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A P 2-CONTINUOUS, P 1-DISCONTINUOUS FINITE ELEMENT

METHOD FOR THE MINDLIN-REISSNER PLATE MODEL

PETER HANSBO AND MATS G. LARSON

Abstract. We present a discontinuous finite element method for the Mindlin-Reissner
plate model based on continuous piecewise second degree polynomials for the transverse
displacements and discontinuous piecewise linear approximations for the rotations. We
prove convergence, uniformly in the thickness of the plate, and thus show that locking is
avoided. Finally, we present some numerical results.

1. Introduction

The differential equations describing the Mindlin-Reissner plate model can be derived
from minimization of the sum of the bending energy, the shear energy, and the potential
of the surface load,

(1.1) F(u, θ) :=
1

2
a(θ, θ) +

κ

2 t2

∫

Ω

|∇u− θ|2 dΩ−

∫

Ω

g u dΩ.

Here u is the transverse displacement, θ is the rotation of the median surface, t is the
thickness, t3 g is the transverse surface load, and the bending energy a(·, ·) is defined by

a(θ, ϑ) :=

∫

Ω

(

2µε(θ) : ε(ϑ) + λ∇ · θ∇ · ϑ
)

dΩ,

where ε is the strain tensor. The material constants are given by the relations κ =
E k/(2(1 + ν)), µ := E/(6(1 + ν)), and λ := νE/(12(1 − ν2)), where E and ν are the
Young’s modulus and Poisson’s ratio, respectively, and k ≈ 5/6 is a shear correction fac-
tor. We shall alternatively write the bending energy product as

a(θ, ϑ) :=

∫

Ω

σ(θ) : ε(ϑ) dΩ,

where σ(θ) := 2µε(θ) + λ∇ · θ 1 is the stress tensor.
The difficulty with this model, from a numerical point of view, is the matching of the

approximating spaces for θ and u. As t → 0, the difference ∇u − θ must tend to zero,
which, for naive choices of spaces, leads to a deterioration of the approximation known as
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Göteborg, Sweden, email : hansbo@am.chalmers.se
Mats G. Larson, Department of Mathematics, Chalmers University of Technology, S–412 96 Göteborg,
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locking. The situation is particularly difficult if we wish to use low order approximations.
One useful approach has been to use projections in the shear energy term and consider
modified energy functionals of the type

(1.2) Fh(u, θ) :=
1

2
a(θ, θ) +

κ

2 t2

∫

Ω

|∇u−Rhθ|
2 dΩ−

∫

Ω

g u dΩ,

where Rh is some interpolation or projection operator. This idea underpins, e.g., the
MITC element family of Bathe and co-workers, first introduced in [2], and has been used
extensively in the mathematical literature to prove convergence, see, e.g., [1, 4, 6, 11]. It
should be noted that if the approximation corresponding to Rhθ were to be used also for
the bending energy, the element would be non-conforming, and potentially unstable. This
means that we in effect have to construct and match three different finite element spaces,
and this is indeed how the approach was originally conceived: as a mixed method with an
auxiliary set of unknowns (the shear stresses), cf. [2].

In this paper, we instead consider the use of a discontinuous Galerkin method based on
discontinuous piecewise linear polynomials for the discretization of the rotations, in combi-
nation with continuous piecewise quadratic polynomials for the transverse displacements.
Using this approach, there is no need for an independent approximation (or projection) of
the shear stress term. The method can also be directly extended to higher order polyno-
mials.

When the thickness of the plate tends to zero we obtain the Kirchoff plate and our
scheme simplifies to the method proposed in [7]. In this context we also mention the recent
discontinuous Galerkin method for the Kirchoff plate developed in [9].

2. The finite element method

For simplicity, we shall assume that the domain Ω is a convex polygon and consider the
case of clamped boundary conditions. The transverse displacement and rotation vector are
solutions to the following variational problem: find θ ∈ [H1

0 (Ω)]2 and u ∈ H1
0 (Ω) such that

(2.1)

∫

Ω

σ(θ) : ε(ϑ) dΩ +
κ

t2

∫

Ω

(∇u− θ) · (∇v − ϑ) dΩ =

∫

Ω

g v dΩ

for all (v, ϑ) ∈ H1
0 (Ω)× [H1

0 (Ω)]2.
To define the method, consider a subdivision T = {T} of Ω into a geometrically con-

forming, quasiuniform, finite element mesh. Denote by hT the diameter of element T and
by h = maxT∈T hT the global mesh size parameter. We shall use continuous, piecewise
polynomial, approximations of the transverse displacement:

Vh = {v ∈ H1
0 (Ω) ∩ C0(Ω) : v|T ∈ P 2(T ) for all T ∈ T }.

