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SE–412 96 Göteborg Sweden
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AN UNFITTED FINITE ELEMENT METHOD FOR ELLIPTIC
INTERFACE PROBLEMS

ANITA HANSBO AND PETER HANSBO

Abstract. In this paper we propose a method for the finite element solution of elliptic
interface problem, using an approach due to Nitsche. The method allows for discontinu-
ities, internal to the elements, in the approximation across the interface. We show that
optimal order of convergence holds without restrictions on the location of the interface
relative to the mesh. Further, we derive a posteriori error estimates for the purpose of
controlling functionals of the error and present some numerical examples.

1. Introduction

As a model elliptic interface problem, we consider a stationary heat conduction problem
in two dimensions with a conduction coefficient which is discontinuous across a smooth
internal interface. When solving such problems numerically using the standard finite el-
ement method, one usually takes the discontinuity of the data into account by enforcing
mesh lines along the interface. If this is not done, suboptimal convergence behaviour will
occur, cf. [1, 8].

As a motivation for this work, we also have in mind more complicated, time dependent
or non-linear, problems where the interface moves with time or during iteration. In that
case, it may be advantageous to use the same mesh on the domain for different, nearby,
locations of the interface, since repeated remeshing of the domain to obtain fitted meshes
is very costly. We are thus led to study unfitted finite element methods where the interface
is allowed to cross the elements.

In this paper, we propose an unfitted finite element method, based on a variant of
Nitsche’s method [9], allowing for discontinuities, internal to the elements, in the approxi-
mation across the interface. This method is of optimal order; in particular we show second
order convergence in L2 for appropriately modified piecewise linears on a non-degenerate
triangulation. We also consider a posteriori error estimates for functionals of the solution,
in the spirit of Becker & Rannacher [3], and use these estimates as a basis for adaptively
refining the mesh.
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Fitted mesh FE methods for elliptic problems with discontinuous coefficients and ho-
mogeneous interface conditions are analysed in Babuška [1], Feistauer & Sobot́ıková [6],
and Žeńı̌sek [10]. In Bramble & King [4], Chen & Zhou [5], and Barrett and Elliott [2],
problems with inhomogeneous interface conditions are considered.

As for unfitted mesh methods for interface problems, Barrett and Elliott [2] show first
order of convergence in energy-norm and interior second order L2 error estimates for a
piecewise linear method based on boundary penalty and numerical integration over ap-
proximate domains. Li [7] and MacKinnon & Carey [8] take on an alternative approach
and use basis functions that fulfill homogeneous interface conditions. Li shows second
order convergence in maximum norm for a one-dimensional case, and in [8], bilinear basis
functions fulfilling homogeneous interface conditions in two dimensions are constructed,
and numerical examples of optimal order of convergence are presented.

An outline of the paper is as follows. In Section 2 we formulate the continuous problem
that we aim to solve, in Section 3 we define the numerical method used for the approxima-
tion, and in Section 4 we prove the approximation properties of the corresponding finite
element spaces. In Section 5 we prove optimal a priori error estimates and in Section 6
we give corresponding a posteriori error estimates that serve as a basis for adaptive mesh
refinement. Finally, in Section 7, we give some implementation details and numerical
examples.

2. Problem formulation and preliminaries

Let Ω be a bounded domain in R
2, with convex polygonal boundary ∂Ω and an internal

smooth boundary Γ dividing Ω into two open sets Ω1 and Ω2. For any sufficiently regular
function u in Ω1 ∪Ω2 we define the jump of u on Γ by [u] := u1|Γ −u2|Γ, where ui = u|Ωi

is
the restriction of u to Ωi. Conversely, for ui defined in Ωi we identify the pair {u1, u2} with
the function u which equals ui on Ωi. We consider the following stationary heat conduction
problem with a discontinuity in the conductivity across Γ and an inhomogeneous conormal
derivative condition on the interface:

−∇ · (α∇u) = f in Ω1 ∪ Ω2,
u = 0 on ∂Ω,

[u] = 0 on Γ,
[α∇nu] = g on Γ.

