = 1073. We compute
on a regular tetrahedral mesh, with A = 1/32, using the ¢G(1)cG(1)-method. We start
from v = 0 at time ¢t = 0, and we compute to time 7" = 20. We consider the problem of
computing the space-time average of u; over the domain w x [T —d(w), T], where w C Qisa
cube centered at (2.5, 0.5,0.5) with side length d(w). To estimate this error the appropriate
data to the linearized dual problem is zero final data and a force ¢ = (x,,/(d(w)|w|),0,0)
acting during the time interval [T — d(w), T, with x,the characteristic function of w and
|w| the volume of w. We give stability factors corresponding to a computation starting at
t = 12 for different d(w) in Tab. 2.

The residuals are of order 1, and the product of mesh size and stability factor increases
with decreasing d(w). This example supports our belief that pointwise quantities are more
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TABLE 2. Bluff body: stability factors

d(w) So,1 So,2 51,1 51,2 S13 51,4

I I ’

1/16 6.0 3.4 121.1 33.1 16.3 57.7
1/8 49 3.1 786 19.2 12.1 35.8
1/4 33 26 462 112 7.8 18.1
1/2 17 19 200 52 37 87

TABLE 3. Step down: stability factors

d(w) 50,1 50,2 51,1 51,2 51,3 51,4

1/8 309 16.2 836.8 124.0 138.4 278.4
1/4 229 42 5334 39.0 489 46.8
1/2 108 24 2203 105 16.1 25.2

difficult to compute than mean values. In Fig.5 we note the decrease in the dual solution
with (backward) time for d(w) when the initial data is convected out of the computational
domain, indicating that the error in the mean value of the solution over the time interval
[20 — d(w), 20] is independent of the error in the solution for ¢ < 15 in this case.

10.2. Step down. We consider now a channel with no slip walls and 1 x 1 rectangular
cross section of length 4, and a step down of height and length 0.5. We have a parabolic
inflow condition u = (64(1 — y)(y — 0.5)2(1 — 2),0,0), and we use a transparent outflow
condition. We set v = 1073, and we compute on a regular tetrahedral mesh, with h = 1/32,
using the ¢G(1)cG(1)-method. We start from u = 0 at time ¢ = 0, and during the start up
phase we can follow the formation of the recirculation zone behind the step and also the
formation of a corresponding zone where the flow separates from the top boundary.

We consider the problem of computing a space-time average over the time interval
[9,10]and a spatial cube w C 2 centered at (1.5,0.5,0.5)with side length d(w), starting
the computation at t = 5. The residuals are of order 0.1, and in Fig.3 we present stablity
factors corresponding to different d(w).

10.3. Drag of Bluff body. We reconsider the bluff body problem with now the objective
of computing the average of the drag force over a time interval [12,20]. The corresponding
data for the dual problem is a boundary condition u = (1,0, 0) on the faces of the bluff body.
The stability factors for this averaged quantity is several orders of magnitude less than for
the more local quantities again supporting the idea that averaged quantities are easier to
compute. We also note that the norm of the dual solution after an initial (backwards
in time) growth approaches a stable value, see Fig.8. The corresponding dual solution is
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FIGURE 4. Time evolution for the Bluff body problem with ¢
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FIGURE 5. Bluff body: ||¢||; for d(w) = 1/4.

FIGURE 6. Dual solution for Step down problem for d(w) = 1/8, and back-
ward time.

shown in Fig.9. The dual solution does not go to zero as in the previous cases, indicating
(not very surprising) that the computation of a time average is dependent of the quality of
the solution during the whole time interval, in contrast to the previous cases in Section 10.1-
10.2 where the dependence of the quality of the solution for previous time was decreasing
with (backward) time.
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FIGURE 7. Time

evolution for the Step down problem with t =1,2,...,8
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TABLE 4. Bluff body drag: stability factors

Soi So2 Sin Sz Siz Sia

0.13 0.11 1.6 0.03 0.43 0.06

0.02

0.018

0.016 -

0.014 -

0.0121

0.008 -

0.006 -

0.004 -

0.002 -

0 I I I I I I I
12 13 14 15 16 17 18 19 20

FiGure 8. Bluff body: ||¢||; for the drag problem.

F1Gure 9. Dual solution for the Drag problem at t = 19
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TABLE 5. Jets: stability factors corresponding to a space-time average over
w X [Ty, 10], with d(w) = 0.125.

Ty  Sop So2 Sin Si2 S13 Sia

)

1/4 42 42 1894 28.7 31.7 39.5
1/2 3.0 29 1019 86 14.0 124

10.4. Jets. We consider a channel with no slip walls and 1 x 1 rectangular cross section
of length 4 with an obstacle with four quadratic holes of size 0.25 at (0.5,0,0). We have a
parabolic inflow condition and we use a transparant outflow condition. The inflow condition
causes the flow to form 4 high velocity jets through the holes, and in the domain behind
the obstacle we get a highly irregular flow pattern. We compute on a tetrahedral mesh,
with h = 1/32, locally refined to h = 1/64 for 0.125 < z; < 1.125, and v = 10 %, using
the ¢G(1)cG(1)-method. We start from u = 0 at time ¢ = 0, and we compute to time
t = 10. The residuals are of order 1, and in In Tab. 5 we consider the case of computing
a space-time average over the spatial cube w with d(w) = 0.125 for different time intervals
[Ty, 10], and we find that we get larger stability factors for the shorter time interval. We
then fix the time interval to [9,10]and vary the side length d(w) of the spatial cube w,
resulting in larger stability factors for smaller d(w), see Tab. 6.

FIGURE 10. Jet problem isosurfaces at time ¢ = 10.

