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TOPICS IN ADAPTIVE COMPUTATIONAL METHODS FOR
DIFFERENTIAL EQUATIONS

CLAES JOHNSON, JOHAN HOFFMAN, AND ANDERS LOGG

ABSTRACT. We discuss two topics of adaptive computational methods for differential
equations: (i) individual time-stepping and (ii) subgrid modeling, and we present some
applications including the computability and predictability of the Solar System and as-
pects of subgrid modeling in convection-diffusion-reaction systems.

1. INTRODUCTION

The two fundamental aspects of science of formulating equation (modeling) and solving
equation (computation), are today interacting on a new level in the field of Computational
Mathematical Modeling. Particular focus is put on adaptive methods with feed-back from
the computational process to reach goals of efficiency and control of modeling and compu-
tational errors. Over the years we have in cooperation with in particular the Rannacher
group in Heidelberg developed a general methodology for adaptive computational methods
for differential equations based on duality techniques and finite element discretization in
space-time, with applications to a variety of problems in fluid and solid mechanics, electro-
magnetics, and reactive flow (see [1] and [13] and references therein). The methodology is
being integrated into an applied mathematics education program from beginning under-
graduate to graduate level, which is presented in the series of books ([2], [3] and [4]). Our
research and educational programs are presented on www.phi.chalmers.se.

In this note we present recent results on the following two topics of adaptivity: (i) indi-
vidual time-stepping with application to the computability and predictability of the Solar
System and the Lorenz system, and (ii) subgrid modeling with applications to convection-
diffusion-reaction systems with fractal solutions.

We first present a general picture of the basic problems of formulating and solving equa-
tions. We consider a mathematical model of the form A(u) = f, where A is a differential
operator, f is given data, and u is the solution. The model is subject to perturbations
from data represented by f , modeling represented by A and computation represented by U
viewed as an approximate solution to a perturbed problem A( ) = f with exact solution
4. We say that the data/modeling error is equal to v — 4 and the computational error is
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equal to 4 — U, and that the total error, u — U = v — @ + 4 — U, thus has a contribution
from data/modeling and a contribution from computation. The model perturbation A may
contain coefficients representing subgrid models in the form of e.g. turbulent viscosities.

An adaptive method for solving A(u) = f includes a feed-back process, where the quality
of computed solutions U of perturbed models fl(ﬁ) = f , are investigated with the objective
of decreasing the modeling error u—u by improving the model A, and /or the computational
error 4— U, typically by appropriately modifying the local mesh size. Typically an adaptive
method is based on posteriori error estimates estimating the modeling or computational
errors in terms of computable residuals such as f—A(U) or f—A(U), or estimated residuals
f—A(a).

Adaptive methods for solving differential equations form a rapidly expanding area with
important applications. One may argue that the activity of formulating and solving equa-
tions is inherently adaptive with feed-back between computation and modeling. Adaptivity
of modeling and computation can be viewed as one aspect of optimization with the ob-
jective of improving the model or the computation. Adding also aspects of optimization
of solutions, which is often the main objective, one gets a full picture of optimization of
model, computation and solution.

An adaptive method typically involves a stopping criterion guaranteeing that the error
in some norm is less than a given tolerance, and a modification strategy to be applied if
the stopping criterion is not satisfied. A modification strategy may concern quantities
related to computation such as the local mesh size, or quantities related to modeling such
as a turbulent viscosity. The modification strategy for the local mesh size is often based
on equidistribution with the objective of satisfying the stopping criterion with a minimal
number of degrees of freedom, or largest possible local mesh size. Both the stopping
criterion and modification criterion may be based on a posteriori error estimates involving
the residuals f — A(U) and f — A(U) of computed solutions, and/or a priori error estimates
involving estimates of the exact solution % or u.

2. G?: THE GENERAL GALERKIN METHOD

2.1. Features. As computational method we use a class of finite element methods, which
we refer to as the General Galerkin method, or G? in short, with the following features:
e piecewise polynomial approximation in space/time,
residual of trial function orthogonal to test functions (Galerkin orthogonality),
continuous trial functions of degree ¢: c¢G(q)
discontinuous trial/test functions of degree ¢: dG(q),
Eulerian form or Lagrangean form depending on the orientation of the space/time
mesh,
e least-squares modification/stabilization,
residual-based artificial viscosity,
e multi-adaptivity: e.g. individual time-stepping.

