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APPROXIMATION OF TIME DERIVATIVES FOR PARABOLIC
EQUATIONS IN BANACH SPACE: VARIABLE TIME STEPS

YUBIN YAN

ABSTRACT. We study smoothing properties and approximation of time derivatives for
time discretization schemes with variable time steps for a homogeneous parabolic prob-
lem formulated as an abstract initial value problem in a Banach space. The time step-
ping methods are based on using rational functions r(z) & e~* which are A(6)-stable
for suitable § € (0,7/2] and satisfy |r(oc0)| < 1. First and second order approxima-
tions of time derivatives based on using difference quotients are considered. Smoothing
properties are derived and error estimates are established under the so called increasing
quasi-quasiuniform assumption on the time steps.

1. INTRODUCTION
Let us consider the following homogeneous linear parabolic problem
(1.1.1) u+Au=0 fort>0, withu(0)=uwv,

where A is a closed, linear operator, with dense domain D(A) C B, where B is a Banach
space with norm || - || and v € B. We shall study time discretization schemes with variable
time steps and show error estimates for the approximations of u(t) and u;.

We assume that —A is the infinitesimal generator of a bounded analytic semigroup
E(t) = e and that 0 € p(A), where p(A) denotes the resolvent set of A. This is
equivalent to saying that there is an angle ¢ € (0,7/2) such that

(1.1.2) p(A) DYs={2€C:§<|argz| <m z#0}U{0},
and that the resolvent, R(z; A) = (21 — A)™!, satisfies
(1.1.3) |R(z; A)|| < M|z|™*, forz€ X5, with M > 1,
where || - || denotes the standard norm of bounded linear operators on 5.
Under these assumptions F(t) may be represented as
E(t) = %/Fe_ZtR(z;A) dz,
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2 YUBIN YAN

where I' = { z : |arg z| = ¢} with ¢ € (§,7/2) and Imz is decreasing along I'. Further-
more, the smoothing properties of analytic semigroups are valid. More precisely, see Pazy
[11], we have

(1.1.4) |DIE@)v| = |A’Et)v|| < Ct o], fort>0, veb,

which shows that the solution is regular for positive time even if the initial data are not.

Let0 =1ty <t; <---<t, <--- beapartition of the time axis and let k,, = t,,—t,_1, n >
1, be the variable time steps. An approximate solution U" =~ u(t,) = E(t,)v of (1.1.1)
may be defined by

(1.1.5) U" = E, U, forn>1, withU’=v,

where Ey, = r(k,A) and r is a rational function that satisfies certain conditions. For
example, 7(z) = 1/(1 — z) and r(z) = (1 + 2/2)/(1 — z/2) correspond to the backward
Euler and Crank-Nicolson methods, respectively.

We say that r is A(f)-stable with 6 € [0, 7/2] if
(1.1.6) Ir(z)| <1, for|argz| <40,
and accurate of order p > 1, if
(1.1.7) r(z) —e = 0(**"), asz—0.

Let us recall some results for the time stepping method (1.1.5) with constant time step
k. If A satisfies (1.1.2) and (1.1.3), and r is A(f)-stable with § € (,7/2], then we have
the stability estimate, with Ey = r(kA),

(1.1.8) |U™|| = ||EM|| < Cllvl, fort, >0, ve B,

see, e.g., Crouzeix, Larsson, Piskarev, and Thomée [3] and Palencia [9], [10]. If A satisfies
(1.1.2) and (1.1.3), and r is A(#)-stable with 6 € (6, 7/2] and accurate of order p > 1, then
the following smooth data error estimate holds:

(1.1.9) U™ — u(t,)|| < CKP||APv||, fort, >0, v e D(AP).
Moreover, if |r(c0)| < 1, then the following nonsmooth data error estimate holds:
(1.1.10) U™ — u(tn)|| < CkPtP||v||, fort, >0, veB.

