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DYNAMIC SUBGRID MODELING FOR TIME DEPENDENT
CONVECTION-DIFFUSION-REACTION EQUATIONS WITH FRACTAL
SOLUTIONS

JOHAN HOFFMAN

ABSTRACT. A dynamic scale similarity model is proposed. The subgrid model is tested
for model problems related to time dependent non linear convection-diffusion-reaction
systems with fractal solutions. The error of an approximate solution with subgrid model
on a scale h is typically smaller than that of a solution without subgrid model on the scale
h/2. We also consider the problem of a posteriori error estimation for fractal solutions,
splitting the total computational error into a numerical error, related to the discretization
of the continuous equations, and a modeling error, taking into account the quality of the
subgrid model.

1. INTRODUCTION

In recent years methods of dynamic subgrid modeling have been proposed, in particular
in turbulence modeling in Dynamic Large Eddy Simulations (DLES) by Germano et.al. [5].
The purpose of a subgrid model is to model the effect of unresolvable scales on resolvable
scales corresponding to closure in turbulence modeling. The basic idea in dynamic subgrid
modeling is to fit a particular subgrid model based on computed solutions on different
resolvable scales, and then extrapolate the model to subgrid scales. In order for such a
process based on scale extrapolation to work, it is necessary that the underlying problem
has some ‘scale regularity’, so that the experience gained by fitting the model on a coarse
scale with a fine scale solution as reference may be extrapolated to the finer scale. There
is empirical evidence ([4, 13| and references therin) that many problems involving a range
of scales from large to small, such as fluid flow at larger Reynolds numbers and flow in
heterogeneous porous media, in fact do have such a regularity, once the larger scales related
to the geometry of the particular problem have been resolved.

The purpose of this note is to study the feasibility of the indicated dynamic subgrid
modeling procedure in the context of some model problems related to convection—diffusion—
reaction systems with ‘fractal’ solutions, where the fractality originates from data. In this
paper we study time dependent problems, extending the study of stationary problems in
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2 JOHAN HOFFMAN

[6, 7, 8]. The relevance of studying fractal models is motivated by the abundant number
of experimental observations of fractality in e.g. turbulent flows (see e.g. [13]).

2. PROBLEM FORMULATION

We consider the model problem: Find u : Q x [0,7] — R”" such that

(2.1) G+ Lu=1u—eAu+p-Vu= f(u), V(z,t)€Qx(0,T),
(2.2) u=up, VY(z,t)elpx(0,T), % =uy, V(zr,t) €Ty x(0,7),
(2.3) u(z,0) = ug(z), V€ Q,

where f : R* — R" is smooth, @ C R? and 9 = I'p|JT'y. Typically we will assume
that e is small and that the solution u to (2.1)-(2.3) contains a range of scales, from very
small scales to large scales, induced by either the initial condition ug(x) or the differential
operator L through . Assuming we want to find an approximation of u on the scale h,
representing the finest spatial computational scale, we define for each fixed ¢ the spatial
running average u” of u on the scale h by

N 1 z1+h/2 $d+h/2
(2.4) u'(z,t) = m/ / u(y,t) dy,...dyq,
z1—h/2 zq—h/2

where we note that this operator commutes with space and time differentiation. Applying
this operator to (2.1)-(2.3) we find that the running average u” satisfies the equation
(2.5) ul + Lpu" = 0" + " - Vut — eAut = f(u") + F(v), u"(z,0) = ul(z),

where L, is a simplified operator on the scale h resulting from approximating 3 by A"
and the correction term Fj,(u) = (f(u))"* — f(u") + Lpu® — (Lu)" contains the influence of
the unresolved on u". We consider a computational problem without subgrid model of the
form

(2.6) in+ Lyup = f(un), un(z,0) = ug(z),
and a corresponding problem with subgrid model of the form
(2.7) Up + Lytip = f(n) + Fu(@n),  @n(z,0) = ug(z),

where Fh(ah) should approximate Fj,(u). In this paper we will consider a subgrid model
of the form F}, (i) = g(Fp(p), Fon(@n), Fan(iy)), where the function g is derived based on
a scale regularity assumption on Fj,(u).