11. THE CHARACTERISTIC GALERKIN METHOD FOR FREE BOUNDARY FLOW

The characteristic Galerkin method is ideally suited to handle flow problem with free
boundaries moving with the fluid, or moving boundaries with prescribed motion: just let
the nodes on the fluid boundary move according to (5.1) with U a computed or prescribed
velocity. We present the chG-method for the Navier-Stokes equations for a moving blob of
incompressible fluid with zero stress on the entire boundary. Denoting the volume occupied
by the fluid at time ¢ by Q(t), with ©(0) a given initial volume, the equations read: find
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TABLE 6. Jets: stability factors corresponding to a space-time average over
w x [9,10], with side length d(w).

dw) Sop So2 Sip Sz Siz Sig

I ) I ’

1/16 5.2 5.5 189.8 13.0 21.1 23.1
1/8 5.0 5.4 1647 12.1 20.0 22.9
1/4 4.1 5.0 1156 7.8 152 19.0
1/2 23 4.0 559 36 85 79

(u,p) such that for ¢t € (0,7,

t+ (u-Viu—dive = f in Q(t),
diveu = 0 in Q(t),
o(u,p)-n = 0 on TI(t),
u(,0) = wuy in (0),
where I'(¢) is the boundary of Q(t) with outward normal n = n(t) = (n;(¢)). In this
problem the fluid volume (¢) is unknown, and is the image of the initial volume Q(0)
given by Q(t) = {z(x,t) : x € 2(0)}, where z(x,t) denote particle paths satisfying % =
u(z,t), t>0, ,z(z,0)=z.
The characteristic Galerkin method for (11.1) based on the piecewise polynomial space

W, with no restriction on the boundary, can now be formulated as follows: find (U, P) €
VU x QU such that

(U + (U -VU)U,v), — (P, divo), + (¢, divU), + (2ve(U), e(v)),
+61(a(U; U, P),a(U;v, q))n + (02div U, divv), +

(11.2) 03 < o(u,p) n,o(v,q) -n >,
= (f,v+061(a(U;v,9))n Y(v,9) € VI x QY|

(v,w), = // v - wdzdt
I, Jan )

<v,w >, = // v - wdsdt,
I, JT,(¢)

where Q(t) with boundary T'y(¢) is given by Qu,(t) = {z(z,t) : = € Q(0)} with z(z,t)
satisfying 2 = U(z,t) for t > 0, and z(z,0) = z € Q(0). In this case Ty, is a triangulation
of Qp(t,_1). We note that stress zero boundary condition is enforced weakly and that the
03-term gives an least squares control of the discrete boundary stress. The integrals are to
interpreted as sums of integrals over the elements as usual.

In Fig 11 we present computational results by Thomas Svedberg for a 2d sloshing tank
problem using the characteristic Galerkin method.

(11.1)

where
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F1Gure 11. Sloshing tank computation using the characteristic Galerkin method

In the ALE method the mesh nodes on the boundary move with the particle velocity,
while the nodes inside the domain move differently, for example according to an elastic
string model with the nodes connected with elastic strings which amounts to solving a
discrete Laplace equation. In this method interior mesh tangling is avoided.

12. TRANSITION TO TURBULENCE IN PARALLEL FLOW

In this section we present aspects of transition to turbulence in parallel flow including
a simple model for transition in pipe flow, and computational results for pipe flow and
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Couette flow. As a general reference into the large literature on transition, we refer to [26].
Our own early speculations are presented in [16] and [17].

12.1. Laminar pipe flow. We consider the basic case of laminar pipe flow in a pipe
directed along the x; axis and with cross-section w, with velocity v = (u41,0,0) and a
computed velocity U = (Uy,0,0). We assume u and U to depend on (x9,z3) and time
t, but not on z;. The associated linearized dual problem (7.1), takes the following form
in this case, assuming also the perturbations to be z; independent and using that U =
(U2a U3) = Oa

—pi—vAp = 0 nwx,
—p2 = VAPa+ 03+ Uippr = 0 inwxI,
(12.1) —¢3—vAps+ 05+ Uispr = 0 inwxl,
Y22 +@s3 = 0 inw x I,

p =0 on Ow X I,

o(-,T) = ol inw,

with given initial data . This problem has a decoupling analogous to that found above
for the linearized perturbation equations for parallel flow. In the present dual linearized
problem, ; is decoupled from the Stokes-like system for (g, ), where @ = (9, 3), with
01 VU, appearing as a driving force. Accordingly, the weak stability factor Sy(T') grows
linearly with 7" or Re, indicating that laminar pipe flow is computable for moderately large
Reynolds numbers.

12.2. An ode-model for transition. We consider the following initial value problem for
a system of two ordinary differential equations: find w(t) = (w;(¢), we(t)) such that

’U')l + rvw; — )\wlwg = vV t> 0,
(122) Wy + 2vwe — vwew; = 0 t>0,
wi(0) =1, wy(0) = kv,

where v is a small positive parameter, and A and x are positive parameters of moderate
size. The system (12.2) models almost parallel shear flow with w; representing the flow
velocity in the main direction of the flow, and ws the small velocities transversal to the
main flow, and the stationary solution w = (1,0) corresponds to Couette flow between
two plates or Poiseuille flow in a pipe. We shall use the model to describe how the small
perturbation kv of we may cause the base solution (1,0) to become unstable if A« is larger
than some critical value of moderate size.

We shall see that the model (12.2) contains an essential part of the secret of transition
to turbulence in parallel flow. The equations for w; and w, in (12.2) are coupled through
the quadratic terms Aw;wy and vw;ws, and model the following selection of terms from
the Navier-Stokes equations

u — vAuy + Ui 2U2 = V t>0,

(123) 1'1,2 — I/AUQ + U2 1U1 = 0 t> 0,
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from the momentum equations for the main flow velocity u; and the transversal velocity us.
The nonlinear coupling terms u; ous and ug 1, are modeled in the form Aw,w, and vwyws,
corresponding to assuming that w9 = —Au; and us; = —vuy, connecting transversal
derivatives of u; with u; through the parameter )\, and the streamwise derivative of the
transversal velocity ug; with us through the small parameter v. The relation us; = —vus
models a basic feature of parallel flow with the streamwise variations being small. Since we
assume initially that uy &~ wy & v, it corresponds to assuming uy; ~ v?, which is indeed
very small. On the other hand, the assumption that u; o = —Au; with A of moderate size
corresponds to a natural transversal variation of moderate size of the streamwise velocity
in a shear flow.