(2.1)

Here n is the outward pointing unit normal to Ω1 and ∇nv = n · ∇v.
For a bounded open connected domain D we shall use standard Sobolev spaces Hr(D)

with norm || · ||r,D and spaces Hr
0(D) with zero trace on ∂D. The inner products in

H0(D) = L2(D) is denoted (·, ·)D. For a bounded open set G = ∪2
i=1Di, where Di are

open mutually disjoint components of G, we let Hk(D1 ∪D2) denote the Sobolev space of
functions in G such that u|Di

∈ Hk(Di) with norm

‖ · ‖k,D1∪D2 =

(
2∑

i=1

‖ · ‖2
k,Di

)1/2

.
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We assume that f ∈ L2(Ω), g ∈ H1/2(Γ) and, for simplicity, that α is constant in Ωi

with αi > 0. The weak form of (2.1) is as follows: find u ∈ H1
0 (Ω) such that

a(u, v) = (f, v)Ω + (g, v)Γ, ∀v ∈ H1
0 (Ω).(2.2)

Here

a(u, v) = (α∇u,∇v)Ω

is the bilinear form corresponding to the elliptic operator.
It is known that this problem has a unique solution which is in H2 on each subdomain.

The following a priori estimate is valid, see Chen & Zhou [5]:

‖u‖1,Ω + ‖u‖2,Ω1∪Ω2 ≤ C(‖f‖0,Ω + ‖g‖1/2,Γ).(2.3)

Here and below, C and c denote generic constants.

3. The approximation

In a standard finite element method, the jump in normal derivative resulting from the
continuity of the flux, when α1 �= α2, can be taken into account by letting Γ coincide
with mesh lines. We will take an alternative approach and solve (2.1) approximately using
piecewise linear finite elements on a family of conforming triangulations Th of Ω which are
independent of the location of the interface Γ. Instead, we shall allow the approximation
to be discontinuous inside elements which intersect the interface.

We will use the following notation for mesh related quantities. Let hK be the diameter
of K and h = maxK∈Th

hK . For any element K, let Ki = K ∩ Ωi denote the part of K in
Ωi. By Gh := {K ∈ Th : K ∩ Γ �= ∅} we denote the set of elements that are intersected by
the interface. For an element K ∈ Gh, let ΓK := Γ ∩K be the part of Γ in K.

We make the following assumptions regarding the mesh and the interface.

A1: We assume that the triangulation is non-degenerate, i.e.,

hK/ρK ≤ C ∀K ∈ Th

where hK is the diameter of K and ρK is the diameter of the largest ball contained
in K.

A2: We assume that Γ intersects each element boundary ∂K exactly twice, and each
(open) edge at most once.

A3: Let ΓK,h be the straight line segment connecting the points of intersection between Γ
and ∂K. We assume that ΓK is a function of length on ΓK,h; in local coordinates

ΓK,h = {(ξ, η) : 0 < ξ < |ΓK,h|, η = 0}
and

ΓK = {(ξ, η) : 0 < ξ < |ΓK,h|, η = δ(ξ)}.
Since the curvature of Γ is bounded, the assumptions A2 and A3 are always fulfilled on
sufficiently fine meshes. Thus the assumptions are natural and not very restrictive; they
ensure that the curvature of the interface is well resolved by the mesh.
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We shall seek a discrete solution U = (U1, U2) in the space V h = V h
1 × V h

2 , where

V h
i = {φi ∈ H1(Ωi) : φi|Ki

is linear, φi|∂Ω = 0}.
Note that functions in Vh may be discontinuous across Γ. Since Γ may intersect two edges
of a triangle arbitrarily, the size of the parts Ki are not fully characterized by the meshsize
parameters. To define the method, we will therefore use the function κ = (κ1, κ2) defined
on each element by

κi|K =
|Ki|
|K| ,

where |K| := meas K. Clearly, 0 ≤ κi ≤ 1 and κ1 + κ2 = 1 so that

{φ} := (κ1φ1 + κ2φ2) |Γ
is a convex combination of φ = (φ1, φ2) at Γ.

The method is defined by the variational problem of finding U ∈ V h such that

ah(U, φ) = L(φ), ∀φ ∈ V h,(3.1)

where

ah(U, φ) := (αi∇Ui ,∇φi )Ω1∪Ω2 − ( [U ] , {α∇nφ} )Γ

−( {α∇nU} , [φ] )Γ + (λ[U ] , [φ] )Γ

with λ sufficiently large (see Lemma 5 below), and

L(φ) := (f, φ)Ω + (κ2g, φ1)Γ + (κ1g, φ2)Γ.

In this method, the conditions at Γ are satisfied weakly by means of a variant of Nitsche’s
method.

With these definitions, we have the following consistency relation.

Lemma 1. The discrete problem (3.1) is consistent in the sense that, for u solving (2.1),

ah(u, φ) = L(φ), ∀φ ∈ V h.