3. ANALYSIS OF Fj(u) usING THE HAAR MRA

In the rest of this paper we let Q = [0, 1]? and for each h = 27%, with i = 0, 1, ..., we define
a corresponding regular quadratic mesh 7" with elements corresponding to subdomains €2; 4
with side length h. We denote the space of piecewise constant functions on 7" by V;, and
the closure of the union of the V)’s is equal to Ly(€2). The chain of closed subspaces
Vo C Vi C ... CVjC .. is denoted a Haar Multiresolution Analysis (MRA) of Lo(S2) [1].
Each V} is spanned by the dilates and integer translates of one scale function ® € Vj, that
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is, V; = span{®, ;(z) = 27®(2/z — k)}. The functions @, form an Ly-orthonormal basis
in Vj, and we denote the orthogonal complement of V; in V;;; by W;, which is generated
by another orthonormal basis (the wavelets) U, (z) = 29U (2/z — k), where ¥ € W is
called the mother wavelet. W; = VV]-1 @ sz @ Wf’, where the W;’s represent differences
in the horizontal, vertical and diagonal directions respectively. The space Ly(€2) can now
be represented as the direct sum Ly(Q) = Voo Wy @ ..o Wi ...oW/a ..o W} ®

and each f € Ly(f2) has a unique decomposition f = fo® + E]k ]1k1111k + ..+ f]3k\11;”,k =
fo+>7; fj +-+ [}, where the f}’s represent the contributions on the different scales 277.
For the one dimensional Haar MRA in Ly([0,1]), the scale function is defined by ¢(z) =1
for z € [0,1] and 0 else, and the mother wavelet is defined by ¥ (z) = 1 for z € (0,1/2),
—1 for z € (1/2,1) and 0 else. In two dimensions the scale function and the wavelets are
tensor products of the one dimensional scale function and wavelets. For the two dimensional
Haar MRA in L(£2) we have the scale function ®(z,z2) = ¢(z1)¢(x2) and the wavelets

(1, 22) = (21)Y(w2), U (21, 02) = (@1)p(22), VP (21, 29) = Y(21)P(22).
Definition 1. For f € Ly(Q2), we define [f|" = f, + e ik Vi + 5+ LV

The linear mapping Ly 3 f — [f]" € V; can then be identified with the Lj-projection of
f onto V;, and we note that [f]* = fh, where f" is the piecewise constant function on 7"
that equals f" in the midpoints of each element in 7". If we let F},(u) denote the piecewise
constant, function on 7" that equals Fj,(u) in the midpoints of the elements of 7", we have

Fiy(u) = [f()]" = f([ul") = (8- Vu]" = [8]" - [Vu]"),
which for second order reaction terms f(u) leads us to model covariances of the form
(3.1) Ey(v,w) = [vw]” — [v]"[w]",

for given functions v and w. The following lemma from [7] shows that Fj(v,w) equals a
weighted sum of the Haar coefficients on each scale finer than and equal to A.

Lemma 2. E,(v,w)(z) = Z 2% (vj wi, + vi W, + vl wd).
jzi
l:x € Qj,l

4. SCALE EXTRAPOLATION USING SELF-SIMILARITY

By a fractal or self-similar function we mean in this paper a function that has some sort
of scale similarity, following one of several definitions of a fractal by Mandelbrot [10]: A
fractal is a shape made of parts similar to the whole in some way.

In Large Eddy Simulations (LES) the objective of subgrid modeling is to model the
divergence of the exact Reynolds stress tensor 7;; = (u;u;)" — uf'ult, where each component
has the form of a covariance similar to (3.1). There is an agreement of the existence
of an inertial range in the energy spectrum of a turbulent flow [4], and different types
of scale similarity assumptions also on the Reynolds stresses have been used to motivate
various subgrid models, for example in the dynamic procedure [5] the parameters in a
particular model are determined by comparing different averages of the resolved Reynolds
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stresses. In scale similarity models [12] the assumption is that the exact Reynolds stresses
are proportional to the resolved Reynolds stresses. In [6, 7, 8] we have used an assumption
based on the existence of such a scale similarity with respect to a Haar MRA generated by
the hierarchy of successively refined computational meshes. This assumption is investigated
in [9] for a transition study of a Couette flow. The finest computational scale is h = 27% and
the sum of the Haar coefficients for the Reynolds stress tensor component 7q;are plotted
for three different scales in Fig.1. Component 7q; is chosen since the streamwise velocity
dominates the Couette flow. The transition to turbulence has started even though it is not
fully developed, and the plot shows 60 elements in the coarsest mesh corresponding to the
scale 8h, and we see that the decrease in the Haar coefficients is reasonable regular and
we consider this as some evidence of scale similarity of the Reynolds stresses for this flow,
in the form of a power law for the sum of Haar coefficients on each scale. Scale similarity
with respect to a Haar MRA has also been observed in experimental aerothermal data [11].
We will base our subgrid model on an Ansatz of the form

o ¥ * ***&2 *
o 0 ®
*x0gd O O *
+ O * +O*O$* +** @ ®Q* + 4+ + , +++
+ + 4+ +
* + % Qe T o+ T T T
i+§i++ Pt Eﬁ++++ +§+i++ I ¥+
0 10 20 30 40 50 60

0

FIGURE 1. Sum of Haar coefficients for 788 (U,) on scales 8h (o), 4h ('+'),
and 2h ('+)
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(4.1) Ex(v,w)(z) = C(z)h*®, zeQ.