Applying G? to a specific problem leads to a finite-dimensional (discrete) system of equa-
tions involving certain integrals expressing the Galerkin orthogonality. The integrals are
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evaluated using quadrature and the resulting discrete system of algebraic equations is
solved by some iterative method such as fixed point iteration or Newton’s method. The
total computational error in G? has contributions from (i) Galerkin discretization error,
(ii) quadrature error, (iii) discrete solution error.

2.2. An a posteriori error estimate for ¢cG(1). We now derive a prototypical a poste-
riori error estimate for G? applied to an initial value problem for a system of differential
equations of the form

(2.1) u+ f(t,u) = 0 for0<t<T,
’ u(0) = wuyp,

where f(t,-) : RY — RY is a given mapping, u; = ‘2—1;, and T is a final time. As a
particular case of G?, we consider the ¢G(1)-method based on continuous piecewise linear
trial functions and discontinuous piecewise constant test functions on a partition 0 = #5 <
t7 < ty < ... < ty = T into intervals I, = (t,_1,t,) with corresponding time-steps
k() =ky =ty —ty_y, t € I,

In ¢G(1) we seek U(t) continuous piecewise linear satisfying

/ U+ LU =0, n=1,2..N, U(0)=u,
In
corresponding to testing against piecewise constants. Choosing different quadratures, such
as midpoint quadrature with

tnfl + tn Un + Unfl

flt, ) = gt ST ey

we obtain different fully discrete schemes where the quadrature error may be viewed as a
part of the perturbation f of f.

We now derive an a posteriori error estimate for the error at final time ||e(T)|| = ||u(T) —

U(T)|| where ||-|| is the Euclidean RY norm. We introduce the continuous dual ”backward”
linearized problem:

on I,,

—p+A)¢=0 in (0,7),  (T)=e(T),

where

1
= / £t su(t) + (1 — $)U(H)) ds,
and f'(t,-) is the Jacobian of f(¢,-). Using that

e—/ It su(t) + (1 —s)U(t))eds

:/0 %f(t,su(t)—|—(1—S)U(t))ds=f(t,U(t))—f(ta U(®)),

we obtain the following error representation:

|MﬂW=W@W+Ae&G@+N@ﬁ
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T
T T .
N / (we + f(t,u)) - ¢dt_/ U+ f(t,U)) - o dt
0 0
T
+/0 (F(,U) = F(t,0)) - ddt +€(0) - 6(0)

=—A(w+ﬂuwy¢ﬁ+A(ﬂun—ﬂumy¢ﬁ+dmwmx

where we used that u; + f(¢,u) = 0.
For the local mean value Py¢ of ¢ on the partition, we have

6= PO < [ 1526)ds, tel,

Using the Galerkin orthogonality, we can write the error representation in the form

MGNF=—A(w+f@U»«¢—&@w

+/0 (F(6,U) = F(1, 1)) - ddt + ¢(0) - $(0).

We can use this estimate for a posteriori error estimation by first computing an approxi-
mation of the dual solution ¢ and then computing ¢ — P,¢. We can also derive different
upper estimates by introducing norms and using Cauchy’s inequality. A typical such a
posterior: error estimate takes the form

le(T)|| < S™(T) max [[k(t)R(U,1)]|

0<t<T

+SU(T) mas | F(2.0) ~ £(2,0)]| + Su(T) (O]
where R(U,t) = U, + f(U,t), f(t,U) — f(t,U), and e(0) act as residuals connected to
computation, modeling and data, and
T T
SH(T) = M, STy = M’ Sq(T) = (0] ,
(1) (D) (D)
are the corresponding stability factors. Note the presence of the time-step factor k(¢) in
the term S.(T')||k(t)R(U, t)|| resulting from the difference ¢ — Py ¢.

The stability factors may be computed by linearizing around a computed solution U = U},
and estimating the data ey (7) on a coarser mesh H by U, — Uy, and computing the
corresponding dual solution ¢ and its stability factors.

The size of the stability factors vary with the model, the particular solution and the
error norm. Obviously, the presence of large stability factors indicates that the problem
is sensitivity to small perturbations, and pertinent questions concern the predictability
(small data/modeling error) and computability (small computational error). We discuss
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the issues of predictability and computability below in the context of the Solar System and
the Lorenz System.

3. MULTI-ADAPTIVITY: INDIVIDUAL TIME-STEPS

In this section we give a brief overview of the multi-adaptive Galerkin methods mcG(q)
and mdG(q), presented in [11, 12], including two key applications,

3.1. The mcG(g) method. To formulate the mcG(g) method, we partition the interval
(0,7) individually for the different components with individual time-intervals {/;;},; and
time-steps {k;;}; for every individual component U;(t).

