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APPROXIMATION OF TIME DERIVATIVES FOR PARABOLIC
EQUATIONS IN BANACH SPACE: CONSTANT TIME STEPS

YUBIN YAN

ABSTRACT. We study smoothing properties and approximation of time derivatives for
time discretization schemes with constant time steps for a homogeneous parabolic problem
formulated as an abstract initial value problem in a Banach space. The time stepping
schemes are based on using rational functions 7(z) = e~* which are A(f)-stable for suitable
0 € [0,7/2] and satisfy |r(c0)| < 1, and the approximations of time derivatives are based
on using difference quotients in time. Both smooth and nonsmooth data error estimates
of optimal order for the approximation of time derivatives are proved. Further, we apply
the results to obtain error estimates of time derivatives in the supremum norm for fully
discrete methods based on discretizing the spatial variable by a finite element method.

1. INTRODUCTION

In this paper, we consider single step time stepping methods for the following homoge-
neous linear parabolic problem

(1.1.1) u+Au=0 fort>0, withu(0)=nuv,

in a Banach space B. We first study the smoothing properties of the time stepping methods,
then we consider approximations of time derivatives based on difference quotients of the
approximate solutions of (1.1.1). Both smooth and nonsmooth data error estimates of the
approximations of time derivatives are obtained. As an application we show error estimates
in the supremum norm for fully discrete methods based on finite element methods in a
spatial domain © C R2.

We assume that A is a closed, densely defined, linear operator defined in D(A) C B,
that the resolvent set p(A) of A is such that, for some § € (0,7/2),

(1.1.2) p(A) D Es={2€C:0<argz| <m, z#0}U{0},
and that the resolvent, R(z; A) = (2I — A)~!, satisfies
(1.1.3) |R(z; A)|| < M|z| ™, forze s 2#0, with M > 1.

Throughout this paper || - || denotes both the norm in B and the norm of bounded linear
operators on B.

Date: February 21, 2002.
Key words and phrases. Banach space, parabolic, smoothing, time derivative, single step time stepping
methods, fully discrete schemes, error estimates, finite element methods.
Yubin Yan, Department of Mathematics, Chalmers University of Technology, SE-412 96 Gd&teborg,
Sweden email: yubin@math.chalmers.se .
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2 YUBIN YAN

We assume that 0 € p(A) for simplicity, but this is not essential. In the case of 0 ¢ p(A)
we can add a multiple 6’y of u to (1.1.1), thus replacing the operator A by A+ ¢'I for some
positive number §' > 0.

Under these assumptions —A is the infinitesimal generator of a uniformly bounded an-
alytic semigroup E(t) = e™*4, t > 0, which is the solution operator of (1.1.1), so that
u(t) = E(t)v. It may be represented as

1
Et)=— [ e *R(2;4)d
( ) 271_2 /1"6 (Z, ) Z?
where I' = { z : | arg z| = ¥} with ¢ € (§,7/2) and Imz decreasing along I'. In particular
the smoothing properties of analytic semigroups are valid, see, e.g., Pazy [13]. More
precisely, we have

(1.1.4) |DIE(t)v]| = |ATE(t)v]| < C;t7||v||, fort>0, veB,

which shows that the solution is regular for positive time even if the initial data are not.
Let U™ be an approximation of the solution u(t,) = E(t,)v of (1.1.1) at time ¢, = nk,
where k is the time step, defined by a single step method,

(1.1.5) U= E U™ forn>1, withU®=v,

where Ey = r(kA), and where the rational function r(z) has no poles on o(kA). We may
thus write U™ = Ejv.
We say that the time discretization scheme is accurate of order p, with p > 1, if

(1.1.6) r(z) —e * =0(z"""), asz—0.

For example, the backward Euler method, given by r(z) = 1/(1+ z), is first order accurate
and the Crank-Nicolson method, defined by r(z) = (1 — £2)/(1 + 1%), is second order. As
another example, the method defined by the (¢,¢q + 1) subdiagonal Padé approximation
r(z) = p1(z)/p2(z), where p; and py are certain polynomials of degrees ¢ and ¢ + 1,
respectively, is accurate of order 2q + 1.

Stability and error estimates for single step methods have been studied by many authors,
see, e.g., Bakaev [2], [3], Palencia [11], [12], Thomée [16] and references therein. For
instance, if A satisfies (1.1.2) and (1.1.3), and r(z) is A(f)-stable with § € (6,7/2], i.e.,
Ir(2)| <1 for |argz| < @, and (1.1.6) holds, then we have

(1.1.7) U™ — u(tn)|| = ||Efv — E(tn)v|| < CkP||APv||, for v € D(AP),

see, e.g., Larsson, Thomée, and Wahlbin [9] and Crouzeix, Larsson, Piskarev, and Thomée
[7]. Due to the assumption v € D(AP), we refer to this as a smooth data error estimate.

To obtain optimal order error estimates for nonsmooth initial data, the A(f)-stability of
the scheme is not sufficient. However, if we require in addition that |r(co)| < 1, then the
following nonsmooth data result is valid:

1.1.8 U™ —u(t,)|| = [|Efv — E(t,)v|| < CEPt Pllv||, fort, >0, ve B,
k n
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see, e.g., Larsson, Thomée, and Wahlbin [9] and Crouzeix, Larsson, Piskarev, and Thomée
[7]. The condition |r(o0)| < 1 ensures that oscillating components of the error are efficiently
damped.

Let us recall some results about the smoothing properties of the time discretization
schemes (1.1.5). When B is a Hilbert space H and A a linear, selfadjoint, positive def-
inite, unbounded operator, the following smoothing property holds for A(0)-stable time
discretization schemes with r(0c0) = 0:

(1.1.9) |ATU™|| = |ATERv|| < Cit 7 ||vll,  fort, >t;, v € H,

see, e.g., Thomée [16, Lemma 7.3]. Hansbo [8] extends this result to Banach space, and
shows that, if A satisfies (1.1.2) and (1.1.3), and r(z) is A(f)-stable with 6 € (4, 7] and
r(oco) = 0, then (1.1.9) holds. Hansbo [8] also shows an optimal order error estimate in
the nonsmooth data case for the approximation (—A)U™ = (—A)u(t,) = us(t,) of the first
order time derivative of the solution of (1.1.1). More precisely, if r(z) is A(#)-stable with
0 € (6, 37] and r(co) = 0, then

(1.1.10) I(—A)U™ — uy(t,)|| < CRPEPY[v||, fort, >0, v € B.