The Ansatz (4.1) can derived using Lemma 2 for the special case when the Haar co-
efficients of the functions v and w in (3.1) have the form v%, = @, (2)2770+%®) and
wy, = B,(z)277(+% (=) respectively, which corresponds to the simple self-similar forms
Vjp1 = 2_‘5(”1)]- and wj;; = 2_7(m)wj. We then have, assuming «,, 3,,9,,v, € V;, that
En(v,w)(z) = Ci(z)h1®@) + Cy(x)h*2@) + C3(x)h*@) | where C, = o, 3,/(1 — 27#) and
iy = 0, +,. The proof is in [7], and for the case when 6; = §, = J3 and ;3 = o = 73 we
get (4.1). Lemma 2 further gives:

Proposition 3. Eay([v], [w]?) = Egkp (v, w) — Ep(v,w), 0 < k < .

Proof. By Lemma 2, Ey, (v, w) is a sum over the scales j > ¢ — k. Split this sum into two
sums: one sum over the scales j > i which is equal to Ep(v,w) (Ey(v,w) € V;_x), and one
sum over the scales i — k < j < i which is equal to Fyep([v]", [w]?). O

In the following we let E}(z) mean Ej (v, w)(x) if nothing else is stated, and we now use
the Ansatz (4.1) to derive the following propositions:

Proposition 4. Assume that (4.1) is valid with C, u € V;_o, then
Eup(v,w) — Eop (v, w)
E2h(U: w) - Eh(va w)

i ) By — By C(4h)" = C(2R)"
Proof. Using that Ej, Eop, € V;_o, (4.1) gives that E—E, ~ CQmi—Ch ~ 2
and in the same way we have that Fy, — E, = Ch*(2* — 1) = E,2* -1) = E, =
(Bon — Ep)/(2# = 1) O

En(v,w) = (Eap(v,w) — Ep(v,w))/( —1).

Proposition 5. Assume that (4.1) is valid with C, u € V;_o, then

_ E4h(’U, w) - EZh(U’ w)
Eon (v, w) — Ep(v, w)

En([] ", [w ™) (v,w) = (1 )"")En(v, w).
Proof. Proposition 3 = Ej([v]* ", [w]* ") = Ex(v,w) — Ey-np(v,w) = Ch#(1 — 27™)
= Ep(v,w)(1 — 27™), and we finally have 2* from the proof of Proposition 4. O

Proposition 3-5 motivates, for each ¢, an approximation of [Ej (v, w)]**, since an under-
lying assumption in Proposition 4-5 was that E, (v, w) € V; 5. Each component of F},(u) is
a sum of terms of the form (3.1) and we use Proposition 4-5 to approximate each of these
terms. We can use Proposition 3 to express these approximations in terms of [v]?, [w]"
instead of v, w, which is desirable since we will only have access to approximative solutions
Uy, Wy, on the scale h. If Fh(ﬂ)k denotes the approximation of Fj,(u)g, the k:th component
of Fy,(u), and 27"h is the finest scale in the exact solution u, we have a subgrid model of

the form

(42) Fh(u)k = ZEh(v,w) = Fh(’ah)k = ZEh(ﬁhawh)7
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= o Eun(On,0n) — [Eon(Bn, @) |\ [Bon (O, 0n)]*" — [En (O, 04)]*"

En(n o) = O o ) — (Bn(om, o)™ By (s @) — B (0, )™
[Eon(On, Wn)|** — [En (0, ©p)]*"

-1

5. A POSTERIORI ERROR ANALYSIS

A general strategy for a posteriori error analysis based on duality is described in [3].
In this section we will make some remarks concerning the nonlinear problems with fractal
solutions that appear in this paper. We assume that v is the solution to (2.1)-(2.3) and
that U is a numerical approximation to the solution of either (2.6) or (2.7). The standard
teqnique to obtain a posteriori error estimates for the error e = v — U in a chosen norm
is to introduce a linearized dual problem of the form: —¢p — A(u,U)*p = 0, o(T) = or,
where * denotes the transpose. The choice of @1 determines in what norm we estimate e,
for example, o1 = e(T)/||e(T)|| gives a Lo-estimate of e. Here || - || denotes the Lo-norm
and we further let (-,-) denote the Lo-innner product. Following [3] (assuming continuous
approximation in time) we get for o = e(T)/||e(T)|| that

le(T)|I = (e(T), e(T)/lle(T)]I) = (e(T), ¢(T)) +/O (e, —¢ — A(u,U)*o) dt

— (e(0), (0)) + /0 (6 + Alw, U)e, ) dt.