Note that the coupling term wu; ;u; in the equation for u; is not modeled in the form of
some multiple of w?. This is because (a) assuming u;; & v?, with a corresponding very
small term —v?w? in the model, has no destabilizing effect, and (b) assuming u; ; = —Cv
with a corresponding larger term —Cvw?, which may cause exponential growth through
self-resonance in wy, is not realistic. In fact, (b) is more or less the classical scenario based
on the 2d Orr-Sommerfeld equations, which require artificially generated perturbation
levels in experiments, for example through heavily vibrating ribbons.

In the transition model, we thus seek to build in realistic features of shear flow including
realistic perturbation levels. If we assume zero perturbations, then the model reduces to
wy; + vwy; = 0, wy + 2vw; = 0, which has no chance of going unstable. If we assume
large perturbation levels, then instability may result immediately. However, none of these
scenarios occur in reality, and the role of the model is to explain how small but realistic
size perturbations, indeed may cause the initially stable base flow to go unstable after
some time. Our model builds the presence of a very small perturbation of order v? of
the transversal velocity in the streamwise direction, which naturally may be introduced
through the roughness of the pipe. The model does not build on a larger variation of order
v of the streamwise velocity in the streamwise direction, which only seems to be possible
with artificially generated perturbations.

The model (12.2) contains the two basic parameters A and k, both of moderate size,
A being related to the transversal geometry of the flow such as pipe cross section, kv
representing a perturbation level in transversal velocities, and k2% a perturbation level in
streamwise derivatives of transversal velocities, including both transversal and streamwise
perturbations levels. We will see that if Ax is larger than some critical value of moderate
size, then transition to instability will take place in the model. This indicates that tran-
sition in shear flow builds on a combination of features related the transversal geometry
and levels of perturbations in both transversal and streamwise direction. We give below
computational results for transition in pipe flow supporting this picture.

The system (12.2) has two stationary solutions w = (1,0) and w = (2,v/(2))), with
(1,0) representing the basic Couette or Poiseuille flow. A classical stability analysis based
on the eigenvalues of the corresponding linearized system, indicates that (1,0) is stable
and (2,v/(2))) is unstable. For example, the linear system obtained linearizing around
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(1,0), takes the form

Q1+ver— Ay = v t>0,
(124) gbg + 14%%) 0 t> 0,
©1(0) = @10, ¢2(0) = 9,

where the coefficient matrix A = [v — 1,0 v| has a double positive eigenvalue v. The
corresponding coefficient matrix linearizing around (2,v/(2))), has one positive (stable)
and one negative (unstable) eigenvalue. A classical stability analysis shows that (1,0) is
stable under sufficiently small perturbations, and that (2,7/(2))) is unstable even under
small perturbations. As a result (1,0) is unstable under large perturbations bringing the
initial value sufficiently close to the unstable solution (2,r/(2))). However, the classical
eigenvalue stability analysis is unable to explain the intriguing fact that (1,0) may become
unstable even under a small perturbation of the initial data (1,0), if we just have patience
to wait! We will now present such a scenario of transition, where the stationary solution
(1,0) of (12.2) goes unstable under a small perturbation of initial data of the form (0, kv),
where k is a parameter of moderate size, and the scaling with v makes the perturbation
small (since we assume v to be small). We shall see that if the product Ak is above a
certain threshold of moderate size, then transition to instability will take place, if we wait
over a period of time of length v~ 1.

We thus consider the problem (12.2) with the initial data (1, kv) close to (1,0), and we
ask if the corresponding solution w(¢) may become unstable after some time. We see that
w1(0)/w1(0) = Akv, while wy(0)/w9(0) = —v, which shows that initially w; grows and ws
decays at rates o« v. Now, w; will continue to grow at that rate as long as Awy > v, and
further wy will start to grow as soon as w; > 2. Thus, if w; manages to become larger
than 2, before wy has decayed below v/\, then both components will propel each other in
fact a blow up to infinity, corresponding to instability. We shall see that this will occur if
Ak is above a certain threshold. We notice that the time scale for significant changes in
both w; and w, is ~ v~*, which is a long time since v is small. The scenario is thus that
wy, grows slowly at the rate v over a long time, and if Ak is above the threshold, then
may reach the value 2, where also ws starts to grow after which a blow up follows on a
usually somewhat shorter time scale (though still oc #=!). This scenario is easy to grasp
intuitively, and conforms with the every-day experience of quit sudden blow-up, as a result
of an accumulation of small events over a long period.

Solving the linearized equation (12.4) approximately describing the evolution of w—(1, 0),
we find that

(12.5) Wi(t) 14+ ¢ =1+ Aktvexp —tv, wq(t) & o = KV exp —tv,

which shows the slow growth of w; and slow decay of ws over the long time scale prior to
the blow up, occuring if A\« is above the threshold. The linear growth in time of ¢; may
be viewed as a consequence of the non-normality of the coefficient matrix A. A classical
stability analysis focussing on the double positive eigenvalue v of A = [v — 1,0 v/, states
that the factor ¢t exp —vt eventually will decay to zero as t — oo, but misses the substantial
transient growth to the level oc v~! after time oc v~ ! prior to decay. This perturbation
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growth of size oc ! is capable of bringing a solution from the point (1, xv) very close to
(1,0), into a neigborhood of the unstable point (2,7(2))) with ensuing blow up.