The mcG(g) method for (2.1) reads: Find U € V with U(0) = ug, such that

(3.1) /OT(U,U) dt+/0T(f(U,-),v) dt =0Yv eW,

where

V = {UEC([O,T])Z’U”[ME,Pqij(li'), jzl,...,Mi, ’i=1,...,N},

(32) W = {’UZ’UZ"I“- quij_l(lij), j=1,...,MZ’, ’i=1,...,N},

and where P?(I) denotes the linear space of polynomials of degree < ¢ on I. The trial
functions in V' are thus continuous piecewise polynomials, locally of degree g;;, and the test
functions in W are discontinuous piecewise polynomials that are locally of degree ¢;; — 1.

Noting that the test functions are discontinuous, we can rewrite the global problem
(3.1) as a number of successive local problems for each component: For i = 1,..., N,
j=1,..., M, find Ui|Iij € P (IZJ) with Ui(ti,j—l) given, such that

(3.3) Upw dt + | fi(U,)v dt = 0 Yo € PU~Y(I;).
I I

We notice the presence of the vector U(t) = (Ui (t),-..,Un(t)) in the local problem for
U; on I;;. If thus component U, (t) couples to component U, (t) through f, this means
that in order to solve the local problem for component U;, (t) we need to know the values
of component Uj, () and vice versa. The solution is thus implicitly defined by (3.3).

Making an Ansatz for every component U;(t) on every local interval I;; in terms of a
nodal basis for P%i(1;;), we can rewrite (3.3) as

(3.4) Sijm = &ijo +/ wid (13(1)) (—fi(U(0),1) dt, m=1,...,qy,

where {&ijm}ei_, are the nodal degrees of freedom for U;(t) on the interval I;;, {w%] T
C P27'(0,1) are corresponding polynomial weight functions and 7;; maps [;; to (0,1]:
7;(t) = (t — tij—1)/(tij — tij—1). Here we assume that the solution is expressed in terms

of a nodal basis with the end-points included, so that by the continuity requirement &;;o =

&ini—1,gi5-1-
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Finally, evaluating the integral in (3.4) using nodal quadrature, we obtain a fully discrete
scheme in the form of an implicit Runge-Kutta method: For:=1,...,N, j=1,..., M;,
find {&jm ey, with &jo given by the continuity requirement, such that

m=0"
qij

(3.5) €ijm = &ijo + kij Zw gi] (_ i(U(Ti;I(Sggij}))a Tz';l(sggij])))a m=1,...,4j,

n=0

for certain weights {wl,'{]n}, and certain nodal points {sgf]} (see [11]).

Using standard techniques [11] we can prove that the mcG(g) method is of order 2q
(locally of order 2¢;;). Assuming that the same time-steps are used for corresponding
position and velocity components for a Hamiltonian system, we can also prove that the
mcG(g) method conserves energy at common nodal points.

3.2. The mdG(q) method. Generalizing the standard discontinuous Galerkin method in
the same way as above for the continuous method, we obtain the mdG(g) method:

qij

(3.6) Sijm = §mo+kzgzwq” —fiU (7" (s589))), 735 (si2)), m =0, qy,

with new nodal points and nodal weights.
Using standard techniques we can prove that the mdG(g) method is of order 2¢ + 1
(locally of order 2¢;; + 1), and that it is B-stable [11].

3.3. A Posteriori Error Analysis and Adaptivity. To estimate the global error at final
time, and to adaptively determine the individual time-steps, we derive a posteriori error
estimates for the total error, including the Galerkin error, computational errors (including
round-off error) and quadrature errors (including modeling error):

(3.7) le(T)|| < Eg + Ec + Eq.

The a posteriori error estimates contain information of the sizes of different individual
residuals and stability factors (or time-dependent stability weights) obtained from solving
the dual problem, compare section 2.2. For the mcG(g) method, we obtain the following
error estimate:

(3.8) 7| < Z [ Slail max {Cprkfiri} + Sl r[rolax|RC| + 30 I[naX|RQ|]

and for the mdG(q) method we have

(3.9) T)|| < Z [ maX{C KLY 4 510 r[naxmﬂ + 5 max |RQ\]

where the Sz-q are stability factors for the individual components of the dual solution.
The true global error may thus be estimated in terms of computable stability factors and
residuals.
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Focusing on the Galerkin error (controlling other contributions below say 10% of the
total error), the goal of the adaptive of the algorithm is to produce an approximate solution
within a given tolerance TOL. Simplifying the notation, we then want to determine for
each individual component U;(t) a sequence of time-steps {k;;}; such that

N
(3.10) DS max K&y = TOL,
=1

which is achieved by

The adaptive algorithm may then be expressed as follows: Given a tolerance TOL > 0,
make a preliminary guess for the stability factors and then

(1) Solve the primal problem with time-steps based on (3.11).
(2) Solve the dual problem and compute stability factors and stability weights.
(3) Compute an error estimate E.