However, we observe in Section 2 below that the smoothing property (1.1.9) is not valid
when r(oc0) # 0. Therefore it is natural to investigate the smoothing properties of (1.1.5)
when 7(o0) # 0. If |r(o0)| = 1, the discrete method (1.1.5) is not smoothing. However,
if such a method of order p > 2 is combined with a few steps of a smoothing method of
order p — 1, then we have nonsmooth data error estimate of order p. For instance, if one
uses the Crank-Nicolson method combined with two steps of the backward Euler method,
then a second order nonsmooth data error estimate holds. This analysis is carried out in
Hilbert space by Luskin and Rannacher [10] and Rannacher [14]. Hansbo [8] extends the
results to Banach space.

In the present paper we consider the case |r(o0)| < 1. For fixed j > 1 we introduce the
finite difference quotient,

. 1 &2
Jrrm — n-+v
(1.1.11) QU™ = o Z c, U™, forn > my,

v=—mi
where m,;, m, are nonnegative integers, and c, are real numbers, such that the operator
@, is an approximation of order p > 1 to D}, that is, for any smooth real-valued function
u’

(1.1.12) Diu(t,) = Qu" + O(k?), ask —0, withu"=u(t,).

As an example with j =1, m; =1, mo =0, p =1, we have

1
E(—u’“1 +u")+O(k), ask —0.

As an example with j =2, m; =1, mo =1, p = 2, we have

Dyu(t,) =

1
("t —2u™ +u"t) + O(k%), ask — 0.

D?u(tn) = 72
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In Theorem 2.5, we show that, if A satisfies (1.1.2) and (1.1.3), and r(z) is A(f)-stable
with 8 € (6,7/2], and |r(cc)| < 1, then the following smoothing property holds:

(1.1.13) |QLU™|| < Ct7||v|l, forn > my, t, >0, veB.

Now let us turn to error estimates for approximations of time derivatives of the form
(1.1.11). We show, in Theorem 2.1, the following smooth data error estimate for an A(6)-
stable discretization scheme:

(1.1.14) |QLU™ — Diu(t,)|| < CK||APHu|, for n > my, v € D(APY).

To obtain an optimal order error estimate for nonsmooth data, the A(f)-stability is
not suffient. Baker, Bramble, and Thomée [5] shows the following nonsmooth data error
estimate in Hilbert space H by using a spectral argument: if [r(\)| < 1 for A > 0, and
|r(c0)| < 1, then

(1.1.15) |QLU™ — Diu(t,)|| < CkPt;®*|v||, forn >my, t, >0, v € H.

We extend in Theorem 2.6 this result to Banach space, that is, (1.1.15) also holds under
the assumptions of Theorem 2.5.

The above results are proved under the assumption that the time step is constant. Some
results for variable steps are presented in Yan [18].

Let us now discuss some properties of the coefficients ¢, in (1.1.11). With u(¢) = €’ in
(1.1.12) we have at ¢, =0

(1.1.16) K = P(e") +O(k"7), ask — 0, where P(z)= Z ez’

Using Taylor expansion of e”* at k = 0, we therefore easily find that (1.1.12) is equivalent
to

(1.1.17) P(e”) — 2/ = O(2!"7), asz — 0,
where 2z is allowed to be complex-valued. For later use we note that (1.1.11) has the form
(1.1.18) QIU™ = k™' P(Ey)E}v.

The paper is organized as follows. In Section 2, we show the smoothing properties
of the abstract time stepping method, and give the optimal order error estimates of the
approximation of the time derivatives for both smooth and nonsmooth data. In Section 3,
we apply the results obtained in Section 2 to a fully discrete scheme. In Section 4, we give
some numerical examples to illustrate our theoretical results.

By C' and ¢ we denote positive constants independent of the functions and parameters
concerned, but not necessarily the same at different occurrences. When necessary for
clarity we distinguish constants by subscripts.
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2. SMOOTHING PROPERTIES AND ERROR ESTIMATES

In this section, we discuss smoothing properties of time stepping methods in the general
Banach space situation and show smooth and nonsmooth data error estimates for the
approximation QU™ of Du(t,) in the case of constant time steps, where U™ is defined by
(1.1.5), u(t,) is the solution of (1.1.1), and @ is defined by (1.1.11).

We first show that (1.1.9) is not valid for a scheme with r(co) # 0. In fact, if B is
a separable Hilbert space H and A is a linear, selfadjoint, positive definite, unbounded
operator, we have, by spectral representation,

to||AER|| = tn]|Ar(KA)"|| = sup |nAr(A)"| =o0, for fixed n > 1,
Aca(kA)
which implies that (1.1.9) does not hold for j = 1. Similar arguments work for any j > 1.
As an example of a scheme with r(c0) # 0, we consider the #-method:

(2.2.1) r(\) = “ﬁr—;;m

Here we have |r(A)| < 1 for A > 0, and 7(c0) = (0 —1)/60 # 0. It is easy to check that r(\)
is accurate of order p = 1.
Another example is the so called Calahan scheme defined by

(2.2.2) ) =1- 15 - ?(HLM)Q, with b = %(1 + ?)

One can show that |r(\)| < 1 for A > 0, since r(\) is a decreasing function on (0, c0) and

1

A simple calculation shows that this scheme is accurate of order p = 3.

Before we study the smoothing properties of the discrete method (1.1.5), we will show an
error estimate for the approximation (1.1.11) of the time derivative Dju(¢,) in the case that
the initial data, and hence the solution of (1.1.1), are smooth. Recall the error estimate
(1.1.7), which shows that for v € D(AP), the error U™ — u(t,) has the optimal order of
accuracy. Similarly we find in the following theorem that if v € D(AP*/), then the error
estimate for the approximation of Du(t,) has the optimal order of accuracy.

Theorem 2.1. Let u(t,) and U™ be the solutions of (1.1.1) and (1.1.5). Assume that A
satisfies (1.1.2) and (1.1.3), and that r(z) is accurate of order p > 1 and A(f)-stable with
0 € (6,7/2]. Let j > 1 and assume that Qf;, defined in (1.1.11), is an approximation of
D{, which 1s accurate of order p. Then there is a constant C such that

||QiU” — Dgu(tn)H < CkP||APYIy||,  forn > my, v € D(APYY).