12.3. Computational transition in Couette and Poiseuille flow. To verify that the
predictions of the model (12.2) applies in the case of nearly parallell flow we present com-
putational results for two test problems: transition to turbulence in Couette and Poiseuille
flow in a pipe along the z-axis with square cross section 1x 1, where we use the cG(1)cG(1)
method on a regular tetrahedral mesh with meshsize h = 1/64. For both cases we start
with a small initial transversal velocity perturbation ©° = (0, po(z2, 3), ¢3(z2, 3)) of or-
der 0.1, and we also apply a very small z;-dependent driving force f = (0, fo(z1), f3(x1))
of order 1073 creating and sustaining a very small streamwise variation of %, modeling, for
example, inperfections in the pipe.

0.3
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0.1 b
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FIGure 12. Couette flow: ||o1]|, |le2ll, ||esl|

The Couette base flow u = (uy,0,0) has a streamwise velocity profile u; = 2z5 — 1,
with streamwise velocity 1 on the top and bottom, slip side walls, and periodic boundary
condition in the streamwise direction. Initially, as in the scenario predicted by the model
(12.2), the streamwise pertubation (1 grows linearly through the action of the Taylor-
Gortler mechanism, see Fig.12. In Fig.13 we can see the formation of high velocity streaks
due to the Taylor-Gortler mechanism, shifting particles with different streamwise velocities
causing the formation of high and low velocity streaks. The pertubations ¢y and ¢
decreases initially as predicted by the model (12.2). In the same way, derivatives with
respect to zo and 3 grow linearly for u;, and decreases for u, and us (see Fig.14-15). In
Fig.16 we see that near ¢ = 25 we get a sudden burst where all x;-derivatives increases
by a factor 100 over a short time interval, corresponding to initial transition. We also get
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——

FI1GURE 13. Couette flow: Isoconcentration surfaces for ¢, corresponding
to high speed streaks.

4

FIGURE 14. Couette flow: ||duy/dxs||, ||[dus/dxs||, ||dus/dzs]|

a sudden increase in ¢, and 3, see Fig.17, at the same time. A key observation is that
the transition is not possible until the pertubation ¢; and the derivatives du;/ddz, and
Ouy/0dxs has reached a certain threshold. Another important observation which is not
obvious from studying the global norms is that the pertubations of course vary in space
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FIGURE 15. Couette flow: ||du;/dzs||, ||dus/dxs||, ||dus/dzs]|
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FIGURE 16. Couette flow: ||du;/dz:||, ||[dus/dz1||, ||dus/dz:||

and that the threshold is a local condition that have to be satisfied. In Fig.18 we can follow

the initial phase of the transition.
The Poiseuille base flow has a streamwise velocity profile u(xo,23) = 16y(1 —y)z(1 — 2)
0,0), where we

16
in a channel with no slip walls and a force term f = (32(y(1—y)+2(1—2)),
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FIGURE 17. Couette flow: ||po]|, |||

use periodic boundary conditions in the streamwise direction. In Fig 19 we show the per-
turbation growth in the Ls-norm and note a linear growth in the streamwise pertubation
corresponding to the Taylor-Gortler mechanism, whose action is shown in Fig 21 slowly
shifting particles with different streamwise velocity transversally with a considerable reor-
ganization of the streamwise velocity from the transversal perturbation. Fig.20 shows the
Lo-norm of the z{-derivatives in the solution as a function of time, with a sudden increase
near t = 6. Again we note that this increase is not possible until the x;-pertubation ¢ is
large enough.

We note that while the computations are valid in the initial phase of the transition, the
computational mesh is too coarse for an accurate direct numerical simulation (DNS) of
turbulent flows following the transition. To be able to compute turbulent flows we either
need a very fine mesh, resolving the finest scales in the flow, or a turbulence model of some
sort, which is the topic of the next section.

13. TURBULENCE MODELING: DLES

We now turn to the topic of turbulence modeling. There are many different approaches
to this problem, for an overview we refer to [6]. Here we are going to consider the case of
Large Eddy Simulations (LES), where we compute the larger scales of motion in the flow
and model the effect of the finer unresolved scales in a so called subgrid model. The basic
problem is to model the divergence of the Reynolds stress tensor (7;;(u)) with components

h_ . h)h

Tij(u) = (wiug)” — u; uj,
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FIGURE 18. Streamwise velocity zero isosurfaces in Couette flow for ¢t =
20, 25, 30, 32, 34, 40, showing the initial phase of the transistion

39
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0.4

FIGURE 19. Poiseuille flow: ||¢1]|, ||©2]l; |les]|

0.3

0.2 i

FIGURE 20. Poiseuille flow: ||duy/dx1||, ||dus/dz1]|, ||dus/dz:|]

where v" represents a local running average of v in space of size h, in terms of u”. The
classical turbulent viscosity model is the Smagorinsky model with the components of 7;;
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FIGURE 21. Streamwise velocity isosurfaces in Poiseuille flow at ¢t =
1,3, ..., 15, illustrating the Taylor-Gortler mechanism
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given by
1 h
Tij = 3Tkk = —2vpeii(u”),
with
vr = (Csh)?|e(u")]
where Cg is the Smagorinsky constant.

In general, the resolved scales in a LES are assumed to lie in the so called inertial
range (see [6]), which refers to a range of scales for which the energy spektrum has a
simple power law behaviour, corresponding to scale similarity. Different types of scale
similarity assumptions also on the Reynolds stresses have been used to motivate various
types of subgrid models. For example, in Dynamic Large eddy Simulation (DLES) [8] the
parameters in a particular model are determined by comparing resolved Reynolds stresses
on different scales. In scale similarity models [24] the assumption is that the exact Reynolds
stresses are proportional to the resolved Reynolds stresses.