Further, for the approximation of the rotations, we will use the following finite element
space:

Θh := {ϑ ∈ [L2(Ω)]2 : ϑ|T ∈ [P 1(T )]2 for all T ∈ T },

i.e., the space of piecewise linear, discontinuous, functions.
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The point of these choices is the inclusion

(2.2) ∇Vh ⊂ Θh

so that, in the limit t → 0, functions in Θh are allowed to belong to ∇Vh which retains
enough approximation power to allow optimal order convergence.

To define our method we introduce the set of edges in the mesh, E = {E}, and we split
E into two disjoint subsets

E = EI ∪ EB,

where EI is the set of edges in the interior of Ω and EB is the set of edges on the boundary.
Further, with each edge we associate a fixed unit normal n such that for edges on the
boundary n is the exterior unit normal. We denote the jump of a function v ∈ Γh at
an edge E by [v] = v+ − v− for E ∈ EI and [v] = v+ for E ∈ EB, and the average
〈v〉 = (v+ + v−)/2 for E ∈ EI and 〈v〉 = v+ for E ∈ EB, where v± = limε↓0 v(x ∓ ε n)
with x ∈ E.

Our method can now be formulated as follows: find θh ∈ Θh and uh ∈ Vh such that

(2.3) ah(θ
h, ϑ) +

κ

t2
(

∇uh − θh,∇v − ϑ
)

= (g, v)

for all (v, ϑ) ∈ Vh×Θh. In (2.3), (·, ·) denotes the usual L2 scalar product and the bilinear
form ah(·, ·) is defined by

ah(θ
h, ϑ) =

∑

T∈T

∫

T

σ(θh) : ε(ϑ) dxdy

−
∑

E∈EI∪EB

∫

E

(

〈n · σ(θh)〉 · [ϑ] + 〈n · σ(ϑ)〉 · [θh]
)

ds

+(2µ + 3λ) γ
∑

E∈EI∪EB

∫

E

h−1
E [θh] · [ϑ] ds.

Here γ is a positive constant and hE is defined by

(2.4) hE =
(

|T+|+ |T−|
)

/(2 |E|) for E = ∂T + ∩ ∂T−,

with |T | the area of T , on each edge.
Using Green’s formula, we readily establish the following Lemma.

Lemma 2.1. The method (2.3) is consistent in the sense that

ah(θ − θh, ϑ) +
κ

t2
(

∇u−∇uh − (θ − θh),∇v − ϑ
)

= 0

for all ϑ ∈ Θh and v ∈ Vh.

3. Stability estimates

For our analysis, we introduce the following mesh dependent energy norm

(3.1) |‖ϑ‖|2 =
∑

T∈T

∫

T

σ(ϑ) : ε(ϑ) dxdy + (2µ + 3λ)
∑

E∈EI∪EB

∫

E

h−1
E [ϑ] · [ϑ] ds,
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and the edge norm

(3.2) ‖ϑ‖2 =
∑

E∈EI∪EB

‖ϑ‖2
L2(E).

The mesh dependent norm |‖ · ‖| can be used to bound the broken H1(Ω) norm on Θh,
which is the statement of the following Lemma.

Lemma 3.1. There is a constant c, independent of h, µ, and λ such that

(3.3)
∑

T∈T

‖ϑ‖2
H1(T ) ≤ c|‖ϑ‖|2 for all ϑ ∈ Θh.

Proof. This is a discrete Korn-type inequality that results from the control of the rigid
body rotations given by the jump terms. A complete proof can be found in [8]. �

In order to show that the method (2.3) is stable, we shall first show that ah (·, ·) is
coercive with respect to the norm |‖ · ‖|, given that γ is sufficiently large.

Lemma 3.2. If γ>c0, with c0 sufficiently large, then the following estimate holds

(3.4) c |‖ϑ‖|2 ≤ ah(ϑ, ϑ),

for all v ∈ Θh.

Proof. We first note that the following inverse estimate holds

(3.5) ‖h1/2〈n · σ(ϑ)〉‖2
EI∪EB

≤ cI

∑

T∈T

‖σ(ϑ)‖2
T .

This inequality is proved by scaling and finite dimensionality (see, e.g. [12]). Next we note
that

1

2µ + 3λ
‖σ(ϑ)‖2

T ≤ (σ(ϑ), ε(ϑ))T ,

cf. [8], and thus we conclude that

(3.6)
1

2µ + 3λ
‖h1/2〈n · σ(ϑ)〉‖2

EI∪EB
≤ cI

∑

T∈T

(σ(ϑ), ε(ϑ))T .