Now if we choose A(u,U) such that A(u,U)e = Lu — f(u) — (LU — f(U)) we get that

T

(D)l = (€(0),90)) + [ (FU) =T - LU, dt.
0
If U = U, is a numerical approximation of (2.6) we cannot expect the residual f(U)—U—LU
to be small since (2.6) involves the simplified operator L, and not L. If we on the other
hand linearize at u" instead of u and B" instead of 3, that is, we let A(u,U)e = Lyu® —
f(w™) — (L U — f(U)), then e(0) = 0 (by a suitable choice of U,(0)) and by (2.5) we get
that

(5.1) I = UW)(T) = / (F(UR) = Un = LaUn, o) dt + / (Fa(uw), ) dt,

where we now have a numerical residual, R(Uy) = f(Uy) — U, — LyUy, corresponding to
the discretization error in approximating (2.6), and Fj(u) which corresponds to a mod-
eling residual, independent of U,. If we on the other hand let U = U, be a numerical
approximation of (2.7), we get that

I = T)(T)]| = / (Ba(Th) + F(@h) = Un — Lol o) dt + / (Fu(u) = Bo(Th), ¢) dt,

where we now have a numerical residual, R(U,) = F,(Uy) + f(Up) — U, — LyUp, corre-
sponding to the discretization error in approximating (2.7). The second term contains the
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difference Fj,(u) — F,(U,), which corresponds to a modeling residual one seeks to minimize
by subgrid modeling.

We conclude that if u contains unresolvable subgrid scales, then the error with respect
to u” is the appropriate error to study, and thus the dual problem to be solved should be
linearized at u” and not at u. The dual problem then does not contain any scales finer
than h, which means that it will be easy to solve and in particular no subgrid modeling
is needed. This linearization also naturally splits the a posteriori error estimates in two
terms, one involving a numerical residual and one involving a modeling residual, which
enables us to balance the errors from discretization and subgrid modeling. In estimating
the error u® — Uy, by (5.1), F,(u) is unavaliable but can be approximated by the subgrid
model Fy,(Uy). To estimate the difference Fj,(u) — Fj(U,) further extrapolation seems to
be needed.

6. APPLICATIONS

We will now test the model (4.2) for some simple model problems in two space dimen-
sions, where the scale similarity is introduced through data. We construct two dimensional
fractal data as sums of local tensor products of the one dimensional fractal Weierstrass
function W, 4(z) = v Z;-V:O 2790gin(27 - 27rz), where we let v = § = 0.1 in all examples.
The motivation for the test problems is that they contain important features of reactive
flow problems. The first test problem is a recation-diffusion problem with a Volterra-Lotka
type reaction term where the scale similarity appears in the initial data, simulating for ex-
ample a reactor with two reacting spieces. We then add a small convection corresponding
to a stirred reactor. The second test problem is a convection-diffusion problem where the
scale similarity appears as the convecting velocity field, simulating a passive scalar in a
turbulent velocity field. In all examples we will have h = 27°.

6.1. Volterra-Lotka (VL). We consider a reaction dominated problem of the form
u'l—eAulzul(l—uQ), U:Q—EA’U,Q-F,B'VUQZ’UQ(’UQ—]_),
ou

a_n|8ﬂ =0, U(.T, 0) = (Wg,?(x)a 1);

where ¢ = 107%, which corresponds to the classical Volterra-Lotka system with small
diffusion and convection in one component. We have Fj,(u) = (—(ujus)? +uful, (ujug)® —
uPul), and by (4.2) we have that Fj,(p) = (—FEp (@, G2), En(@in, 2)), with n = 4 (reference
scale minus computational scale). For these problems we use a central difference-Crank-
Nicolson scheme for the midpoints of the elements, where we regard these midpoint values
to represent a piecewise constant approximation over the elements, and the reference scale
is 272 in the computation of the error. The solutions are oscillating and both wu; and
uy are fractal for ¢ > 0, even though uy(z,0) = 1. We want to approximate u”, and
the errors ||u® — U|| are shown in Tab.1-3, where U is the error without model, without
model but computed on the finer scale h/2 and then projected onto the scale h, with the
model (4.2), and with the model F},(ii,) = Fyp(iip, @in) corresponding to n = 1, meaning
that we assume that no finer scales than h/2 are present in the exact solution u. We
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TABLE 1. Error in u;in Li-norm for VL with =0