To prove this theorem we need the following lemmas, which we quote from Thomée [16,
Lemmas 8.1, 8.3].
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Lemma 2.2. Assume that (1.1.2) and (1.1.3) hold and let r(z) be a rational function
which is bounded for |argz| < 9, |z| > € > 0, where ¢ € (0,7/2), and for |z| > R with
some positive number R. If € > 0 is so small that {z : |z| < €} C p(A), then we have

1
r(A) = r(co)l + — r(z)R(z; A) dz,
214 Jyurruyn
where v. = {z : |2| = ¢ |argz| < ¢}, TR = {2 : |argz| = ¢¥,e < |2|] < R}, and
B ={z:|z| = R, < |argz| < 7}, and with the closed path of integration oriented in the
negative (clock-wise) sense.

Lemma 2.3. Assume that (1.1.2) and (1.1.3) hold, let v € (§,7/2), and j be any integer.
Then we have for e > 0 sufficiently small
AE(t) = / e "2 R(z; A) dz,
’YEUPE

T 2mi
where ve = {z : |z| = ¢, |argz| <9} and T = {z : |argz| = ¥, |z] > €}, and where Imz is
decreasing along v. UT'.. When 7 > 0, we may take € = 0.

Proof of Theorem 2.1. We have
QU™ = Diu(ta) = k3 (P(r(kA)r(kA)" = (—kA)Te "4,
where P(x) is defined by (1.1.16). With
(2.2.3) Gn(2) = P(r(2))r(2)" — (—2)7e ™,
our result will follow from
1Gn (kA) (RA)~ ] < C.
Note that with A also kA satisfies (1.1.2) and (1.1.3) since, for z € X,
|R(z; kA)|| = ||k 1 (zk T — A) Y| <k 'M|zk ' = M|zt
Therefore it suffices to show
(2.2.4) |Ga(A)A#)| < C,

which we will prove now. Let 7(z) = P(r(z))r(2)"z~®+7). Since n > m, and r(z) is A(f)-
stable, we find that 7(z) is bounded for |argz| < ¢, |z| > € > 0, with some ¢ € (4,0).
Further 7(z) is also bounded for |z| > R with R sufficiently large since 7(co) = 0. Thus,
applying Lemma, 2.2 to the rational function 7(z) = P(r(2))r(2)"2~®*9) we have

P(r(A))r(A)"A=PH) = — P(r(2))r(2)"z" " R(z; A) dz.
27 JyurRuyr
Since the integrand is of order O(|z|™~7~!) for large z, we may let R tend to co. Using
also Lemma 2.3 we conclude
1

(2.2.5) Gn(A)A=PHD) = —/ Gn(2)2~ P R(2; A) dz.
27 J o .or,
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We shall show that
(2.2.6) Gn(2) = O(M), asz— 0, with|argz| <.

Assuming this and combining this with the fact that 0 € p(A), we have that the integrand
in (2.2.5) is bounded on the small domain with boundary . UTY, so that we may let ¢ — 0.
It follows that

1

A)A-(PFI) —
Gn(4) 2m

/ Gn(2)2~ P R(2; A) dz,
r
where I' = {z : | arg z| = ¥}. We now estimate the above integral. Again using (2.2.6) and
the fact that 0 € p(A), we find, for  small enough,
1Gn(2)R(2; A)|| < ClafP*?, for [z <, |arge| = 4.

Further, noting that P(r(z))r(z)™ is bounded on I', since n > m; and r(z) is A(@)-stable,
we have, using (1.1.3) and (2.2.3) as well as the boundedness of e™™* on T,

|Gn(2)R(z; A)| < M(C + [2)|2| 7}, for |2 >, |argz| = ¢.
Thus

. oo 00 . .
1Gn(A)A™#H]| < C/ pPHp P dp+ M/ (C+p)p W dp < C.
0 n

It remains to prove (2.2.6). Since 7(z) = e * + O(2?) as z — 0, we have that, for 77 > 0
small enough,

(2.2.7) Ir(z)] < e~ for 2| <7, |argz| <, with0<c<1.
Thus, using also (1.1.6),

n—

(228  [r@)" - e = |(r(2) e ) Yor(e) e

1
7=0
< Cnl|zPte=em=DlEl < C|2z|P,  for 2| < 7, |argz| < 1.

Further, with 7 possibly further restricted,

(2.2.9) |P(r(2)) — (=2)7| < C|z[P™, for |z| < 7.
In fact, by Taylor’s formula, we have
Jj—1 —
P(l) z
Pe() - Pe) = 3 T () ey

+ (r(z) — ez)j/o 7(1 _ S)JT P(j)(r(z) + s(r(z) —e %)) ds.

Since P(e™?) is an analytic function of z and P(e™?) = O(2?) as z — 0 by (1.1.17), we
have PO(e™%) = O(2'7!), 0 <1 < j as z — 0. Moreover, since 7(z) — 1, e* — 1 as
z — 0, it is easy to see that there exist constants ¢; > 0, co > 0 and small 7 such that
c1 < |r(z) +s(r(z) —e?)| < ¢ for |z| <7, 0 < s < 1, which implies that |PY(r(z) +
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s(r(z) —e™*))| < C for |z] <7, 0 < s <1, since P(z) has the form P(z) =772 c,z”.
Thus, using also (1.1.6) we get

|P(r(z)) — P(e™?)| = ZO(zj_l)O(zl(p+1)) + O(zj(p+1)) = 0(2!"), asz—0.

Combining this with (1.1.17) shows (2.2.9).
Thus, by (2.2.8) and (2.2.9),
2)| = ‘(P(T(Z)) — (=2))r(@)" + (=2) (r(2)" — ™)
< ClefP?, for |2 <7, |argz| < ¢,
which is (2.2.6). O

We next prove a smoothing property for A(0)-stable discretization schemes with |r(oco)| <
1. Before doing this, we show that QJU" defined by (1.1.11) can be expressed as a linear
combination of the backward difference quotients U™ * for some integers .

Lemma 2.4. Let j > 1 and Qf;U" be defined by (1.1.11). Then there exist constants o,
—my + 7 < 1 < mo, such that

m2

QLU™ = Z a, U™ where OU™ = (U™ —U" ') /k.
u=—mi+j
Proof. With P(x) =72 c¢,x”, we have

ma
HQLU" = Y ¢ E{U" = P(E,)U", whereEy = r(kA),
v=—mi
i.e., the difference operator is associated with the rational function P(z). Similarly the
operator k707U corresponds to the rational function P(z) = z#(1 —z 1)/, since

HPUH = (1 - E, Y E " = (I - E, 'Y E'U™ = P(Ey)U™.