Next, we have, for each E ∈ EI ∪ EB, that

2(〈n · σ(ϑ)〉 , [ϑ])E = 2(〈n · σ(ϑ)〉 , [ϑ])E

≤ δ(2µ + 3λ)−1‖h1/2 〈n · σ(ϑ)〉 ‖2
E

+δ−1(2µ + 3λ)‖h−1/2[ϑ]‖2
E,

where we used the Cauchy-Schwarz inequality followed by the arithmetic-geometric mean
inequality. Using these estimates and choosing δ small enough, we obtain

ah(ϑ, ϑ) ≥ (1− cIδ)
∑

T∈T

(σ(ϑ), ε(ϑ))T + (2µ + 3λ)(γ − δ−1)‖h−1/2[ϑ]‖2
EI∪EB

≥ c|‖ϑ‖|2,

whence we must choose γ ≥ c0 > cI . �



CONTINUOUS-DISCONTINUOUS FEM FOR MINDLIN-REISSNER 5

We have thus shown the following stability property of the method.

Proposition 3.3. Choosing γ ≥ c0 > cI , the following coercivity condition holds:

(3.7) ah(ϑ, ϑ) +
κ

t2

∫

Ω

|∇v − ϑ|2dΩ ≥ C
(

|‖ϑ‖|+ κ1/2t−1‖∇v − ϑ‖L2(Ω)

)2

,

for all (ϑ, v) ∈ Θh × Vh.

We finally remark that the constant cI in the inverse estimate (3.5) is computable and
thus the lower bound c0 on γ is available, see [10] for details.

4. Error estimates

For convenience, we introduce the scaled shear stress ζ and its discrete counterpart ζh,
defined by

(4.1) ζ := κ1/2(∇u− θ)/t2 and ζh := κ1/2(∇uh − θh)/t2.

We also split the Mindlin-Reissner displacement u into the corresponding Kirchhoff solution
u0 corresponding to the limit case t → 0, and a remainder ur, so that u = u0 + ur. We
then have the following stability estimate.

Lemma 4.1. Assume that Ω is convex and g ∈ L2(Ω). Then

‖u0‖H3(Ω) +
1

t
‖ur‖H2(Ω) + ‖θ‖H2(Ω) + t‖ζ‖H1(Ω) ≤ C

(

‖g‖H−1(Ω) + t‖g‖L2(Ω)

)

.

For a proof, see Chapelle and Stenberg [5].
For the purpose of analysis, we introduce the nodal interpolation operators π1 : [H2(Ω)]2 →

W h, where

W h := {v ∈ [H1(Ω) ∩ C0(Ω)]2 : v|T ∈ [P 1(T )]2 for all T ∈ T },

and π2 : H2(Ω) → Vh. We also define the operators P u : [H2(Ω)]2 → Θh and Qu :
[H2(Ω)]2 → Θh defined by

P uθ := ∇π2u0 − π1∇u0 + π1θ

and

Quζ := κ1/2 (∇π2ur − π1∇ur)) /t2 + π1ζ.

Noting that

t2

κ1/2
Quζ = ∇π2ur − π1∇ur + π1∇(ur + u0) + π1θ = ∇π2u− P uθ,

and using Lemma 2.1, we then find

(4.2) ah(θ − θh, P uθ) + t2(ζ − ζh, Quζ) = 0.

We will need the following approximation properties of our finite element subspaces.
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Lemma 4.2. We have the following interpolation estimate:

|‖θ − P uθ‖|+ t‖ζ −Quζ‖L2(Ω)(4.3)

≤ Ch
(

‖θ‖H2(Ω) + ‖u0‖H3(Ω) + t−1‖ur‖H2(Ω) + ‖ζ‖H1(Ω)

)

.

Proof. We first recall the trace inequality (cf. [12])

(4.4) h−1
T ‖ϑ‖2

L2(∂T ) ≤ C
(

h−2
T ‖ϑ‖2

L2(T ) + ‖ϑ‖2
H1(T )

)

, ∀ϑ ∈ [H2(T )]2.

For the edge norm we have that

h−1
E ‖[θ − P uθ]‖2

L2(E) ≤ Ch−1
E

(

‖θ − P uθ‖
2
L2(∂T1) + ‖θ − P uθ‖

2
L2(∂T2)

)

for E shared by adjacent elements T1 and T2, and since, by quasiuniformity, hTi
≤

hE/C, i = 1, 2, we find, using (4.4),

h−1
E ‖θ − P uθ‖

2
L2(∂Ti)

≤ Ch−1
Ti
‖θ − P uθ‖

2
L2(∂Ti)

≤ C
(

h−2
Ti
‖θ − P uθ‖

2
L2(Ti)

+ ‖θ − P uθ‖
2
H1(Ti)

)

.