(4) If E < TOL then stop, and if not go back to (1).

3.4. Computability of the Lorenz system. We consider the Lorenz system,

z = o(y—z),
(3.12) Yy = rr—y—2xz,
z = xy— bz,

with the usual data (2(0),y(0),2(0)) = (1,0,0), 0 = 10, b = 8/3 and r = 28. The solution
u(t) = (x(t),y(t), z(t)) is very sensitive to perturbations and is often described as being
“chaotic”. With our perspective this is reflected by stability factors with rapid growth in
time.

The computational challenge is to solve the Lorenz system accurately on a time interval
[0,T] with T as large as possible. We investigate the computability of the Lorenz system
by solving the dual problem and computing stability factors, to find out the maximum
value of T

To begin with, we examine solutions of the Lorenz system for a number of different
methods. In Figure 1 we plot solutions for the xz-component of the Lorenz system on
[0,40]. The time-step is the same for all components and constant equal to £ = 0.001.
Some time after ¢ = 20, the second-order accurate ¢G(1) solution is no longer correct. (A
“good” thing about the Lorenz system is that when the solution once starts to be incorrect,
it quickly becomes very inaccurate also in picture-norm.)

Increasing the order of the method until we finally reach the 20:th and 21:st order
methods ¢G(10) and dG(10), we get more and more accurate solutions, and are able to
solve until T' = 40. Increasing the order further does not increase the accuracy of the
solution, since the error is now dominated by the computational error caused by finite
precision arithmetic round-off error.
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FIGURE 1. These plots show solutions, computed with different methods
with constant time-step £ = 0.001, for the z-component of the Lorenz system
from time ¢t = 20 to final time T = 40.

3.4.1. Reaching further. To reach further than to 7" = 40, we must decrease the computa-
tional error. A simple view of this is that at every time-step we will make a relative error
of at least 10 '% with double precision arithmetic. These errors will accumulate at a rate
determined by the stability properties of the dual. To decrease this error we must thus not
decrease the time-step, but instead increase the time-step! In this way we will take fewer
time-steps and so decrease the computational error. Since increasing the time-step we will
increase the Galerkin error, we also have to increase the order of the method to keep the
Galerkin error small.

In Figure 2 we present solutions with £ = 0.1. We are now able to solve until about
T = 50, using as few as 500 time-steps. The higher-order methods all agree until some
point close to ¢ = 48, and not even the 30:th-order method mcG(15) is able to get any
further. This indicates that again we have reached a limit.

3.4.2. Stability factors. We now turn to the computation of stability factors for the Lorenz
system, such as

T
(3.13) SUT) = max [ o9 0]
0

lloll=1



TOPICS IN ADAPTIVE COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS 9

~— 20 T T T T T
b} .
i
N—r N
O -
@)
[\
-20 ! ! ! ! ! ! ! ! |
0 10 20 30 40 50 60 70 80 90 100
~—~ 20 T T T T T T T T T
(&} .
=
0 . . A
O WMMWMMWMM |
)
-20 ! ! ! ! I ! | ! !
0 10 20 30 40 50 60 70 80 90 100
~— 20 T T T T T T T T T
o : :
= :
S~—
0 : ) B
& WWMWMMWNWMMWW
O SRR
—20 ! ! ! ! ! ! ! ! !
0 10 20 30 40 50 60 70 80 90 100
~— 20 T T T T T T T T T
<t S
i
~ 0 L . i
O W{UWNWWWWM |
~20 ! ! ! ! ! ! ! ! !
0 10 20 30 40 50 60 70 80 90 100
~— 20 T T T T T T T T T
O . .
L
O WWMWMMM
O .
~20 ! ! ! ! ! ! I ! !
0 10 20 30 40 50 60 70 80 90 100

F1GURE 2. Solutions for the z-component of the Lorenz system with meth-
ods of different order, using a constant time-step k£ = 0.1.

where ¢ is an (approximate) solution of the dual problem with ¢(7) = v. Letting ® be an
(approximate) fundamental solution of the dual problem, we have

T

1) [ 10000l ar< [ max 10l at= [ 1990) at = 9(r),
vl|= 0

and thus computing S!9(T") gives a bound for Sl9(T"), which for Lorenz system turns out to

be quite sharp. By computing the fundamental solution we avoid computing the maximum

n (3.13).