PROOF. We first note that, for u solving (2.1),

g − {α∇nu} = (κ1 + κ2) g − {α∇nu} − κ1(g − [α∇nu])

= κ2g − κ1α1∇nu1 − κ2α2∇nu2 + κ1α1∇nu1 − κ1α2∇nu2

= κ2g − α2∇nu2,

and, similarly,

g − {α∇nu} = (κ1 + κ2) g − {α∇nu} + κ2(g − [α∇nu])

= κ1g − κ1α1∇nu1 − κ2α2∇nu2 − κ2α1∇nu1 + κ2α2∇nu2

= (1 + κ2)g − α1∇nu1,

so that

{α∇nu} = α1∇nu1 − κ2g = α2∇nu2 + κ1g.(3.2)
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Since [u] = 0, we may use (3.2) and Green’s formula to obtain

ah(u, φ) = (α∇u ,∇φ )Ω1∪Ω2 − ( {α∇nu} , φ1 − φ2 )Γ

= (α∇u,∇φ)Ω1∪Ω2 − (α1∇nu1 − κ2g, φ1)Γ + (α2∇nu2 + κ1g , φ2 )Γ

= −(∇ · (α∇u) , φ )Ω1∪Ω2 + (κ2g, φ1)Γ + (κ1g , φ2)Γ

= (f, φ)Ω + (κ2g, φ1)Γ + (κ1g, φ2)Γ = L(φ),

which is the statement of the Lemma.
An immediate consequence of Lemma 1 is the condition

ah(u− U, φ) = 0, ∀φ ∈ Vh,(3.3)

which we will refer to as Galerkin orthogonality.
A FE basis for Vh is easily obtained from a standard FE basis on the mesh by the

introduction of new basis functions for the elements that intersect Γ. For piecewise linears,
the standard interior nodal basis functions in Ω may be partitioned into the sets {ψj

i }Ni
j=1

of basis functions with support in Ωi, and the set {ψk
Γ}M

k=1 of basis functions which are

non-zero on Γ. For each of the latter, let ψj
Γ,i := ψj

Γ|Ωi
. Then {ψj

i }Ni
j=1 ∪ {ψk

Γ,i}M
k=1 is a

basis for V h
i . As a consequence, there are six non-zero basis functions on each element

that intersects Γ. Further implementation details are considered in Section 7.

4. Approximation property of Vh

Recall that Gh denotes the set of elements that are intersected by the interface. We will
use the following mesh dependent norms:

‖v‖2
1/2,h,Γ :=

∑
K∈Gh

h−1
K ‖v‖2

0,ΓK
,

‖v‖2
−1/2,h,Γ :=

∑
K∈Gh

hK‖v‖2
0,ΓK

,

and

|‖v‖|2 := ‖∇v‖2
0,Ω1∪Ω2

+ ‖{∇nv}‖2
−1/2,h,Γ + ‖[v]‖2

1/2,h,Γ.

We note for future reference that

(u, v)Γ ≤ ‖v‖1/2,h,Γ‖v‖−1/2,h,Γ.(4.1)

To show that functions in Vh approximates functions v ∈ H1
0 (Ω) ∩ H2(Ω1 ∪ Ω2) to the

order h in the norm |‖ · ‖|, we construct an interpolant of v by nodal interpolants of H2-
extensions of v1 and v2 as follows. Choose extension operators Ei : H2(Ωi) → H2(Ω) such
that (Eiw)|Ωi

= w and

‖Eiw‖s,Ω ≤ C‖w‖s,Ωi
∀w ∈ Hs(Ωi), s = 0, 1, 2.(4.2)

Let Ih be the standard nodal interpolation operator and define

I∗hv := (I∗h,1v1, I
∗
h,2v2) where I∗h,ivi := (IhEivi)|Ωi

.(4.3)

The following theorem is valid.
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Theorem 2. Let I∗h be an interpolation operator defined as in (4.3). Then

|‖v − I∗hv‖| ≤ Ch‖v‖2,Ω1∪Ω2 , ∀v ∈ H1
0 (Ω) ∩H2(Ω1 ∪ Ω2).

In the proof of this result, we need to estimate the interpolation error at the interface.
To that end, we shall use the following variant of a well known trace inequality on a
reference element. The crucial fact is that the constant in this inequality is independent
of the location of the interface relative to the mesh.