Thus we only need to show that there exist o, such that

(2.2.10) P(z) = Z a,P(z) = (1 -2 Z ozt
u=—mi+j u=—mi+j

But by (1.1.17) we find P®(1) =0 for 0 <1 < j — 1, which implies that P(z), and hence
7™ P(x) contains the factor (z — 1)7, that is, there exists a polynomial P(x) of degree
my 4 my — j such that 2™ P(z) = (z — 1)P(z). Denoting P(z) = S.7d™ ™ Bia* for
some constants 3y, we get that there exist constants o, such that
m1+m2 J
2™ P(z) = (z — 1) Z Bt = (z — 1)7 Z ot
pu=—mi+j

which shows (2.2.10). O
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Theorem 2.5. Let U™ be the solution of (1.1.5). Assume that (1.1.2) and (1.1.3) hold,
and r(z) is accurate of order p > 1 and A(0)-stable with 0 € (§,7/2], and |r(c0)| < 1.
Let j > 1 and assume that Qi, defined in (1.1.11), is an approzimation of Dg, which is
accurate of order p. Then there is a constant C such that

QU™ < Ct2 N, forn > my, t, >0, v € B.
Proof. By Lemma 2.4, it suffices to show
(2.2.11) |°U"|| < Ct,7||v||, forn > j.

In fact, this implies, for n > mq, t, > 0,

m2 m2
QU= Y wovt| e Yl
p=—m1+j p=—mi+j
< Oty 01l < Ct7 o).

We know show (2.2.11). Noting that 07U = k7 P(E)Erv for P(z) = (1 —z7')7 =
z77(x — 1)7, we need to show

1P(r(A)r(A)" ] = lIr(A)* I (r(4) = 1)’ < Cn7?, forn>j.
As in the proof of Theorem 2.1 this then also holds with A replaced by kA, and thus shows
(2.2.11).

Since n > j and r(z) is A(f)-stable with 6 € (6, 7/2] and |r(o0)| < 1, which implies that
r(2)" 7 (r(z) — 1)? is bounded for |argz| < v, |z| > € with some ¢ € (6,0) and arbitrary
e > 0, and also bounded for |z| > R with R sufficiently large, we therefore have, by Lemma
2.2,

r(A)" (r(A) = 1)) =r(00)"(r(oc) — 1)1
1 . .
+— r(z2)" 7 (r(z) — 1)’ R(z; A) dz.
218 Jy.orruyr
By |r(oc0)| < 1, we have, for fixed R > 1 large enough,
(2.2.12) Ir(z)| < e ¢ for|z| > R.
Clearly then |r(oco)| < e7, so that
[r(00)™(r(c0) —1)7| < Ce™™ < Cn~?, forn > 1.
To bound the integrals over the three components of the path of integration, we have, by
(2.2.12),
1 s ; _ |dz| .
H— r(2)"(r(z) — 1)’ R(z; A) dzH <Ce ™| —<Cn?, forn>1.
21 Jyr R 2|

For the other two components of the path of integration, since r(z) is A(f)-stable and
0 € p(A) and accurate of order p > 1, which imply that the integrand is bounded on the
small domain with boundary v, UI'§, we may let € tend to 0. Thus it suffices to bound the
integral over I'¥. But by A(f)-stability and the maximum-principle we have |r(z)| < 1 for



10 YUBIN YAN

|arg z| < 6, z # 0. In particular, |r(z)| < 1 on the compact set {z: 7 < |z2| < R, |argz| <
¥}, which means that the inequality (2.2.7) also holds for |z| < R, |argz| < % with ¢
sufficiently small. Thus, we have, noting that r(z) — 1 = O(z) as z — 0,

1 . : R ) )
H—/ r(z)" 7 (r(z) — 1) R(z; A) dzH < C/ e i tdp < CnY.
2m TR 0

Together these estimates complete the proof. O

We remark that if |r(co)| = 1 with r(0c0) # 1, then the conclusion of Theorem 2.5 is not
valid. For example, let us consider the Crank-Nicolson scheme, with 7(c0) = —1. Assume
that A is a linear selfadjoint, positive definite, unbounded operator with compact inverse in
Hilbert space H, and A has eigenvalues {);}22, and a corresponding basis of orthonormal
eigenvectors {¢;}52,. Then, with v = ¢;, we have, noting that r(cc) = -1,

tal|OU™ || = nllr (kA)" " (r(kA) — 1)v]|
= nlr(kX)" 1 (r(kX;) —1)| = 2n, as j — oo,
which implies that there does not exist a constant C' such that
t,]|0U"]| < C|lv|, forn>1, wveH.

However, if r(co) = 1, then the conclusion of Theorem 2.5 holds in special cases: Let us
consider the (2,2) Padé scheme,

1=+ 5N
1+ Y
We show that in this case t,[|0U"|| < C||v||. In fact, for this it suffices to show
(2.2.14) Inr(A\)" ' (r(\) = 1) < C, for A > 0.

For small A this follows directly from the fact that |r(\)| < e ) |r(\) — 1] < C for
0 < A < Ao and it remains to consider large A. Noting that |r(\)| < e with some
constant ¢ and |r(\) — 1] < CA7! for A > ), see, e.g., Thomée [16, Lemma 8.2], we have

Inr (V)" (r(N) = 1)] < CnA™ Ve =D < ¢,
which shows (2.2.14).
Our next result is an error estimate in the nonsmooth data case. The estimate has
optimal order of accuracy for ¢, bounded away from zero, but contains a negative power
of t,,. Comparing with the error estimate (1.1.8), we find that ¢,? is replaced by ¢,?~7 in

our theorem. The proof in the Hilbert space case can be found in Baker, Bramble, and
Thomée [5]. Here we extend the result to Banach space.

Theorem 2.6. Let u(t,) and U™ be the solutions of (1.1.1) and (1.1.5). Assume that
(1.1.2) and (1.1.3) hold, and r(z) is accurate of order p > 1 and A(f)-stable with 6 €
(6,7/2], and |r(co)| < 1. Let j > 1 and assume that Q), defined in (1.1.11), is an
approximation of Dg, which 1s accurate of order p. Then there is a constant C such that

||Q£U” — Diu(tn)H < C’kpt;(p+j)||v||, forn>mq, t, >0, veEB.