We compute the variation of the stability factors on [0, 50], see Figure 3, where we plot
the stability factor for ¢ = 0, corresponding to computational and quadrature errors. The
stability factors grow exponentially with time, but not as fast as indicated by an a priori
error estimate. An a priori error estimate indicates that the stability factors grow as

(3.15) Sl(T) ~ AT,

where A is some bound for the Jacobian of the right-hand side for the Lorenz system.
Making a simple estimate, we take A = 50, so that already at T = 1 we have S(T) ~ 10%.
In view of this, we would not be able to compute even to 7" = 1, and certainly not to
T = 50 for which S(T) ~ 10'°°. The point is that although the stability factors grow
very rapidly at some occasions, such as nearby the first flip at 7' = 18, they do not grow
monotonically, and thus as an average grow at a moderate exponential rate.
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F1GURE 3. The stability factor for the computational and quadrature errors,
as function of time for the Lorenz system.

3.4.3. Conclusions. We now make simple estimates for the growth rate of the stability
factors, in order to predict how far along it is possible to compute. Fitting simple functions
to the stability factors as function of time, we have the following approximations:

(3.16) Sl(T) s 4 - 10(a=9+0377
or, simpler but not as good,
(3.17) S(T) ~ 10973,

From the a posteriori error estimates presented in [11], we find that the computational
error can be estimated as

(3.18) Ec ~ SP(T) max||R7].

where the computational residual R¢ is defined as

(3.19) R () = ki (U(t,-j) —Ultij-1) —

I;;

fz(U’ ) dt)

for the mcG(g) method and similarly for the discontinuous method.
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With 16 digits of precision, we cannot expect to have a computational residual smaller
than about ;-107'%, so that, with the approximation above, we have

ij
1 1
(3.20) E¢ ~ 1073 ———10716 = 107/3-16
min k;; min kw

so that with k;; = 0.1 as above we have
(3.21) Ec ~ 107371,

With time-steps k;; = 0.1 we thus cannot expect to do much better than 7" = 50, since
then we will have an error larger than unity, which we take as a criterion for an incorrect
solution. Increasing the time-step further, to say k;; = 10, we can compute a little further,
but only a couple of time units, since the stability factors grow exponentially. Increasing
the time-step even further we will soon have a time-step that is greater than the length of
the whole interval, i.e. £ > T.

Our conclusion is thus that by examining the stability factors, we can say that our
computation is probably correct until right before 7' = 50, and that we cannot get much
further with 16 digits of precision. (With 32 digits of precision we would reach 7" = 100,
and so on.)

3.5. Computability and predictability of the Solar System. We now consider the
Solar System, including the Sun, the Moon, and the nine planets, which is a particular
n-body problem of fundamental importance:

(3.22) mii; =y Gm’mf z; — x;),

i “II;J - $Z|3
1 2

where ;(t) = (z1(t), z2(t),z}(t)) denotes the position of body 7 at time ¢, m; is the mass
of body 7, and G is the gravitational constant.

As initial conditions we take the values at 00.00 GMT on January 1:st 2000, obtained
from the US Naval Observatory with initial velocities obtained by fitting a high-degree
polynomial to the values of December 1999. The initial data should be correct to five or
more digits, which is similar to the available precision for the masses of the planets. We
normalize length and time to have the space coordinates per astronomical unit, AU, which
is (approximately) the mean distance between the Sun and Earth, the time coordinates per
year, and the masses per solar mass. With this normalization, the gravitational constant
is 472,

3.5.1. Predictability. Investigating the predictability of the Solar System, the question is
how far we can accurately compute the solution, given the precision in initial data. In
order to predict the accumulation rate of errors, we solve the dual problem and compute
stability factors. Assuming the initial data is correct to five or more digits, we find that
the Solar System is computable on the order of 500 years. Including also the Moon, we
cannot compute more than a few years. The dual solution grows linearly backward in time,
see Figure 4, and so errors in initial data grow linearly with time. For every extra digit of
increased precision, we thus reach ten times further.
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FIGURE 4. Part of the dual of the Solar System with data chosen for control
of the error in position of the Moon at final time.

3.5.2. Computability. To touch briefly the fundamental question of the computability of
the Solar System, concerning how far the system is computable with correct initial data
and correct model, we compute the trajectories for Earth, the Moon and the Sun over a
period of 50 years, comparing different methods. Since errors in initial data grow linearly,
we expect numerical errors, as well as stability factors, to grow quadratically.