In [10, 11, 12, 13] we used an assumption based on the existence of a scale similarity
with respect to a Haar Multiresolution Analysis (MRA) generated by the hierarchy of
successively refined computational meshes. Scale similarity with respect to a Haar MRA
has been observed, for example, in experimental aerothermal data [22]. We will base a
subgrid model on an Ansatz of the form

(13.1) 7ij(,t) & O(z, t) R

with the coefficients C'(x,t) and p(z,t) to be found by fitting the model on coarser scales.

We first discuss a similar subgrid modeling problem for reaction-convection-diffusion
problems and present results based on scale similarity. We then discuss results from com-
putation and experiments indicating that turbulent flow has some scale similarity features
and thus may be open to the same approach.

13.1. Subgrid modeling in reaction-diffusion-convection problems. In recent years
methods of dynamic subgrid modeling have been proposed, in particular in turbulence
modeling in DLES by Germano (1991). The purpose of a subgrid model is to model the
effect of unresolvable scales on resolvable scales corresponding to closure in turbulence
modeling. The basic idea in dynamic subgrid modeling is to fit a particular subgrid model
based on computed solutions on different resolvable scales, and then extrapolate the model
to subgrid scales. In order for such a process based on scale extrapolation to work, it is
necessary that the underlying problem has some ‘scale similarity’, so that the experience
gained by fitting the model on a coarse scale with a fine scale solution as reference may
be extrapolated to the finer scale. It is conceivable that many problems involving a range
of scales from large to small, such as fluid flow at larger Reynolds numbers and flow in
heterogeneous porous media, in fact do have such a scale similarity, once the larger scales
related to the geometry of the particular problem have been resolved.

In [10] we initiated a study of dynamic subgrid modeling in a stationary convection-
diffusion problem with fractal coefficients, where a subgrid model in the form of a corrective
force is extrapolated from coarser grids with the finest computational grid as reference. We
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showed that the quality of the solution on mesh size h with extrapolated subgrid model,
is comparable to that of a solution without subgrid model on a scale h/4 or smaller.
We here present extensions to time-dependent convection-diffusion-reaction systems with
‘fractal’ solutions, where the fractality again originates from data (see [10, 11, 12]). The
relevance of studying fractal models is motivated by the abundant number of experimental
observations of fractality in turbulent flows, see e.g. [25] and references therein. Extensions
to Navier-Stokes equations with the goal of connecting with DLES is under way.

In the setting of a general problem of the form A(u) = f of Section 1.6 with exact solution
u, the problem of subgrid modeling can be formulated as follows: For a given function v,
let v" represent a local average on a scale h which represents the finest computational
scale. We seek an equation for the average u” of the exact solution u and by averaging the
equation A(u) = f and we obtain A(u")+ Fy,(u) = f", where Fj,(u) = (A(u))" — A(u") has
to be modeled in terms of u” to get a modified equation A1) = A(a) + Fyp(a) = f* = f,
where the function F}, is the subgrid model and F},(@)is supposed to approximate Fj,(u).
In dynamic subgrid modelling we seek to model Fj(u) by extrapolation from computing
Fy(Uy) where H > h and U, is a computed solution on the scale h.

13.2. Systems of convection-diffusion-reaction equations. We consider a model prob-
lem of the form: Find u : 2 x [0,7] — R" such that

(13.2) U+ Lu=1u—eAu+p-Vu= f(u), V(z,t)€Qx(0,T),
(13.3) u=up, V(z,t)elpx(0,T), % =uy, V(zr,t) eIy x(0,7),
(13.4) u(z,0) = ug(x), Vz €,

where f : R* — R" is smooth, Q C R% and 0Q = I'pJT'y. Typically we will assume
that € is small and that the solution u to (13.2)—(13.4) contains a range of scales, from
very small scales to large scales, induced either by the initial condition wuy(z) or by the
differential operator L through 5. Assuming we want to find an approximation of v on the
scale h, representing the finest spatial computational scale, we define for each fixed ¢ the
spatial running average u” of u on the scale h by

N 1 $1—|—h/2 :L‘d—|—h/2
(13.5) ) = / / w(y,t) dys...dya

1—h/2 a—h/2
where we note that this operator commutes with space and time differentiation. Applying

this operator to (13.2)—(13.4) we find that the running average u” satisfies the following
equation (modulo boundary effects)

(13.6) ul + Lyul =0t + B - Vul — eAut = f(uh) + F(u), u(z,0) = ul(2),

where L, is a simplified operator on the scale A resulting from approximating 3 by 5" and
the correction term Fh( ) = (f(u))* — f(u") + Lpu — (Lu)" contains the influence of the
unresolved scales on u”". We consider a computational problem without subgrid model of
the form

(13.7) in+ Laup = f(un), un(z,0) = uf(),
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and a corresponding problem with subgrid model of the form
(13.8) Up + Litin = f(n) + Fi(iin),  n(z,0) = ul(2),

where F}, (i) should approximate Fj,(u). In this note we will consider a subgrid model of
the form Fj,(ap) = g(Fn(dn), For(in), Fun(ap)) based on averaging on the coarser scales 2h
and 4h, where the function g is derived based on a scale regularity assumption on Fj(u).

13.3. Analysis of Fj,(u) using the Haar MRA. In the rest of this section we let Q =
[0,1]? and for each h = 27%, with 7 = 0,1, ..., we define a corresponding regular quadratic
mesh 7" with elements corresponding to subdomains ©;; with side length h. We denote
the space of piecewise constant functions on 7" by V;, and the closure of the union of the
Vy’s is equal to Lo(€2). The chain of closed subspaces V; C Vi C ... C V; C ... is denoted a
Haar Multi-resolution Analysis of Ly(€2).