Lemma 3. Map a triangle K ∈ Gh onto the unit reference triangle K̃ by an affine map
and denote by Γ̃K̃ the corresponding image of ΓK. Under assumptions A1–A3 of Section
3 there exist a constant C, depending on Γ but independent of the mesh, such that

‖w‖2
0,Γ̃K̃

≤ C‖w‖0,K̃‖w‖1,K̃ , ∀w ∈ H1(K̃).(4.4)

PROOF. We start by showing that

‖w‖2
0,Γ̃K̃

≤ C(‖w‖2
0,Γ̃K̃,h

+ ‖w‖0,K̃‖w‖1,K̃)(4.5)

Recall that ΓK,h is the straight line connecting the points of intersection between Γ and
the element K and

ΓK = {(ξ, η) : 0 < ξ < |ΓK,h|, η = δ(ξ)}.
Assume first that δ(ξ) > 0. Since the curvature of the interface is bounded, |δ′(ξ)| ≤
C|ΓK,h|. As the mesh is non-degenerate this implies that on the reference element we may
write, using again (ξ, η) as local coordinates,

Γ̃K̃ = {(ξ, η) : 0 < ξ < |Γ̃K̃,h|, η = δ̃(ξ)},
where |δ̃′(ξ)| ≤ C|ΓK,h|/hK ≤ C. We now let D denote the domain bounded by Γ̃K̃ and

Γ̃K̃,h and note that by the divergence theorem,

2

∫
D

w
∂w

∂η
dξdη =

∫
D

div (0, w2) dξdη

= −
∫

Γ̃K̃,h

w2 dξ +

∫
Γ̃K̃

w2(1 + (δ̃′)2)−1/2 ds.
(4.6)

As δ̃′ is bounded,

‖w‖2
0,Γ̃K̃

≤ C

∫
Γ̃K̃

w2(1 + (δ̃′)2)−1/2 ds,

whence (4.5) follows from (4.6) using Cauchy-Schwarz’ inequality.
In a general case where δ may switch sign, the same argument may be applied for each

part between the intersections of Γ̃K̃ and Γ̃K̃,h.
It remains to show that the first term on the right in (4.5) is appropriately bounded. To

that end we shall map the triangular part K̃t and the quadrilateral part K̃q of K̃ onto new

reference domains. We may assume that Γ̃K̃,h intersects K̃ in (α, 0) and in (0, β), and, by
symmetry, that 0 ≤ α ≤ β ≤ 1.
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For α = β = 1, the desired trace inequality

‖w‖2
0,Γ̃K̃,h

≤ C‖w‖0,K̃‖w‖1,K̃(4.7)

is valid. For 1/2 < α ≤ β < 1, we may map the triangular part K̃t onto the unit reference
triangle by a linear map. By the bound from below on α and β, this map is bounded,
uniformly in α and β, with uniformly bounded inverse, and hence (4.7) is valid also in
this case. For 1/2 < α < β = 1 the same argument holds, choosing this time K̃t as the
triangular part which contains the origin.

Assume now that α ≤ 1/2. Let

(x̂, ŷ) = M(x̃, ỹ) = (ỹ, (1 − α)−1(x̃+ ỹ − 1)).

Then the image K̂q = M(K̃q) has its corners in (0, 0), (1, 0), (0, 1), P̂ = (β, (1−β)/(1−α),
and there holds

‖w‖2
0,Γ̂K̂,h

≤ C(P̂ )‖w‖0,K̂q
‖w‖1,K̂q

(4.8)

An additional argument is needed to show uniformity in P̂ . Since 0 ≤ α ≤ 1/2 and

α ≤ β ≤ 1, P̂ varies in the domain

D̂ := {0 ≤ x̂ ≤ 1/2, 1 − x̂ ≤ ŷ ≤ 1} ∪ {1/2 ≤ x̂ ≤ 1, 1 − x̂ ≤ ŷ ≤ 2(1 − x̂)}

as α and β vary. Let

F (P̂ , ŵ) =
‖w‖2

0,Γ̂K̂,h

‖w‖0,K̂q
‖w‖1,K̂q

.

We will show that F (P̂ ) = supw∈H1(K̂q) F (P̂ , ŵ) is uniformly bounded. For points R̂ and

Ŝ in D̂, assuming without restriction that F (R̂) ≥ F (Ŝ), we have for any w that

F (R̂) − F (Ŝ) = supv̂ F (R̂, v̂) − supv̂ F (Ŝ, v̂)

≤ | supv̂ F (R̂, v̂) − F (R̂, ŵ)| + |F (R̂, ŵ) − F (Ŝ, ŵ)| = I + II.

Given ε > 0 we may choose ŵ such that I ≤ ε/2. Note that F (R̂, v̂) is continuous for fixed

v̂ since the only dependence of R̂ lies in the domains of integration. We may thus take
|R̂ − Ŝ| small enough so that II ≤ ε/2. Hence F (P̂ ) is continuous on the compact set D̂,

and thus (4.8) holds uniformly in P̂ . Finally, since M is bounded, uniformly in α and β,
with uniformly bounded inverse, (4.7) follows and the proof is complete.