(2.2.13) r(A) where r(00) = 1.
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To prove this theorem, we need the following lemma, which we quote from Thomée [16,
Lemma 8.5].

Lemma 2.7. Assume that the rational function r(z) is A(6)-stable with < 7/2, and that
|r(c0)| < 1. Then for any ¢ € (0,6) and R > 0 there are positive C and ¢ such that, with
Kk =r(00),

r(2)" — k™| < Clz|re™",  for|z| > R, |argz| <, n> 1.
Proof of Theorem 2.6. As above we now need to show, with G, (z) given by (2.2.3),
1Ga(A)]| < Cn=®*9.
We set k = r(oco) and
Gn(2) = Gu(2) — P(k)K"2/(1 + 2).
Obviously G,(c0) = 0. Since || < 1, we have |x| < e~¢ for some ¢ > 0. Noting that
|A(I + A)~Y| < 2M, we have, since n > my, n > 1,

|P(k)k"A(I + A) 7| < 2M|P(k)K"| < QM‘ Z ¢ e )

v=—my

< Ce™™ < On~ P+,

It remains to show the same bound for the operator norm of G,(A). We may now use
Lemmas 2.2 and 2.3 to see that, with ¢ € (4, 6),

G(A) = /  GuIRGi A8

T omi

Since n > m; and r(z) is A(f)-stable and 0 € p(A), the integrand is bounded on the small
domain with boundary v, U I, so that we may let € tend to 0. We therefore have, with

D={z: |argz| =0},
G(A) = QLM /F Go(2)R(z: A) dz.
We write
Gl2) = (P(r(2)) = (=27 )r(2)" + (=2) (r(2)" = €79)) = P(r)s"2/(1 + 2).

Using the estimates (2.2.7), (2.2.8), (2.2.9) and |[1/(1 + 2)| < 1 for Rez > 0 and the
boundedness of R(z; A), we have, for z € ', 2| <1, n > 1,

1Ga(2)R(z A < (ClaPPe ™ 4 [z (Cnlzie m¥)) + Ch™ < On 2,

Further, we rewrite

Gal(2) = (PEr()r(2)" = P()K") + PR)K" /(1 + 2) — (—2)e ™.
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By Lemma 2.7 we have, for z € T, |2| > 1 and n > my,

m2

PEEINE" = PEe =] 3 (@ - s)

v=—mi

ma2
SC‘ZFI Z |cu|efc(n+u)

v=—mm
< Oz temd=m) < Oz 7temem,
Thus, since |1 + z| > |z| for Rez > 0, we get, for z € I, |2| > 1, n>my and n > 1,
1Gn(2)R(z5 A)| < (Clal~ e + K727 ) 2] + O] 7t emenl
<COnP (2|72 + |2 7PN < OnTP 2|72

We therefore obtain

G (A)]] < / Cnridp s / i 2 dp < O,
Together these estimates confplete the proof. 1 O

3. FuLLy DISCRETE SCHEMES
In this section we study fully discrete schemes of the initial boundary value problem

{ up=Au in€), fort >0,

3.3.1
( ) u=0 ondf, fort>0, u(-,0)=wv in{,

where ) is a bounded domain in R? with smooth boundary 9.
Let L, = L,(2) denote the usual real Lebesgue spaces with norms

1

(3.3.2) vz, = (fg [o(2)[” dx) S, 1<p<oo,
esssup{|v(z)|: z € Q}, p = o0,

and let k& be a nonnegative integer and let W} = WF(Q) be the standard real Sobolev
spaces with norms | - ||y defined by

1
lellwg = (D I1D%IE,)",

la|<k

for 1 < p < oo with the usual modification in the case p = oco. In the case p = 2, we set
H* = W¥, which is a Hilbert space with the inner product

(v,w)gr = Z/D%Daw dx.
al<k

Moreover we denote Hi = {v € H¥ : v =0o0n 0Q}, and WF = {v € Wf: (-A)w =
0 on 09, forl < k/2}.
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In (3.3.1), we consider A = —A with D(47) = W2 for j > 1. It is known that A
generates a strongly continuous and analytic semigroup E(t) = €2 in L, for 1 < p < o0,
but for p = oo the strong continuity at ¢ = 0 is lost. Nevertheless, the corresponding
stability and smoothing estimates are valid:

(3-3.3) IE®)vllz, + I1E' Oz, < Ct Hvllz,, forve Ly, 2<p< oo,

see, e.g., Thomée [16, Chapter 5] for more details.

We assume that €2 is approximated by a quasi-uniform family of triangular finite element
meshes 75, such that the union of the elements determines a polygonal domain 2, with
boundary nodes on 0€2. For simplicity we assume that () is convex and let S;, be the space
of continuous functions that are linear on each element and vanish outside €2, so that
S, C Hy. We define the discrete Laplacian Ay by

The spatially semidiscrete problem is then to find uy : [0,00) — Sj, such that
(335) Upt = Ahuh, for ¢t > 0, with uh(O) = Vp,

where v, € S}, is some approximation of v. Let P, denote the orthogonal projection of v
onto S, with respect to the inner product to the Ly norm, i.e.,

(3.3.6) (Pyv,x) = (v,x), VYx €Sy, forve L.

We also need the so called elliptic or Ritz projection R, onto S}, defined as the orthogonal
projection with respect to the inner product (Vuv, Vw), so that

(3.3.7) (VRyw,Vx) = (Vv,VY), Vx €S, forve H;.
Note that
(3.3.8) AnRy = ByA,

which we need in the proof of our theorems.
We now apply our above time stepping procedure (1.1.5) to this semidiscrete equation
(3.3.5). This defines the fully discrete approximation U™ € S}, of u(t,) recursively by

(3.3.9) U" = By U™, forn > 1, where Ey, = r(—kAy), with U® = v,

We shall derive Ly, error estimates for the approximations QU™ of the time derivatives
Dlu(t,) of the solution of (3.3.1), where U™ is defined by (3.3.9). We first show some L,
error estimates in the spatially semidiscrete case. We begin with an error estimate in the
nonsmooth data case.

Theorem 3.1. Let u(t) and un(t) be the solutions of (3.3.1) and (3.3.5) and j > 0. If
v € Lo and v, = Ppv, then we have

||D§uh(t) — Dgu(t)HLoo < ChQEit_j_IHUHLOO, where £, = 1In(1/h).

The proof of the result depends on the following lemmas. The first lemma concerns error
bounds for the L, and Ritz projections in maximum-norm.