In Figure 5 we plot the errors for the 18 components of the solution, computed for
k = 0.001 with ¢G(1), ¢cG(2), dG(1) and dG(2). This figure contains much of information.
To begin with, we see that the error seems to grow linearly for the cG methods. This
is in accordance with earlier observations [9] for periodic Hamiltonian systems, recalling
that the (m)cG(g) methods conserve energy [11]. The stability factors, however, grow
quadratically and thus overestimate the error growth for this particular problem. In an
attempt to give an intuitive explanation of the linear growth, we may think of the error
introduced at every time-step by an energy-conserving method as a pure phase error, and
so at every time-step the Moon is pushed slightly forward along its trajectory (with the
velocity adjusted accordingly). Such errors do not accumulate but stay constant, and so
repeatedly making such an error, the resulting total error grows linearly.

Examining the solutions obtained with the dG(1) and dG(2) methods, we see that the
error grows quadratically as we expect. For the dG(1) solution, the error reaches a max-
imum level of ~ 0.5 for the velocity components of the Moon. The error in position for
the Moon is much smaller. This means that the Moon is still in orbit around Earth, the
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FicUure 5. The growth of the error over 50 years for the Earth-Moon-Sun
system as described in the text.

position of which is still very accurate, but the position relative to Earth is incorrect and
thus also the velocity. The error thus grows quadratically until it reaches a limit. This
effect is also visible for the error of the ¢cG(1) solution; the linear growth flattens out as the
error reaches the limit. Notice also that even if the higher-order dG(2) method performs
better on a short time-interval, it will be outrun on a long enough interval by the cG(1)
method with its linear accumulation of errors (for this particular problem).

Solving with the multi-adaptive method mcG(2), see Figure 6, the error grows quadrat-
ically. We saw in [11] that in order for the mcG(q) method to conserve energy, we require
that corresponding position and velocity components use the same time-steps. Computing
with different time-steps for all components, as here, we thus cannot expect to have linear
error growth. Keeping k?r; < tol with tol = 107'% as here, the error grows as 107*72 and
we are able to reach T' ~ 100. Decreasing tol to say 1078, we could instead reach T' ~ 10°.

4. COMPUTATIONAL SUBGRID MODELING

In recent years methods of dynamic subgrid modeling have been proposed, in particular
in turbulence modeling in Large Eddy Simulations (LES) by Germano (1991). The purpose
of a subgrid model is to model the effect of unresolvable scales on resolvable scales corre-
sponding to closure in turbulence modeling. The basic idea in dynamic subgrid modeling
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FIGURE 6. The growth of the error over 5 years for the Earth-Moon-Sun
system computed with the mcG(2) method, together with the multi-adaptive
time-steps.

is to fit a particular subgrid model based on computed solutions on different resolvable
scales, and then extrapolate the model to subgrid scales. In order for such a process based
on scale extrapolation to work, it is necessary that the underlying problem has some ‘scale
regularity’, so that the experience gained by fitting the model on a coarse scale with a
fine scale solution as reference may be extrapolated to the finer scale. It is conceivable
that many problems involving a range of scales from large to small, such as fluid flow at
larger Reynolds numbers and flow in heterogeneous porous media, in fact do have such a
regularity, once the larger scales related to the geometry of the particular problem have
been resolved.

In [5] we initiated a study of dynamic subgrid modeling in a stationary convection-
diffusion problem with fractal coefficients, where a subgrid model in the form of a corrective
force is extrapolated from coarser grids with the finest computational grid as reference. We
showed that the quality of the solution on mesh size h with extrapolated subgrid model, is
comparable to that of a solution without subgrid model on a scale h/4 or smaller. We here
present extensions to time-dependent convection-diffusion-reaction systems with ‘fractal’
solutions, where the fractality again originates from data (see [5, 6, 7]). The relevance of
studying fractal models is motivated by the abundant number of experimental observations
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of fractality in turbulent flows. Extensions to Navier-Stokes equations with the goal of
connecting with DLES Dynamic Large Eddy Simulation is under way.

In the setting of a general problem of the form A(u) = 0 of Section 2 with exact solution
u, the problem of subgrid modeling can be formulated as follows: For a given function
v, let v" represent a local average on a scale h which represents the finest computational
scale. We seek an equation for the average u" of the exact solution u and by averaging
the equation A(u) = 0 we obtain A(u”) + F,(u) = 0, where F,(u) = (A(u))* — A(u") has
to be modeled in terms of u” to get a modified equation fl(uh) = 0. In dynamic subgrid
modelling we seek to model Fj(u) by extrapolation from computing Fg(U,) where H > h
and U}, is a computed solution on the scale h.