PROOF of Theorem 2. Recall that Ki = K ∩ Ωi and let v∗i = Eivi denote the
extension of vi to Ω. By a standard interpolation estimate we obtain

‖∇(vi − I∗h,ivi)‖0,Ki
= ‖∇(v∗i − Ihv∗i )‖0,Ki

≤ ‖∇(v∗i − Ihv∗i )‖0,K

≤ ChK‖v∗i ‖2,K .
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Summing over all triangles that intersect Ωi, it follows by (4.2) that

‖∇(vi − I∗h,ivi)‖2
0,Ωi

≤ Ch2
∑

K∩Ωi �=∅
‖v∗i ‖2

2,K ≤ Ch2‖vi‖2
2,Ωi
.(4.9)

Next we consider the jumps on the interface. Since the mesh is non-degenerate, it follows
from Lemma 3, scaled by the map from the reference triangle, that

h−1
K ‖w‖2

0,ΓK
≤ C

(
h−2

K ‖w‖2
0,K + ‖w‖2

1,K

)
, ∀w ∈ H1(K).

Hence it follows, using again a standard interpolation estimate, that

h−1
K ‖[v − I∗hv]‖2

0,ΓK
≤ Ch−1

K

∑
i ‖vi − I∗h,ivi‖2

0,ΓK
= Ch−1

K

∑
i ‖v∗i − Ihv∗i ‖2

0,ΓK

≤ ∑
i

(
h−2

K ‖v∗i − Ihv∗i ‖2
0,K + ‖v∗i − Ihv∗i ‖2

1,K

)
≤ h2

K

∑
i ‖v∗i ‖2

2,K

Summing the contributions from K ∈ Gh, we get from (4.2) that

‖[v − I∗hv]‖1/2,h,Γ ≤ Ch
2∑

i=1

‖v∗i ‖2,∪K∈Gh
≤ Ch‖v‖2,Ω1∪Ω2 ,(4.10)

Finally, Lemma 3 applied to ∇nw and scaling gives

hK‖∇nw‖2
0,ΓK

≤ C
(
‖w‖2

1,K + h2
K ‖w‖2

2,K

)
, ∀w ∈ H2(K),

whence similar arguments as above yield

‖∇n(vi − I∗h,ivi)‖−1/2,h,Γ ≤ Ch‖vi‖2,Ωi
.(4.11)

Since κi < 1, the theorem now follows from (4.9), (4.10) and (4.11).

5. A priori error estimates

We will first show coercivity of the discrete form, for which purpose we will need the
following inverse inequality.

Lemma 4. For φ ∈ Vh, the following inverse inequality holds:

‖{∇nφ}‖2
−1/2,h,Γ ≤ CI‖∇φ‖2

0,Ω1∪Ω2
.

PROOF. Since φ ∈ Vh is linear on Ki, we have

hK‖κi∇nφi‖2
0,ΓK

≤ hKκ
2
i |ΓK | |∇φi|2 = hKκ

2
i

|ΓK |
|Ki|

‖∇φi‖2
0,Ki

= hK
|ΓK | |Ki|
|K|2 ‖∇φi‖2

0,Ki
≤ C‖∇φi‖2

0,Ki
.

In the last step above we have used that |ΓK | ≤ hK , |Ki| ≤ h2
K , and, since the mesh is

nondegenerate, |K| ≥ ch2
K . The result follows by summation over the elements.
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Lemma 5. The discrete form ah(·, ·) is coercive on V h, i.e.,

ah(v, v) ≥ C|‖v‖|2 ∀v ∈ V h,

provided λ is chosen sufficiently large. It is also continuous, i.e.,

ah(u, v) ≤ C|‖u‖| |‖v‖| ∀u ∈ V,∀v ∈ V.
PROOF. Continuity of the discrete form follows directly from the definitions. To prove

coercivity, we use (4.1) to find that for any ε > 0

ah(v, v) = ‖α1/2∇v‖2
0,Ω1∪Ω2

− 2 ([v], {α∇nv})Γ + ‖λ1/2 [v]‖2
0,Γ

≥ ‖α1/2∇v‖2
0,Ω1∪Ω2

− 2‖{α∇nv}‖−1/2,h,Γ‖[v]‖1/2,h,Γ + ‖λ1/2 [v]‖2
0,Γ

≥ ‖α1/2∇v‖2
0,Ω1∪Ω2

− 1

ε
‖{α∇nv}‖2

−1/2,h,Γ +
∑

K∈Gh

(
λ− ε

hK

)
‖[v]‖2

0,ΓK
.