14 YUBIN YAN

Lemma 3.2. Let u(t) be the solution of (3.3.1) and j > 0. Then, we have, for p =
(R, — DNu and n= (P, — DNu,

(3.3.10) 1 (IDI (1) 1w + G DI ) < CHE 01

Proof. With I, : C(Q) — S}, the standard Lagrange interpolation operator, we have, see,
e.g., Brenner and Scott [6],

1 Thu — ul|re. < CR*722||ullws, for2 < s < oo, u€ W2

Since D!p = (R, — I)Diu = (R, — I)(I — I)D}u, using the logarithmic maximum-norm
stability of Ry, i.e., ||Rpul|L, < ClyllulL.., see, e.g., Schatz and Wahlbin [15], we have,

1D]pll1os < CEu||(I = 1) Diullr., < ClH* | Dullw;z.
By the Agmon-Douglis-Nirenberg [1] regularity estimate
|lullw> < Cs||Aul|z,, for2<s<oo, ue W2,
we hence obtain, using also the smoothing property (3.3.3),
ID]p(t) |0 < CR*~*/*tns|| ADJu(t)|\x,
< Ch* o tyst 7o, < CR2 3 lyst 7|0l 1.

With s = £, this shows the bound in (3.3.10) for D?p(t). The proof of the bound for DI7(t)
is analogous, with one less factor £, because P} is bounded in L, see Thomée [16, Lemma
5.7]. O

We also need the following lemma which shows that the discrete solution operator
E,(t) = e'®» is stable in the L, norm and has a smoothing property, uniformly in h,
see Thomée and Wahlbin [17], and Bakaev, Thomée, and Wahlbin [4].

Lemma 3.3. Let Ej(t) be the solution operator of (3.3.5). Then
(3.3.11) 1En()0nl oo + LI EL(E)0n]| e < Cllvnllie,  fort > 0.
Proof of Theorem 3.1. We write u, — u = (up — Pyu) + (Pyu — u) = ¢ + 1. Here Din is

bounded as desired by Lemma 3.2 and it remains to bound () = DI¢ = DJ(uj, — Pyu).
We will show, by induction, that for each j > 0 there is C', such that

(3.3.12) OS<1112t(8"“IICU)(S)IILoo) < Ch?6||v]| 1.

The case j = 0 can be found in Thomée [16, Theorem 5.4]. Assuming now that the result
is already shown with j replaced by j — 1. Since

G — An{ = —ApPyp,
we find
(3:313) (¢, = A (FTCY) = (7 4+ DECY + (G - A
=G+ 1)tj(AhC(j*1) — AhPhp(j’l)) — AL P Y.
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Thus, by Duhamel’s principle, we have, noting that Ej(t — s)A, = Ej (t — s),

¢
A0 = [ Byt 5)((+ DI ()
0
— (4 1) Pl (s) — Sj+1Php(j)(S))dS =I+1I+1II

For 11, we write
t/2 t ' '
7 = —(/ +/ )E;L(t — 8)(j +1)87 Pypi(s) ds = IT, + I,
0 t/2
Here, using Lemmas 3.2 and 3.3,
t/2 o
1L < C/ (t = 5) 7' [0V ()|l ds < OB |0]| 1.
0
Further, after integration by parts,

. . t
I, = [Eh(t —8)(j + 1)3713,L,;<11>(s)]t/2

i
— [ Eate =)+ DR (357750 (6) + 5150() s,
t/2
and thus by Lemmas 3.2 and 3.3, we get

1Lz, < CR2 G| L.

Therefore ||I1||z,, < Ch?2||v||L... Following the estimate of I, we can also show |[I11||, <
Ch2G3[0]| oo -
Now we turn to I, and write, with a > 1,

I= (/Ot/a-l—/tta)E;b(t —5)(j+1)s7¢CVV(s)ds = I, + L.

Here, using Lemma 3.3 and the induction assumption, we have

a
VL[Vl Lo

t/a ' .
111]| 2o < C/ (t —s)7Ls7||CU(8) || L ds < C’ln(a :
0 J—

Further, after integration by parts,

I == [Bu(t = 5)(j + D)57¢0 )]

t/a

+ /t En(t —8)(j 4+ 1)s7H(js7¢U1(s) + 57710 (s)) ds.

a

By Lemma 3.3 and the induction assumption, we have

1Ew(t = $)(j + 1)sCY"Y(9) | < CR* G101
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and
t
| [ Bt =96+ 157 G50 a5, < @l
t/a

Thus
2]z, < (C+ Cln(a))h*6||v]lL., + Cln(a) sup [|sT¢D|,.

0<s<t

Therefore, with C, = C' + C'ln(a) + C'ln(;%5),
2o < Cah®G]v]lLe + Cln(a ) Sup IISJ+1 ()2

By (3.3.13), we get

sup [|s71C(5)||10, < Cah®6][0]|1., + C'ln(a) sup [|s+¢9 (5)] 1.
0<s<t 0<s<t

Choosing a such that C'In(a) < 1/2, we obtain (3.3.12). The proof is complete. O

We now turn to an error estimate in the smooth data case.

Theorem 3.4. Let u(t) and up(t) be the solutions of (3.3.1) and (3.3.5) and j > 0. If
v € W22 then we have

(3.3.14) | Dl up(t) — Diu(t)]|r.. < 0h2£2||v||w2]+2 + C||Advy, — RpA||, -

The proof will depend on the following:

Lemma 3.5. Let u(t) be the solution of (3.3.1) and j > 0. Then we have, for p =
Rhu —u, p(]) = Dgpf

1P )z + P D2 < OB G ll0]| 2542, forv € WE.
Proof. The case j = 0 can be found in Thomée [16, Lemma 5.6]. Hence
1PD Ol + 2PV Ol2n < CRIID]u(0)lwz, < CRE[[0]lyy2542,
which completes the proof. O

Proof of Theorem 3.4. First we assume vy, = TV (=A)7*1y, where T), = (—A,)~", which
implies that Ahvh = RpAJv. In this case, we want to show

1D} un(t) — Diu(t)||r.. < CRE|0llyyzs+e,

which we will do now. ' '
We write, with p) = D}p and %) = D!, where § = u;, — Ryu and p = Ryu — u,

Dguh _ Dju = pU) + p(j)
Here pl%) is bounded as desired by Lemma 3.5. To estimate ) we note that

DY) — ALY = — P, pU+Y),
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so that, by Duhamel’s principle and 6)(0) = Aflvh — RpyAiy =0,