The condition |r(0o)| < 1 ensures that oscillating components of the error are efficiently
damped, see, e.g., Le Roux [8], Larsson, Thomée, and Wahlbin [7], Fujita and Suzuki [5].

Smoothing properties and approximation of time derivatives for (1.1.5) with constant
time step have also been studied by some authors. Let j > 1 be fixed. If A satisfies (1.1.2)
and (1.1.3), and r is A(f)-stable with 6 € (6, 7/2], and with r(co0) = 0, then the following
smoothing property holds:

(1.1.11) |A7U™|| = ||A7ERv|| < Ot ||v]|, fort, >t;, v € B,

see, e.g., Thomée [12] for the Hilbert space case and Hansbo [6] for the Banach space case.
However (1.1.11) is not true in general when r(o0) # 0.
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Let us introduce the finite difference quotients,

. 1 2
Jrrm __ n+v
(1.1.12) QU" = o Z ¢, UM, forn > my,

vVv=—mi
where m;, mo are nonnegative integers, and ¢, are real numbers such that the operator Qf;
is an approximation of order p > 1 to D{, that is, for any smooth real-valued function u,
Diu(t,) = Qlu™ + O(kP), ask — 0, withu" = u(ty,).

We then have the following smoothing property and nonsmooth data error estimates: If A
satisfies (1.1.2) and (1.1.3), and 7 is A(@)-stable with 6 € (§,7/2], and |r(c0)| < 1, then
we have

(1.1.13) 1QLU™|| < Ct7||v|l, forn>my, t, >0, v € B,

and, if further r(z) is accurate of order p > 1,

(1.1.14) 1QIU™ — Diu(t,)| < CkPt, ®*)||v||, forn>my, t, >0, ve B,
see Yan [13]

For the smooth data error estimate, the condition |r(c0)| < 1 is not necessary. In fact,
we have, for any A(#)-stable discretization scheme with 8 € (9, 7/2],

(1.1.15) |QLU™ — Diu(ty)|| < CKP|| AP 0], for n>my, ve D(AP),

see, e.g., Baker, Bramble, and Thomée [2] for the Hilbert space case and Yan [13] for the
Banach space case.

Now let us mention some results for the variable time steps which are related to the
present paper. Stability results have been considered by some authors. For example,
Palencia [9] shows that, if A satisfies (1.1.2) and (1.1.3), and r is A(f)-stable with 6 €
(6, /2], if the time steps {k;}32, satisfy, with some constant ,

k;
(1.1.16) 0<put< o <pu<oo, fori,j>1,

j
then there exists a constant C'(u) such that the following stability result holds

(1.1.17) H ﬁEkj H < C(p), where Ey; =r(k;A).
j=1

We observe that the stability bound will depend on the maximum ratio p between the
steps, but not on the steps themselves. In this way, the stability bound does not blow up
when the maximum time step goes to zero, as long as p remains bounded. In particular,
a family of quasi-uniform grids with k4, < pkun, satisfies the assumption (1.1.16), where
kmaz = MaXi<j<n kj, Kmin = minj<j<, k;. More precisely, Bakaev [1] shows that if A
satisfies (1.1.2) and (1.1.3), and r is A(6)-stable with 0 € (9, 7/2], then

kmin

i kmaw
(1.1.18) H HE,C],H < Cln(l+p), where = "m,
7j=1



4 YUBIN YAN

Palencia [10] further finds that if |r(co)| < 1, then the stability bound holds without any
restriction on the time steps.

In the present paper, we first consider error estimates for (1.1.5) in both smooth and
nonsmooth data cases. We show, in Theorem 2.1, that if A satisfies (1.1.2) and (1.1.3) and
r is A(f)-stable with 6 € (9, 7/2] and accurate of order p > 1, then the following smooth
data error estimate holds:

U™ — u(ty)|| < CKE._||[APv]|, fort, >0, v € D(AP).

max

To obtain error estimates in the nonsmooth data case, we introduce the notion of in-
creasing quasi-quasiuniform grids T in time. Let {7} be a family of partitions of the time
axis, T ={t,: 0=ty <ty <---<t, <---}. {T}1is called a family of quasi-quasiuniform
grids if there exist positive constants ¢, C, such that

(1.1.19) Chni1 < kn < Cty/n, forn > 1.