Each Vj is spanned by the dilates and integer translates of one scale function ® € Vj, that
is, V; = span{®, ;(z) = 27®(2/z — k)}. The functions &, form an Ly-orthonormal basis
in V;, and we denote the orthogonal complement of V; in V;,, by W;, which is generated
by another orthonormal basis (the wavelets) U, (z) = 20U (272 — k), where ¥ € W, is
called the mother wavelet. W; = W} @ W? @ W}, where the W}’s represent differences
in the horizontal, vertical and diagonal directions respectively. The space Lo(2) can now
be represented as the direct sum Ly(Q) = Voo Wy .. oW ..oW /..o W}o ..,
and each f € L,(Q2) has a unique decomposition f = fo® + 3", , FTATIE Sy SR S
fo+ >, i fj1 + ...+ f]‘?’, where the f7’s represent the contributions on the different scales
277. For the one dimensional Haar MRA in L,([0,1]), the scale function is defined by
o(x) = 1 for z € [0,1] and 0 else, and the mother wavelet is defined by 1(z) = 1 for
z € (0,1/2), —1 for x € (1/2,1) and 0 else. In two dimensions the scale function and the
wavelets are tensor products of the one dimensional scale function and wavelets. For the two
dimensional Haar MRA in Ly(€2) we have the scale function ®(x1,z2) = ¢(z1)¢(x2) and
the wavelets U!(xq,29) = @(21)Y(x2), Y2(21,72) = Y(z1)p(T2), V3 (21, 72) = (21)(22).
For f € Ly(9), we define [f]" = fot2 i< eV Y5 e+ 93 . The linear mapping
Ly > f — [f]* € V; can then be identified with the L,-projection of f onto V;, and we note
that [f]* = f*, where f" is the piecewise constant function on 7" that equals f* in the
midpoints of each element in 7. If we let F},(u) denote the piecewise constant function on
7 that equals Fj,(u) in the midpoints of the elements of 7", we have

Fy(u) = [f()]* = f([u]") = (18- Vu]" = [8]" - [Vu]"),
which for second order reaction terms f(u) leads us to model covariances of the form
(13.9) Ep(v,w) = [vw]" — [v]"[w]",

for given functions v and w. The following observation from [11] shows that Ej (v, w) equals
the sum of the Haar coefficients corresponding to scales finer than and equal h, scaled by
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the area of the elements in 7": if x € Q; then

(13.10) En(v,w)(z) = 2% Z (vilw]l-,l + vilwil + U?’lw;”l).
jzi
l: Qj,l C Qi,k
13.4. Scale extrapolation using self-similarity. We base our subgrid model on an
Ansatz of the form of each separate covariance

(13.11) Ey(v,w)(z) = C(z)h"?, zeQ,

with the coefficients C(x) and pu(x) to be extrapolated. The Ansatz can be motivated from
(13.10) assuming scale similarity of the Haar coefficients corresponding to fractality. The

Ansatz leads to the following extrapolation formula: Fy, (i) = 3 E), (s, @), where

(13.12) By (in, 1) = g(En(0n, 0n), Bon(0n, n), Ean(0n, 0n))
with
cobth g
(13.13) gla,b,c) = (1 — (b4h—a4h) ) T
pih — gth 1

and 2~ is the finest scale present in the exact solution.

13.5. Applications. In all examples we will have h = 27°. We construct two dimensional
fractal data as sums of local tensor products of the one dimensional fractal Weierstrass
function W, 5(x) = v Z;.V:O 2799in(27 - 27x), where we let v = § = 0.1 in all examples.
13.5.1. Volterra-Lotka (VL). We consider a reaction dominated problem of the form

U1—6AU1:U1(1—U2), dQ_EAUZ'i‘,B'VUQ:’UQ(U]_—]_),

ou
a_n|6ﬂ =0, ’LL(.I, O) = (W,i?(.’ﬂ), 1)7
where € = 1078, which corresponds to the classical Volterra-Lotka system with small diffu-

sion and convection in one component. We have Fj,(u) = (—(uyuz)* +ulul, (ujug)? —ulul),

and with subgrid model we have that Fy, (i) = (—Ep (@1, Gi2), En(@1, Gi2) ), with n = 4 (the 2-
logarithm of the reference scale minus the computational scale). For these problems we use
a central difference-Crank-Nicolson scheme for the midpoints of the elements, where we let
these midpoint values represent a piecewise constant approximation over the elements, and
the reference scale is 272 in the computation of the error. The solutions are oscillating and
both u; and us are fractal for ¢ > 0, even though us(z,0) = 1. We want to approximate u”,
and the errors ||u"*—Uy|| are shown in Tab.7-9, where Uy, is the solution without model, with-
out model but computed on the finer scale h/2 and then projected onto the scale h, with
the subgrid model (13.13), and with a simplified model Fh(ah) = Fop (i, Up) corresponding
to a standard scale similarity model. We first let 3 = 0 and compute to T = 2, then we
let B be a rotational mixing of order h: 8 = h (sin(7wz1) cos(mzz), — cos(mzy) sin(mz2)) and
here we only compute to 7" = 1, since after 7" = 1 the subgrid scales are dominated by the
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TABLE 7. Error in u;in Li-norm for VL with 8 =0

subgrid model t=05 t=10 t=15 t=20

no model 1.9-10°% 7.210°% 1.1-10°2 1.1-102
no model on h/2 1.4-107% 4.6-107* 7.0-107® 6.8-1073
Fy(iip) = Fop(tin, @ip) 1.4-107% 4.8-107 6.5-107° 6.3-10~3
formula (13.13) 1.0-107% 2.8-107° 3.8:107% 4.2:1073

TABLE 8. Error in usin Li-norm for VL with § =0

subgrid model t=05 t=10 t¢t=15 t=2.0

no model 1.4107% 3.4-10~* 2.0-10~* 4.4-10*
no model on h/2 1.0-107% 2.1-10™* 1.2-10~* 2.9-10~*
Fy(iip) = Fop(iip, @) 9.0-107° 2.0-107* 1.5-107* 2.8-10™*
formula (13.13) 7.0-107° 1.4.107* 1.5:107* 2.4-107%