09 (t) = / / Wt — 8)PaptV (s)ds = I+ I1.
t/2

Here by Lemmas 3.3 and 3.5,

t
|||, < C / 16940 (5) 15 ds < CRE o]l
t/2

For I we integrate by parts to obtain

t/2

I=— [Eh(t — S)Php(j)(s)]o

t/2 '
— / E; (t — 5)Pop (5) ds.
0
Using Lemmas 3.3 and 3.5 we have
1Bw(t = $)Pup? ()1 < CllOD (520 < CR2Ga][0]| 242,

and

t/2 _
| [ ma-amo o], <o [Ca- a0l e
o0 0

< RG]y,

which shows (3.3.14) for present choice of vp,.
It remains to consider the contribution to the semidiscrete solution of the initial data
vp — T)TH(—=A)7+1y. We have by the above proof

1D7 En()(T " (—A)" 1) — Dlu(t)l|z. < Ch*G|[vllyziee.
On the other hand, by the stability of Ej(t),
1D En () (vn — T7 T (=AY o).

|| o o]

< C”Ah’l)h - RhAj’U”LOQ.
Together these estimates complete the proof of (3.3.14). O

Now we consider the error estimates for the fully discrete scheme (3.3.9). In order to
apply the results of Section 2, we have to consider the appropriate bound for the resolvent
R(z;—Ay). To do this, we quote the following lemma from Bakaev, Thomée, and Wahlbin
[4, Theorem 1.1],

Lemma 3.6. For any 6 € (0,7/2) there exists a constant C such that
IR(z —An)fllze < Cl2l 7 fllew,  forz € Zs.

By using this lemma, we see that A = —A,, satisfies (1.1.2) and (1.1.3), hence we can
apply the results in Section 2 with A = —A,, B = S} equipped with the L., norm.

We first combine Theorem 3.1, for the error estimate in the semidiscrete case, with
Theorem 2.6, applied to the semidiscrete equation (3.3.5), and obtain the following error
estimate in the nonsmooth data case.
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Theorem 3.7. Let u(t,) and U™ be the solutions of (3.3.1) and (3.3.9). Assume that r(z)
is accurate of order p > 1 and A(0)-stable with 0 € (0,7/2] and |r(c0)| < 1. Let j > 1
and assume that Qi, defined in (1.1.11), is an approzimation of Dg, which is accurate of
order p. Then there is a constant C such that, if v € Ly, and v, = Pyv, then we have, for
n>mq, t, >0,

|QLU™ — Diu(tn)llz., < C(R* Gt 7" + k74,7 )| |v]| L.
We finish with an error estimate in the smooth data case.

Theorem 3.8. Let u(t,) and U™ be the solutions of (3.3.1) and (3.3.9). Assume that r(z)

is accurate of order p > 1 and A(0)-stable with 6 € (0,7/2]. Let j > 1 and assume that
7, defined in (1.1.11), is an approximation. of D!, which is accurate of order p. Then

there is a constant C such that, if v € W22 qnd v, = Pyv, then we have, for n > my,

IQLU™ = Diu(ta)l|ze. < C(B*Gilvllyzses + kP [[vllyyzpea) + Cll A on — Aol
In order to prove the theorem, we need the following lemma.

Lemma 3.9. Assume that r(z) is A(0)-stable with § € (0,7/2] and accurate of order
p>1. Let j > 1 and let Gns = Gn(—kAL)TS, where Gy, is defined by (2.2.3) and
Ty, = (—Ap) ' Then we have

Proof. Using Lemma 3.6, we obtain by Theorem 2.1, for n > m;,
(3315)  Guirgwllie = G (~kANTE 0], < CR¥|lulr,, for0<i<p.

Note that if r(2) is accurate of p it is also accurate of order [ with 1 <[ < p, which shows
(3.3.15) for 1 <1 < p. The case [ = 0 follows by a direct proof as in the case | = p. O

Proof of Theorem 3.8. By Theorem 3.4, Lemma 3.5 and the estimate
1A} vn = RaAw]| 2., < | AGon = Av||z, + [|(Rw — 1) A0 2.,
we only need to show
(3.3.16) QU™ = Diun(ta)llze < C(W*G|[0llyzsas + K20l zpeai) + Cll Ao — Ao
Assuming first that v, = T/ (—A)7v, we have
QLU™ — Diup(t,) = kG, j(—A) 0.

Following Thomée [16, Theorem 8.6], we choose @, such that, with C' independent of s,

(3.3.17) I(=2Y (0 = 5. < CRPIAPT0],. < OR|Jolly a0,
(3.3.18) I(=A) 8. < CIAP0], < Cllollyzpras,

(3.3.19) EH (=AY |we < Cs||Afv|lwz, for0<i<p-—1,2<s< oo.
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Applying now the identity
p—1
v="Y THT = Ty)(=A) o+ TP (= A)Po,
1=0

to (—A)’7g, we have

(3.3.20) G (=AY, = Go(—kAR) T (—AY 5y,
p—1
=3 Gt (T = T) (=) 7415 + Gl (— D)5
=0

By Lemma 3.9, we have, since (T' — T)(—A) = I — Ry,
|Gagrs(T = Tn) (= 2) 0| < CR™I[( = Ra)(=2)75 1.

Using the following bound for the Ritz projection in maximum-norm, see, e.g., Thomée
[16, Lemma 5.6],

(R, — I)vl||r, < C’h2_2/5£h||v||ws2, for 2 < s < o0,
and (3.3.19), choosing s = £}, we therefore obtain
1G5 (T = Tn) (=)0 |1, < CEHIRZ 200, | A5 |
< CkIsh*™ /54, )| Adv|| w2
< CK PG ||vllyarei, for0<1<p-—1.
For the case | = p we have by (3.3.18),
G i (AP0l < CRPH AP G|, < CRPH 0] y2msas.
Together these estimates imply
1Gg (—2) g]|10, < OK (B2 |0l 2r2i + K [[0]]yy20+25)-
By Lemma 3.9 and (3.3.17), we have
G (=A) (0 = )| 1w = |G (=R AT (=AY (v = ) 1.
< CR||(=AY (v = )| 1o, < CEH[0]|yyzpsas.
We conclude that
QU™ = Diun(t)llzee = Ik Grj(=A) 0|1,
< C(RGlvllywarei + kvl zee2i),

which shows (3.3.16) for present choice of vp,. .
It remains to consider the contribution to the fully discrete solution of v, — T3 (—A)/v.
Since