subgrid model t=05 | t=10 | t=15 | t=2.0

no model 1.9-1073 [ 7.2.1073 [ 1.1-1072 | 1.1-1072

no model on h/2 | 1.4-107% | 4.6-1073 | 7.0-1073 | 6.8-103
Ey(up) = Fop(ip, Gp) | 1.4-1073 | 4.8:1073 | 6.5-1073 | 6.3-1073
model (4.2) 1.0-1073 | 2.8:107% | 3.8-1073 | 4.2-.1073

TABLE 2. Error in usin Li-norm for VL with 8 =0

subgrid model t=05 | t=10 | t=15 | t=2.0

no model 1.4107% | 3.4-.107% [ 2.0-10~* | 4.4-107*

no model on h/2 | 1.0-107*|2.1.107* | 1.2.10~* | 2.9-10~*
Ey(ip) = Fop(ip, Gp) | 9.0-1075 | 2.0107* | 1.5.10~* | 2.8-10~*
model (4.2) 7.0-1075 | 1.4-107* | 1.5-107* | 2.4-10~*

TABLE 3. Error in u;in Li-norm for VL with 5 # 0

subgrid model t=05 | t=10 | t=15 | t=2.0

no model 2510 ° [ 1.5-10 % [ 3.4-10 T | 6.4-10 2

no model on h/2 |2.5-107% | 1.1.107* | 1.9-10~* | 3.3-10~*
Ey(ip) = Fop(ip, Gp) | 2.5-1075 | 1.1.107% | 2.1.10~* | 5.0-10~*
model (4.2) 2.0-1075 | 6.0-107° | 2.0-10~* | 5.6-10~*

first let 5 = 0 and compute to T = 2, then we let 8 be a rotational mixing of order h:
B = h (sin(nzy) cos(mzs), — cos(mz) sin(mze)) and here we only compute to T = 1, since
after T" = 1 the subgrid scales are dominated by the convective streaks due to 5. We
study the error for each component individually, and for 8 = 0 we find that the solution
with the subgrid model (4.2) is the best for both components, even though the modeling
errors are smaller in us since us(z,0) is constant. We also note that the solution with the
subgrid model corresponding to n = 1 is very close to the solution on the scale h/2 without
sungrid model as expected. For 8 # 0 the solution with subgrid model (4.2) is best for u;
but, because of the convection, subgrid scales in u, do not develop and the solutions with
subgrid models does not differ significally from the solution without subgrid model. The
solution on h/2 is better since the numerical error is then reduced.

6.2. Fractal convection (FC). We also consider a convection dominated problem of the
form

ou

(6.1) G+ B-Vu—eAu=1, u|y=0z-0=0, 8_n|w1:1’z2:1 =0, u(x,0)=0,

for 8 = (W25, W?25) and € = 10~?, which we solve by a Streamline Diffusion ¢G(1)cG(1)
method [2] with bilinear elements. In the computation of the error the reference scale is
278, The solution is in this case relatively smooth since the fractal § is only acting on
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TABLE 4. Error in Li-norm for FC

subgrid model | t=0.25 | t=0.5 |t=0.75| t=1.0
no model [7.2:10 3[1.2.10 2| 1.1-10 2| 1.1:10 2
model (4.2) |5.8-107% | 7.2.1073 | 6.2-1073 | 6.2-1073

the derivatives of the solution. We have Fj,(u) = 8" - (Vu)* — (8 - Vu)*, and in Tab.4 we
see that the error in the solution with the subgrid model (4.2) is less than in the solution
without subgrid model.

7. CONCLUSIONS

A dynamic scale similarity model for convection-diffusion-reaction problems with fractal
solutions was proposed, based on a scale regularity Ansatz with respect to a Haar MRA
generated by the hierarchy of successively refined computational meshes. In computational
experiments the solution to a problem on the scale h with subgrid model was better than
the solution to a problem on scale h/2 without subgrid model. We also considered the
problem of a posteriori error estimation for these problems. We found that by linearize
the dual problem at «”, and not at u, the error representation naturally split into separate
terms involving a numerical residual and a modeling residual respectively, which enables
us to balance errors from dicretization and subgrid modeling.
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