It then follows from Lemma 4 that

ah(v, v) ≥ 1

2
‖α1/2∇v‖2

0,Ω1∪Ω2
+

(
1

2
− 2CI maxΩ α

ε

)
‖α1/2∇v‖2

0,Ω1∪Ω2

+
1

ε
‖{α∇nv}‖2

−1/2,h,Γ +
∑

K∈Gh

(
λ− ε

hK

)
‖[v]‖2

0,ΓK
.

Taking ε = 4CI maxΩ α, coercivity follows if λ|K = γh−1
K where γ > 4CI maxΩ α.

Theorem 6. Under assumptions A1–A3 of Section 3, and for U solving (3.1) and u solving
(2.1), the following a priori error estimates hold:

|‖u− U‖| ≤ Ch‖u‖2,Ω1∪Ω2(5.1)

and

‖u− U‖0,Ω ≤ Ch2‖u‖2,Ω1∪Ω2(5.2)

PROOF. For any v ∈ V h, |‖u− U‖| ≤ |‖u− v‖|+ |‖v − U‖|. Further, by Lemma 5 and
orthogonality, we have that

|‖U − v‖|2 ≤ Cah(U − v, U − v) = Cah(u− v, U − v)
≤ C|‖u− v‖| |‖U − v‖|,

and it follows that

|‖u− U‖| ≤ C|‖u− v‖| ∀v ∈ V h.

Taking v = I∗hu and invoking the interpolation result of Theorem 2, (5.1) follows.
For (5.2) we use a duality argument. Define z = (z1, z2) by

−∇ · (αi∇zi) = ei in Ωi, i = 1, 2,
zi = 0 on ∂Ω ∩ ∂Ωi,
[z] = 0 on Γ,

[α∇nz] = 0 on Γ.

(5.3)
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where ei = ui − Ui. By Green’s formula and (3.2) with u = z, g = 0, we have that

‖e‖2
0,Ω = − (∇ · (α∇z), e)Ω1∪Ω2

= (α∇z,∇e)Ω − (α1∇nz1, e1) + (α2∇nz2, e2)

= (α∇z,∇e)Ω − ({α∇nz}, [e])Γ

= ah(z, e)

since [z] = 0. Thus, using the symmetry of ah(·, ·) and applying the orthogonality relation
(3.3) and Theorem 2, we find that

‖e‖2
0,Ω = ah(z − Ihz, e) ≤ C|‖z − Ihz‖| |‖e‖| ≤ Ch‖z‖2,Ω1∪Ω2 |‖e‖|.(5.4)

Finally, by the elliptic regularity result (2.3), we have ‖z‖2,Ω1∪Ω2 ≤ C‖e‖0,Ω, whence the
estimate (5.2) follows from (5.4) and (5.1).

6. A posteriori error estimates

In this Section, we prove a posteriori error estimates and formulate adaptive algorithms
for the finite element method (3.1), following Becker & Rannacher [3].

We will consider control of linear functionals j(e) of the error, and define the local and
global estimators as

EK(U) =
(
h4

K‖f + ∇ · (α∇U)‖2
0,K1∪K2

+ h3
K‖[αi∇Ui]‖2

0,∂K +(6.1)

+h3
K‖g − [α∇U ]‖2

0,ΓK
+ hK‖[U ]‖2

0,ΓK

)1/2

and

E(U) =

( ∑
K∈Th

EK(U)2

)1/2

.(6.2)

We then have the following a posteriori error estimate.

Theorem 7. For a continuous linear functional j(·) on L2(Ω), let J ∈ L2(Ω) be defined
by Riesz’ representation theorem, i.e., j(·) := (J, ·)Ω. Then there is a positive constant C
such that

j(e) ≤ CE(U)‖J‖0,Ω.(6.3)

PROOF. Let z be the solution to the problem

−∇ · (αi∇zi) = J in Ωi, i = 1, 2,
zi = 0 on ∂Ω ∩ ∂Ωi,
[z] = 0 on Γ,

[α∇nz] = 0 on Γ.

(6.4)

We first note that

(e, J)Ω = (α∇e,∇z)Ω1∪Ω2 − (α1∇nz1, e1)Γ + (α2∇nz2, e2)Γ .
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Now, since [u] = 0, we see that, by (3.2),

− (α1∇nz1, e1)Γ + (α2∇nz2, e1)Γ = (U1, α1∇nz1)Γ − (U2, α2∇nz2)Γ

= ([U ], {α∇nz}).