(3.3.21) QLE, (vn — TL (=AY ) = P(r(—=kAw))r(=kAp)" (=kAp) v,
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it suffices to show

(3.3.22) IP(r(=kAR))r (kD) (=kAw) |z, < C
where || - ||, denotes the operator norm. In fact,
P(r(=Ap))r(=Ap)"(=Ap) ™ = 5 P(r(z)r(2)"277 R(z; —Ap) dz.
r

Since 0 € p(—Ay), P(r(z)) = O(2?) as z — 0, there exists small n > 0, such that
|R(z; —Ap)||lz. < C and |P(r(z))z7| S C for |z| < n. Thus, we have, noting r(z) is
bounded on I' and n > my,

H/ 2 R(z—Ay) dzH /nd +/wﬂ<c
h o 14 . pj+1_ )

which shows (3.3.22). The proof is now complete. O

4. NUMERICAL ILLUSTRATIONS

In this section, we show some numerical results illustrating our theoretical analysis. We
consider a one-dimensional problem with nonsmooth data,

(4.4.1) Up — Ugy = 0, in[0,1], with u(0,¢) =u(l,t) =0, fort >0,
o u(z,0) =v(z), in]0,1],

where

(4.4.2) b 1, ifi<z<?
o ~ 10, otherwise.

We have that v € Ly, but v ¢ W2 for any s > 0.
The exact solution of (4.4.1) is

4 & (2n—1)m

u(z,t) = - Z(—l)” sin

n=1

(2n — 1) le (@Dt gin (90 — 1)1z
and the derivative of u(z,t) is

(2n—1
t(z,t) =4m Z 1)"ts %(2% — 1)e~ (@ =DM gin(2n — 1)7z.

We define S;, to be the set of continuous piecewise linear functions on a uniform mesh
of size h, which vanish at z = 0 and z = 1. As explained in Section 3, the semidiscrete
problem may be written

(4.4.3) upt = Apup, fort >0, with uy(0) = Py,
where Ay, is the discrete analogue of A = —d?/dx?, defined by

(Anth, ¥) / Wy dz, Y, x € S
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We first compute the approximate solution U™ of (4.4.1) by applying the time stepping
method U™ = r(kA,)U™! to the semidiscrete problem (4.4.3), where () will be specified
in our examples below. As mentioned in the introduction, if 7(co) = 0, then wu4(t,) can be
approximated by —A,U"™ and the error estimates (1.1.10) holds. In the case of 7(c0) # 0,
we then use U™ = (U™ — U™')/k, which is a special case of (1.1.11), to approximate
ut(t,). Theorem 3.7 shows an error estimate for the fully discrete method with nonsmooth
data in the L., norm. More precisely, if [r(c0)| < 1, we have

(4.4.4) 10U™ — us(t,)|| < Ct,2(k + B*63)||v|| 1. -

For the approximation —A,U" of u;(t,) when r(co) = 0, combining (1.1.10) and Theo-
rem 3.1, we have the same error bound as in (4.4.4).

In our experiment, we consider the f-method defined by (2.2.1) with § = 2/3, in this
case |r(oc0)| = 1/2. Since we are mostly interested in the time stepping, we choose h very
small and a sequence of moderate k. We thus use h = 1/200 fixed, and the time step & is
chosen as 1/20,1/40 and 1/80.

Denote e(k) = e(k,t,) = ||U" — u(ty)||L.,, and let p(k1, ko) = e(k1)/e(ks). Table 1 shows
the Lo, norm of the error of the approximation U™ of u(t,) at time ¢,,. From Thomée [16],
we know that ||[U" —u(t,)|| < Ct, ' (k+h?63)||v||r..- Table 1 shows the expected O(k) order
of convergence. We also see that the error becomes large when ¢ tends to 0.

In Table 2, we show the results of the approximation OU" of u(t,). Here (k) =
e(k,tn) = ||OU™ — uy(tn)||r., and again p(kq, ko) = e(ky)/e(ks). The results confirm the
expected O(k) order of convergence and the singular behavior of the error as ¢ — 0.

t | e(1/20) | e(1/40) | e(1/80) | p(1/20,1/40) ] p(1/40,1/80)
0.1 | 1.669E-01 | 4.343E-02 | 6.465E-03 3.84 6.71
0.2 | 4.794E-02 | 8.957E-03 | 4.764E-03 5.35 1.87
0.3 | 1.537E-02 | 5.082E-03 | 2.688E-03 3.02 1.89
0.4 [ 5.498E-03 | 2.570E-03 | 1.348E-03 2.13 1.90
0.5 | 2.214E-03 | 1.218E-03 | 6.342E-04 1.81 1.92
0.6 | 1.020B-03 | 5.548E-04 | 2.863E-04 1.83 1.93
0.7 | 4.572E-04 | 2.456B-04 | 1.257E-04 1.86 1.95
0.8 [ 2.009E-04 | 1.065E-04 | 5.405E-05 1.88 1.97
0.9 [ 8.693E-05 | 4.548E-05 | 2.288E-05 1.91 1.98
1.0 | 3.717E-05 | 1.918E-05 | 9.568E-06 1.93 2.00

Table 1. f-method, with the approximation U" of u(t,) in L, norm.
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t | e(1/20) | e(1/40) | e(1/80) | p(1/20,1/40) | p(1/40,1/80)
0.1 | 9.664E+00 | 4.558E+00 | 6.097E-01 2.11 74T
0.2 | 2.460E+00 | 3.964E-01 | 1.020E-01 6.20 3.88
0.3 | 6.737E-01 | 9.585E-02 | 4.741E-02 7.02 2.02
0.4 | 1.939E-01 | 4.30E-02 | 2.123E-02 4,50 2.02
0.5 | 5.960E-02 | 1.883E-02 | 9.270E-03 3.16 2.03
0.6 | 1.970E-02 | 8.102E-03 | 3.969E-03 2.43 2.04
0.7 | 7.118E-03 | 3.437E-03 | 1.674E-03 2.07 2.05
0.8 | 3.018E-03 | 1.442E-03 | 6.983E-04 2.09 2.06
0.9 | 1.268E-03 | 5.996E-04 | 2.884E-04 2.11 2.07
1.0 | 5.293E-04 | 2.474E-04 | 1.182E-04 2.13 2.09

A

Table 2. §-method, with the approximation QU™ of u(t,) in L norm.
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