Using the definition of P u and applying the triangle inequality, we find

‖θ − P uθ‖ ≤ ‖θ − π1θ‖ + ‖∇u0 −∇π2u0‖ + ‖∇u0 − π1∇u0‖,

so that, by standard interpolation theory,

h−1
E ‖θ − P uθ‖

2
L2(∂Ti)

≤ Ch2
T

(

‖θ‖2
H2(Ti)

+ ‖u0‖
2
H3(Ti)

)

.

Similarly,
∫

T

σ(θ − P uθ) : ε(θ − P uθ) dxdy ≤ Ch2
T

(

‖θ‖2
H2(T ) + ‖u0‖

2
H3(T )

)

.

By summation it thus follows that

|‖θ − πuθ‖| ≤ Ch
(

‖θ‖H2(Ω) + ‖u0‖H3(Ω)

)

.

Finally, by the triangle inequality and standard interpolation arguments,

‖ζ −Quζ‖L2(Ω) ≤ ‖ζ − π1ζ‖L2(Ω) +
κ1/2

t2
‖∇ur −∇π2ur‖L2(Ω)

+
κ1/2

t2
‖∇ur − π1∇ur‖L2(Ω)

≤ Ch
(

t−2‖ur‖H2(Ω) + ‖ζ‖H1(Ω)

)

,

which completes the proof of the lemma. �

We can now prove the following best approximation result.

Lemma 4.3. We have that

|‖θ − θh‖|+ t‖ζ − ζh‖L2(Ω) ≤ C
(

|‖θ − P uθ‖|+ t‖ζ −Quζ‖L2(Ω)

)

.
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Proof. By the triangle inequality

|‖θ − θh‖|+ t‖ζ − ζh‖L2(Ω) ≤ |‖θ − P uθ‖|+ |‖P uθ − θh‖|

+ t
(

‖ζ −Quζ‖L2(Ω) + ‖Quζ − ζh‖L2(Ω)

)

.

Further, by (4.2), we have that

|‖θh − P uθ‖|
2 + t2‖ζh −Quζ‖

2
L2(Ω)

≤ Cah(θ
h − P uθ, θh − P uθ) + t2(ζh −Quζ, ζh −Quζ)

= Cah(θ − P uθ, θh − P uθ) + t2(ζ −Quζ, ζh −Quζ)

≤ C
(

|‖θ − P uθ‖|+ t‖ζ −Quζ‖L2(Ω)

)(

|‖θh − P uθ‖|+ t‖ζh −Quζ‖L2(Ω)

)

,

and the lemma follows. �

Finally, combining Lemmas 4.1, 4.2, and 4.3, we obtain

Theorem 4.4. If Ω is a convex domain and g ∈ L2(Ω) we have, for (θh, uh) solving (2.3)
and (θ, u) solving (2.1), and using the definition (4.1),

|‖θ − θh‖|+ t‖ζ − ζh‖L2(Ω) ≤ Ch
(

‖g‖H−1(Ω) + t‖g‖L2(Ω)

)

,

uniformly in t.

5. Numerical examples

5.1. Locking. In order to solve a problem with known exact solution, we consider a Kirch-
hoff solution

u = (1− x)2 x2 (1− y)2 y2,

and compute the corresponding load on the domain Ω = (0, 1) × (0, 1). The material
parameters and thickness are E = 109, ν = 1/2, and t = 10−6. With such a small thickness,
the Mindlin-Reissner solution will be so close to the Kirchhoff solution that the latter can
be used for convergence studies. The imposed boundary conditions are accordingly set to
u = 0, θ = 0 on ∂Ω.

We show the effect of the parameter γ from (2.4). It is clear that γ cannot be chosen
too large in general, since this will prevent θ from approximating ∇u as t → 0. In Figure
1, we show how the ratio between the approximate solution and the exact solution at the
midpoint is affected by the meshize and by γ. It is seen that on coarse meshes, an increased
γ tends to lock the solution.

5.2. Convergence. We show, for the same example as previously, the convergence in
H1(Ω). The difference between ∇uh and θh is so small for this choice of thickness that we
can equate this norm with ah(θ− θh, θ− θh)1/2. As can be seen from Figure 2, we in fact
obtain slighter better than first order convergence.
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Figure 2. Convergence of uh in H1(Ω).

6. Concluding remarks

We have presented a novel finite element method for the Mindlin-Reissner plate model,
based on the discontinuous Galerkin approach. We show that our method does not lock
as long as we make a proper choice of a free, but computable, parameter. Our approach
avoids the current paradigm of projections of the rotations in the shear energy functional,
which, at least from a conceptual point of view, requires a mixed implementation. We
pay the prize of having to use a higher number of degrees of freedom; in consequence,
the presented approach may not be computationally competitive with the “best” elements
available. Nevertheless, we feel that it is a very simple and straightforward method; in
particular it is free of special mixed element approximations.
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