Thus,

j(e) = (e, J)Ω = (α∇e,∇z)Ω1∪Ω2 + ([U ], {α∇nz}).(6.5)

Now, take Z ∈ Vh. From Galerkin orthogonality we then have ah(e, Z) = 0, and since
[z] = 0, [u] = 0 on the interface, we get

0 = ah(e, Z) = (α∇e ,∇Z )Ω1∪Ω2 − ( [e] , {α∇nZ} )Γ(6.6)

−( {α∇ne}, [Z] )Γ + (λ[e] , [Z] )Γ

= (α∇e ,∇Z )Ω1∪Ω2 + ( [U ] , {α∇nZ} )Γ

+( {α∇ne} , [z − Z] )Γ + (λ[U ] , [z − Z] )Γ.

Denote by nK the outward pointing unit normal to K. Subtracting (6.6) from (6.5) and
integrating by parts we get

j(e) = (α∇e ,∇(z − Z) )Ω1∪Ω2 + ( [U ] , {α∇n(z − Z)} )Γ

−( {α∇ne} , [z − Z] )Γ − (λ[U ] , [z − Z] )Γ

=
∑

K∈Th

( f −∇ · (α∇U) , z − Z )K1∪K2 + ( [U ] , {α∇n(z − Z)} )Γ

−( {α∇ne} , [z − Z] )Γ − (λ[U ] , [z − Z] )Γ

−1

2

∑
K∈Th

( [αnK · ∇U ] , z − Z)∂K\Γ

+(α1∇ne1 , z1 − Z1)Γ − (α2∇ne2 , z2 − Z2)Γ.

We now note that

(α1n · ∇e1 , z1 − Z1)Γ − (α2n · ∇e2 , z2 − Z2)Γ − ( {α∇ne} , [z − Z] )Γ

= (α1∇ne1 , z1 − Z1)Γ − (α2∇ne2 , z2 − Z2)Γ − (κ1α1∇ne1 + κ2α2∇ne2, [z − Z])Γ

= (κ2[α∇ne] , z1 − Z1 )Γ + (κ1[α∇ne] , z2 − Z2 )Γ

= (κ2(g − [α∇nU ]) , z1 − Z1 )Γ + (κ1(g − [α∇nU ]) , z2 − Z2 )Γ

=
∑2

j=1( (1 − κj)(g − [α∇nU ]) , zj − Zj )Γ,
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and thus we find that

j(e) =
∑

K∈Th

(
( f −∇ · (α∇U) , z − Z )K1∪K2 −

1

2
( [αnK · ∇U ] , z − Z)∂K\Γ

)

+
∑

K∈Gh

( [U ] , {α∇n(z − Z)} − λ[z − Z] )ΓK
(6.7)

+
∑

K∈Gh

2∑
j=1

( (1 − κj)(g − [α∇nU ]) , zj − Zj )ΓK
.

Further, by Cauchy–Schwarz’ inequality, and choosing λ|K = γh−1
K with γ > 4CI maxΩ αi,

j(e) ≤
∑

K∈Th

2∑
j=1

ρK,jωK,j +
∑

K∈Gh

2∑
j=1

ρS,jωS,j(6.8)

where

ρK,1 = h2
K‖f + ∇ · (α∇U)‖0,K1∪K2 , ωK,1 = h−2

K ‖z − Z‖0,K ,

ρK,2 =
1

2
h

3/2
K ‖[αnK · ∇U ]‖0,∂K\Γ, ωK,2 = h

−3/2
K ‖z − Z‖0,∂K\Γ,

ρS,1 = h
1/2
K ‖[U ]‖0,ΓK

, ωS,1 = h
−1/2
K ‖{α∇n(z − Z)} − γ[z − Z]/hK‖0,ΓK

,

and

ρS,2 = h
3/2
K ‖g − [α∇nU ]‖0,ΓK

, ωS,2 = h
−3/2
K max

j
‖zj − Zj‖0,ΓK

.

Note that the right hand side of (6.8) is a weighted sum of local residuals ρK,i, ρS,i. To
conclude the proof we bound the weights in (6.8) by choosing Z = I∗hz. It then follows by
similar arguments as in the proof of Theorem 2 that

∑
K∈Th

2∑
j=1

ω2
K,j +

∑
K∈Gh

2∑
j=1

ω2
S,j ≤ C‖z‖2

2,Ω1∪Ω2
.