4.1. Systems of convection-diffusion-reaction equations. We consider a model prob-
lem of the form: Find u : Q2 x [0,7] — R" such that

(4.1) U+ Lu=1u—eAu+p-Vu=f(u), V(z,t)€Qx(0,T),
(4.2) u=up, V(z,t)elpx(0,T), % =uy, V(z,t) eIy x(0,7),
(4.3) u(z,0) = ug(x), Ve,

where f : R" — R" is smooth, Q C R% and 0Q = I'p |JT'x. Typically we will assume
that e is small and that the solution u to (4.1)—(4.3) contains a range of scales, from very
small scales to large scales, induced by either the initial condition ug(x) or the differential
operator L through . Assuming we want to find an approximation of u on the scale h,
representing the finest spatial computational scale, we define for each fixed ¢ the spatial
running average u” of u on the scale h by

N 1 $1—|—h/2 :L‘d—|—h/2
(4.4) ) = o / / w(y, 1) dy...dya,
z1—h/2 zq—h/2

where we note that this operator commutes with space and time differentiation. Applying

this operator to (4.1)—(4.3) we find that the running average u" satisfies the following
equation (modulo boundary effects)

(4.5) W'+ Lyut = 0" + P - VU — eAu = f(u") + Fy(u), u"(z,0) = uf(z),

where L is a simplified operator on the scale h resulting from approximating 8 by 3"
and the correction term Fj,(u) = (f(u))"* — f(u") + Lpu® — (Lu)" contains the influence of
the unresolved on u”. We consider a computational problem without subgrid model of the
form

(4.6) in + Lyup = f(un), un(z,0) = ug(z),
and a corresponding problem with subgrid model of the form
(4.7) i + Lyiin = f(in) + Fy(in), n(z,0) = uf(2),

where F), (n) should approximate Fj,(u). In this note we will consider a subgrid model of
the form Fy,(dp) = g(Fn(dn), For(@n), Fun(tp)) based on averaging on the coarser scales 2h
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and 4h, where the function g is derived based on a scale regularity assumption on Fj,(u).
This type of model corresponds to a scale similarity model in LES.

4.2. Analysis of Fj,(u) using the Haar MRA. In the rest of this note we let Q = [0, 1]?
and for each h = 27, with ¢ = 0, 1, ..., we define a corresponding regular quadratic mesh
7" with elements corresponding to sub-domains 2, with side length h. We denote the
space of piecewise constant functions on 7" by V;, and the closure of the union of the V’s
is equal to Ly(€2). The chain of closed subspaces V; C Vi C ... C V; C ... is denoted a Haar
Multi-resolution Analysis (MRA) of Ly(92).

Each Vj is spanned by the dilates and integer translates of one scale function ® € Vj, that
is, V; = span{®, x(z) = 27®(2/z — k)}. The functions @, form an Ly-orthonormal basis
in Vj, and we denote the orthogonal complement of V; in V;;; by W;, which is generated
by another orthonormal basis (the wavelets) U, (z) = 29U (2/z — k), where ¥ € W, is
called the mother wavelet. W; = W; @ W? @ W7, where the W}’s represent differences
in the horizontal, vertical and diagonal directions respectively. The space Ly(€2) can now
be represented as the direct sum Ly(Q) = Voo Wy ..o Wi ..oW/ao..0oW} o ..,
and each f € Ly(Q) has a unique decomposition f = fo® + 3., f7, W, + ... + f3,95, =
fo + Zj fj1 + ...+ f]‘?’, where the f;’s represent the contributions on the different scales
277, For the one dimensional Haar MRA in Ly([0,1]), the scale function is defined by
o(x) = 1 for z € [0,1] and 0 else, and the mother wavelet is defined by 1(z) = 1 for
z € (0,1/2), —1 for z € (1/2,1) and 0 else. In two dimensions the scale function and the
wavelets are tensor products of the one dimensional scale function and wavelets. For the two
dimensional Haar MRA in Ly(€2) we have the scale function ®(x1,z2) = ¢(z1)¢(x2) and
the wavelets U'(z1,z0) = @(21)¥(12), U (21, 22) = Y(z1)0(x2), (21, T2) = Y(31)20(T2).
For f € Ly(R), we define [f]" = fot225 ]{k\If;’k—l—ij’k\Ilik—i-f;’,k\Ilik. The linear mapping
Ly > f — [f]" € V; can then be identified with the Lo-projection of f onto V;, and we note
that [f]® = f* where f" is the piecewise constant function on 7% that equals f" in the
midpoints of each element in 7". If we let F},(u) denote the piecewise constant function on
7h that equals F},(u) in the midpoints of the elements of 77, we have