TABLE 9. Error in u;in Li-norm for VL. with 5 # 0

subgrid model t=05 t=10 t=15 t=20

no model 2.5-107° 1.5:107* 3.4.10™* 6.4-10*
no model on h/2 25107 1.1.107* 1.9-107* 3.3-107*
Ey(tp) = Fop(itn, p) 2.5107° 1.1.107* 2.1-107* 5.0-107*
formula (13.13) 2.0-107® 6.0-107% 2.0-10~* 5.6-107*

convective streaks due to 3. We study the error for each component individually, and for
B = 0 we find that the solution with the subgrid model is the best for both components,
even though the modeling errors are smaller in uy since us(z,0) is constant. For 5 # 0
the solution with the subgrid model is best for u; but, because of the convection, subgrid
scales in uy do not develop and the solutions with subgrid models does not differ signifi-
cantly from the solution without subgrid model. The solution on h/2 is better since the
discretization error is then reduced.

13.5.2. Fractal convection (FC). We now consider a convection dominated problem of the
form

9
(13.14)  4+B8-Vu—eAu=1, uly_gz0=0, a_u‘“:l’“:l =0, u(z,0)=0,
mn
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TABLE 10. Error in L;-norm for FC

subgrid model ¢t=0.25 t=0.5 t=0.75 t=1.0

no model 7.2-107% 1.2.107%2 1.1-1072 1.1-1072
formula (13.13) 5.8-107% 7.2.107® 6.2.107® 6.2-1073

for 8 = (W25, W?25) and € = 1072, which we solve by a Streamline Diffusion ¢G(1)cG(1)
method [2] with bilinear, quadratic elements. In the computation of the error the reference
scale is 278, The solution is in this case relatively smooth since the fractal field 3 is now
only acting on the derivatives of the solution. We have that F},(u) = 8- (Vu)" — (8- Vu)",
and the error in the solution with the subgrid model is smaller than in the solution without

subgrid model.

13.6. Do we have scale similarity in turbulent flows? The above discussion is based
on an assumption of scale similarity of covariances of individual solution components, with
respect to the Haar basis induced by a mesh hierarchy. In 3d we get a corresponding
Haar basis induced by the tetrahedral mesh hierarchy used in the above computations of
transition to turbulence, see Fig.22. In Fig.23 we have plotted the sum of Haar coefficients
on three different scales, of the Reynolds stress component 75" (h = 1/64) for the Couette
flow from Section 12.3 at ¢ = 30, which has started its transition to turbulence but is
not fully developed (the component 711 is chosen since the streamwise velocity dominates
the Couette flow). The plot shows 60 elements in the coarsest mesh corresponding to the
scale 8h, and we see that the decrease in the Haar coefficients is reasonable regular and
we consider this as some evidence of scale similarity of the Reynolds stresses for this flow,
although this test is not satisfactory because the turbulence is not fully developed and
the computational mesh is too coarse to represent a fully developed turbulent flow. For
experimental observations of fractality in turbulent flows we refer to e.g. [22] or [25] and
references therein.

13.7. A posteriori error estimation for turbulent flow. In deriving a posteriori error
estimates for turbulent flows we have to take into account both the numerical error from
discretization and the modeling error from subgrid modeling. We explain the basic steps in
the setting of a general subgrid modeling problem A(u) = f, where u is the exact solution.
Due to subgrid scales in 4 we can not compute a pointwise accurate approximation to
u. Instead we aim for a pointwise accurate approximation of u”, where u" represent a
local average of u on a scale h, which represents the finest computational scale. We seek
an equation for the average u” of the exact solution u and by averaging the equation
A(u) = f we obtain A(u®) + Fy(u) = f", where Fj(u) = (A(u))* — A(u") has to be
modeled in terms of u” to get a modified equation A(@) = A(d) 4+ Fy,(4) = f* = f, where
i is an approximation of u" and ﬁ’h(ﬁ) ~ F}(u) represents a subgrid model.

We then solve the Galerkin equation: find U, € Vj, such that (A(Uy) + Fy(Un),v) = f,
for all v € V},, where V}, is a finite dimensional subspace, on a mesh of size A, of the Hilbert
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FIGURE 22. Haar MRA generated from successively refining unstructured

tetrahedral and triangular meshes, in 3d and 2d respectively.
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space V with inner product (-,-) and norm || - ||. U, is now an approximation of u" and
the error e = u" — U), is therefore the appropriate error to study, not « — U,. This means
that the appropriate linearized dual problem to solve is (A'(u”, Uy)w, ¢) = (w, 1)), for all
w € V, where A'(u",Uy)e = A(uh) — A(Up), that is we linearize the dual problem at u”
and not at the exact solution u. When we solve the dual problem numerically we do not
have access to u" and we will therefore have to use U, instead of u”. The linearization
error is then u* — Uy, which we anticipate to be pointwise small. If we on the other hand
linearize at the exact solution u we get a linearization error u — Uy, which is not pointwise
small. We get the following error representation

(e,9) = (uP —Up,vp) = (A'(@",Up)e, @) = (A(u") _AA(Uh)a )
= (fAh—Fh(U) _A(Uh):QD)A: (fh—A(U,j) — Fu(Un), )
+  (Fn(Un) — Fu(u), ) = (R(Un), ) + (Fr(Un) — Fr(u), ),

where R(U,) = f" — A(Uy) — Fy(Uy) is a computable numerical residual related to the
discretization error in solving the equation A(@) + Fj,(4) = f*, and Fy(Uy) — Fj(u) is a
modeling residual related to the error in the subgrid model F,. We note that the linearized
dual problem is independent of both F},(u) and F},, and thus contain the stability properties
of the average u”.