Applying finally the regularity estimate

‖z‖2,Ω1∪Ω2 ≤ C‖J‖0,Ω,

the theorem follows.

7. Implementation and numerical examples

In order to implement the discontinuous approximation, we first determined the set Gh

of triangles intersected by Γ. For eachK ∈ Gh, we assigned two identical copiesK ′ andK ′′.
We assumed that K, with nodes {i, j, k} was split by Γ into a triangle and a quadrilateral;
the case of a split into two triangles was handled by creating a quadrilateral with one side
of zero length. We assigned to K ′ the triangular part and to K ′′ the quadrilateral part.
Thus, on K ′′ we created a new node i′ on the far side of Γ, and on K ′ we created two new
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nodes, k′ and j′, on the other side of Γ, see Figure 1. To ensure continuity across the edges
of K ′ and K ′′ (away from Γ), we also checked if the new nodes had already been created
by the same process on the neighboring elements. After having completed this process, we
thus had two independent meshes, one completely covering Ω1, and the other completely
covering Ω2. The elements crossed by Γ had been doubled, but coincided geometrically.

To numerically evaluate ah(·, ·) and L(·), we used the following strategy. The triangles
that were not crossed by Γ were handled in the usual way. On the elements crossed by
Γ, we used centroid quadrature to evaluate all terms, both on the quadrilateral side and
on the triangular side. On the interface, we used two-point Gaussian quadrature. All
contributions were then assembled using the old and new nodes defined by the splitting
process. We emphasize that the new nodes i′, j′, and k′ are to be considered convenient
support points for the definition of a continuous, piecewise linear, approximation rather
than nodes in the standard finite element sense. The solution at these points is computed
but is outside the domain of interest.

7.1. Example 1. We considered solutions to the ordinary differential equation

−
∑

i

d

dx

(
αi
dui

dx

)
= 1; [u(1/2)] = 0;α1

du1

dx
(1/2) = α2

du2

dx
(1/2).

The domain is (0, 1), with an interface at x = 1/2. While this is a one-dimensional problem,
we solved it numerically in 2D on the domain (0, 1)× (0, 1), with zero Neumann boundary
conditions at y = 0 and y = 1. The equation has a closed-form solution, given by

u1(x) =
(3α1 + α2) x

4α2
1 + 4α1 α2

− x2

2α1

, u2(x) =
α2 − α1 + (3α1 + α2) x

4α2
2 + 4α1 α2

− x2

2α2

.

We chose α1 = 1/2, α2 = 3 and performed a numerical convergence test for different ap-
proaches: a standard unfitted FE method, a fitted standard FE method, and the proposed
unfitted method. The convergence results are given in Fig. 2, and show the suboptimal
behaviour of a standard unfitted method, and the small difference in computational error
between the proposed method and a fitted method. We remark that an exact correspon-
dence can not be obtained, since the meshes will not be exactly the same for the fitted and
unfitted methods. In Fig. 3 elevations of the solutions obtained with the different unfitted
methods are shown on the final mesh consisting of 2048 elements.

7.2. Example 2. The second example was solved on the domain (0, 1)× (0, 1), with zero
Dirichlet boundary conditions. Centred in the domain is an ellipsoidal inclusion with
conduction parameter αmin = 1; outside of the ellipse we set αmax = 6. In Fig. 4 we show
the first mesh and associated solution. We used an adaptive algorithm corresponding
to control of the L2(Ω)–error, but made no attempt to tune the interpolation constants
or solve a dual problem. Thus, the example only gives an indication of how the adapted
meshes appear in such a case. For each successive mesh we refined the third of the elements
containing the highest element contribution to the total error as defined by (6.8). In Fig. 5
we give the last adapted mesh in a sequence, together with an elevation of the corresponding
solution.
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8. Concluding remarks

In this paper, we have introduced and analysed a new method for elliptic interface prob-
lems on unfitted meshes, i.e., meshes which are independent of the location of the interface.
Unlike the standard unfitted finite element method, the proposed approach leads to opti-
mal convergence rates. This have been shown in the model situation of piecewise linear
approximations in two dimensions. In future work, we will adress the general situation
of higher order polynomial approximations in three dimensions. Other extensions under
consideration include Stefan problems and fictitious domain type simulations.
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Figure 1. The split of a triangle used in the implementation of the proposed method
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Figure 3. Elevation of the discontinuous approximation obtained from
the proposed method (left) and the continuous standard FE approximation
(right) on the final mesh

Figure 4. First mesh and elevation of the approximate solution

 

 

Figure 5. Last adaptively refined mesh and elevation of the approximate solution
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