Fy(u) = [f(w)]" = f([u]") = (8- Vu]* = [8]" - [Vu]"),
which for second order reaction terms f(u) leads us to model covariances of the form
(4.8) Ep(v,w) = [vw]" — [v]"[w]",

for given functions v and w. The following observation from [6] shows that Ej (v, w) equals
the sum of the mean over the elements of 7" of the Haar coefficients, for scales finer than
and equal to h: if z € ;; then

(4.9) Bu(v,w)(z) =27 Y (vjw), + 07wl +v3wd),  VI: Q) C Q.

jzi
4.3. Scale extrapolation using self-similarity. We base our subgrid model on an
Ansatz of the form for each separate covariance

(4.10) En(v,w)(z) ~ C(z)h* @z €Q,
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with the coefficients C'(x) and pu(z) to be extrapolated. The Ansatz can be motivated from
(4.9) assuming some regularity of the Haar coefficients corresponding to fractality. The

Ansatz leads to the following extrapolation formula: Fy(iis) = 3 Ep (s, W), where

B ) = (1 — ( Eun (0, Wn) — [Bon (On, Wa)]*" | [Eon(On, 0n)]* — [En(On, wn)]*"
e [Ban (9, 0n)]** — (B (O, )] Ean (O, 0n) — [Bon (O, @0)] "
[Eon (On, wa)]*h — [Ep(Op, wp)]*

and 2-(+1 is the finest scale present in the exact solution.

?

1

4.4. Applications. In all examples we will have h = 27°. We construct two dimensional
fractal data as sums of local tensor products of the one dimensional fractal Weierstrass
function W, 5(x) =~ Z;-V:O 2779 sin(27 - 27rx), where we let ¥ = § = 0.1 in all examples.

4.4.1. Volterra-Lotka (VL). We consider a reaction dominated problem of the form

U1—6AU1:U1(1—U2), dQ_EAUZ'i‘,B'VUQ:’UQ(U]_—]_),

ou
a_n|3Q = Oa U(.T, O) = (W,i?(.’l)), 1)3

where ¢ = 107% which corresponds to the classical Volterra-Lotka system with small
diffusion and convection in one component. We have Fj,(u) = (—(ujug)? + uful, (ujus)® —
uPul), and with subgrid model we have that F (i) = (—Ep (i, Gig), Ep (i1, Giz)), with
n = 4 (reference scale minus computational scale). For these problems we use a central
difference-Crank-Nicolson scheme for the midpoints of the elements, where we regard these
midpoint values to represent a piecewise constant approximation over the elements, and
the reference scale is 27 in the computation of the error. The solutions are oscillating and
both u; and uy are fractal for ¢ > 0, even though wuy(z,0) = 1. We want to approximate
u®, and the errors ||u® — U|| are plotted in Fig.1-2, where U is the error without model
(’*’), without model but computed on the finer scale A/2 and then projected onto the scale
h (°0’), with the subgrid model (+’), and with a simplified model F} (@) = Fip(in, @n)
(’triangles’). We first let 8 = 0 and compute to 7' = 2, then we let § be a rotational mixing
of order h: B = h (sin(mx;) cos(mxs), — cos(mz) sin(mzy)) and here we only compute to
T =1, since after 7' = 1 the subgrid scales are dominated by the convective streaks due
to 5. We study the error for each component individually, and for 8 = 0 we find that the
solution with the subgrid model is the best for both components, even though the modeling
errors are smaller in us since ug(z,0) is constant. For 8 # 0 the solution with the subgrid
model is best for u; but, because of the convection, subgrid scales in u, do not develop and
the solutions with subgrid models does not differ significantly from the solution without
subgrid model. The solution on h/2 is better since the numerical error is then reduced.

4.4.2. Fractal convection (FC). We also consider a convection dominated problem of the
form

0
(4.11) G+ 5 -Vu—eAu=1, u|y=0z=0=0, 8_Z|z1:1’z2:1 =0, wu(z,0)=0,
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for g = (W25, W?25) and € = 10~°, which we solve by a Streamline Diffusion ¢G(1)cG(1)
method [1] with bilinear elements. In the computation of the error the reference scale is
278, The solution is in this case relatively smooth since the fractal § is only acting on the
derivatives of the solution. We have Fj,(u) = 8" - (Vu)? — (8- Vu)", and the error in the
solution with the subgrid model is smaller than in the solution without subgrid model.
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