Even if we do not use a turbulence model in computing U, we will have to estimate
F,(u), possibly by using a turbulence model. Using a turbulence model F}, in computing

A

Up, we instead need to estimate Fj(u) — F(Uy).

14. MULTI-ADAPTIVITY: INDIVIDUAL TIME-STEPS

We finally present the multi-adaptive Galerkin methods mcG(q) and mdG(q) with in-
dividual time steps for different solution components developed in [21]. We consider an
initial value problem of the form

ug+ f(t,u) = 0 for0 <t <T,
(14.1) w(0) = uo,

where f(t,-) : RN — R" is a given mapping, u; = %, and T is a final time. To formulate the
mcG(q)-method, we partition the interval (0,7") individually for the different components
with individual time-intervals {I;;}, and time-steps {k;;}; for every individual component

U;(t). The mcG(q)-method for (14.1) reads: Find U € V with U(0) = uo, such that

/T(U,v) dt+/T(f(U,-),v) dt=0Vvew

where

V = {U € C([O,T]) : UZ'|1¢]. S ’Pq"j(lij), j=1...,M; 1= 1,...,N},

W = {’U : Ui‘_[ij S ’Pqijil(fij), j: 1,...,Mz’, 1= 1,...,N},
and where P?(I) denotes the linear space of polynomials of degree < q on I. The trial
functions in V' are thus continuous piecewise polynomials, locally of degree g;;, and the
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test functions in W are discontinuous piecewise polynomials that are locally of degree
¢i; — 1. The mdG(q) method is similar with discontinuous trial functions of degree ¢;; and
discontinuous test functions also of degree g;;.

14.1. Computability and predictability of the Solar System. We consider the prob-
lem of computability and predictability of the Solar System, with the objective of using a
multi-adaptive solver with individual time steps for individual components, see [21] where
also applications to heat flow and the Burgers equation are presented. We expect multi-
adaptivity to be of importance also in CFD.
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F1GURE 24. Part of the dual of the Solar System with data chosen for control

of the error in position of the Moon at final time.

We thus consider the Solar System, including the Sun, the Moon, and the nine planets,
which is a particular n-body problem of fundamental importance:

(14.2) mi; = Z My (35— ),

|z, _$z|

where z;(t) = (] (t), z2(t), 2 (t)) denotes the position of body i at time ¢, m; is the mass

of body 7, and G is the gravitational constant.

As initial conditions we take the values at 00.00 GMT on January 1:st 2000, obtained
from the US Naval Observatory with initial velocities obtained by fitting a high-degree
polynomial to the values of December 1999. The initial data should be correct to five or
more digits, which is similar to the available precision for the masses of the planets. We
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FI1GURE 25. The growth of the error over 50 years for the Earth-Moon-Sun
system as described in the text.

normalize length and time to have the space coordinates per astronomical unit, AU, which
is (approximately) the mean distance between the Sun and Earth, the time coordinates per
year, and the masses per solar mass. With this normalization, the gravitational constant
is 4m2.

Investigating the predictability of the Solar System, the question is how far we can
accurately compute the solution, given the precision in initial data. In order to predict
the accumulation rate of errors, we solve the dual problem and compute stability factors.
Assuming the initial data is correct to five or more digits, we find that the Solar System is
computable on the order of 500 years. Including also the Moon, we cannot compute more
than a few years. The dual solution grows linearly backward in time, see Figure 24, and so
errors in initial data grow linearly with time. For every extra digit of increased precision,
we thus reach ten times further.

We now touch briefly the fundamental question of the computability of the Solar System.
Assuming correct initial data and model, we compute the trajectories for Earth, the Moon
and the Sun over a time interval of 50 years using different methods. Since errors in
initial data grow linearly, we expect stability factors for quadrature and round off to grow
quadratically.

In Figure 25 we plot the errors for the 18 components of the solution, computed with
time step k = 0.001 with ¢G(1), ¢G(2), dG(1) and dG(2). We see that the error seems to
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FicUreE 26. The growth of the error over 5 years for the Earth-Moon-Sun
system computed with the mcG(2) method, together with the multi-adaptive
time-steps.

grow linearly for ¢G(q), which is in accordance with earlier observations [19] for periodic
Hamiltonian systems, recalling that the ¢G(q) conserves energy, [21]. The stability factors,
however, grow quadratically and thus overestimate the error growth for this particular
problem.

Examining the solutions obtained with the dG(1) and dG(2), we see that for these
methods the error indeed grows quadratically. For the dG(1) solution, the error reaches a
maximum level of ~ 0.5 for the velocity components of the Moon. The error in position
for the Moon is much smaller. This means that the Moon is still in orbit around Earth,
the position of which is still very accurate, but the position relative to Earth is incorrect
and thus also the velocity. The error thus grows quadratically until it reaches a limit. This
effect is also visible for the error of the ¢G(1) solution; the linear growth flattens out as
the error reaches the limit. Notice also that even if the higher-order dG(2) performs better
on a short time-interval, it will be outrun on a long enough interval by the ¢G(1) method
with its linear accumulation of errors (for this particular problem).

Solving with the multi-adaptive method mcG(2), see Figure 26, the error grows quadrat-
ically because mcG(2) is not fully energy conserving. Computing in double precision the
limit of computability seems to be 17" ~ 10°.
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15. SUMMARY

We have presented aspects of computability of the non-stationary incompressible Navier
Stokes equations with medium large Reynolds numbers. We have shown that computa-
tional solution of dual linearized problems is feasible and produces information on the
growth and propagation of computational errors, which in particular may be used in adap-
tive error control and evaluation of computability of different mean values. We have also
studied transition to turbulence computationally and discussed basic aspects of turbulence
modeling based on scale similarity. Needless to say, these notes are preliminary with many
open ends, which we hope to follow up in future work.
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