Further, if k1 < ky < --- < k, < ---, then we call {7} a family of increasing quasi-
quastuniform grids. We note that increasing quasi-quasiuniform implies that k, ~ k, 1
and nk, ~ t,, where a,, ~ b, means that a,/b, is bounded above and below.

For example, if we choose the variable time steps k, = n°k for some fixed s > 1, with
k > 0, then ¢, = k(zyzl js), and the corresponding family of partitions {7} is a family
of increasing quasi-quasiuniform grids. In fact, it is obvious that &, /k,.1 = n°/(n+1)* >
1/2%. Further, since t,/k = Z?:l 4% > Cn*t! for some positive constant C, we have
kn < Cty/n.

Under these assumptions we have the following nonsmooth data error estimate: If A
satisfies (1.1.2) and (1.1.3), and r is A(f)-stable with § € (6, 7/2] and accurate of order
p > 1, if further |r(oco)| < 1 and {7} is a family of increasing quasi-quasiuniform grids,
then we have

U™ — u(ty)| < CkPEP||v||, fort, >0, veEB.

We note that these two error estimates correspond to (1.1.9) and (1.1.10) for constant time
step, respectively.

As for the smoothing property, we show that, if 7(co) = 0, and {7} satisfies (1.1.16),
then

HAHE,CJ.UH < Cttv||, fort, >0, veB.
j=1

As in the constant time step case, see Yan [13], the above smoothing property is not
true in the case of 7(c0) # 0. However, if |r(c0)| < 1, then we introduce similar difference
quotients as (1.1.12) with variable time steps. For simplicity we only consider the following
first and second order approximations of time derivative u;(t,) defined by

Ur — Un—l

(1.1.20) ou™ = — forn > 1,
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and
n _ Jin—1 n—1 _ 7/n—2
1.1.21 U™ = a,,0U" + b,0U™ ! = q, + by, , formn > 2,
0*U oU™ + b,0U™! UkU bUkU f
n n—1
where

ap = (an + knfl)/(kn + knfl)a by, = _kn/(kn + knfl)-

In both cases, under the assumption of increasing quasi-quasiuniform grids, we obtain a
smoothing property and error estimates for time derivative in the nonsmooth data case
which are similar to (1.1.13) and (1.1.14), respectively. We also show a smooth data error
estimate without any restrictions on the time steps.

The paper is organized as follows. In Section 2 we show error estimates for the approx-
imation U™ of ¥™ in both smooth and nonsmooth data cases. In Section 3 we consider
the first order approximation (1.1.20) of u(¢,) and show a smoothing property and error
estimates for time derivative. In Section 4 we consider the second order approximation
(1.1.21) and obtain similar results as in Section 3.

By C and ¢ we denote large and small positive constants independent of the functions
and parameters concerned, but not necessarily the same at different occurrences. When
necessary for clarity we distinguish constants by subscripts.

2. ERROR ESTIMATES

In this section we will consider error estimates for the approximation U™ defined by
(1.1.5) of the solution wu(t,) of (1.1.1). Our first result is an error estimate in the smooth
data case in which there is no restriction on the time steps k,,.

Theorem 2.1. Let U™ and u(t,) be the solutions of (1.1.5) and (1.1.1). Assume that A
satisfies (1.1.2) and (1.1.3), and that r(z) is accurate of order p > 1, and A(f)-stable with
§ € (6,7/2]. Let kj,1 < j <mn, be time steps. Then we have

U™ —u(t,)| < CKE .||APv|, fort, >0, v e D(AP),

where kpyqp = MaxXi<j<n kj.

az|

In order to prove Theorem 2.1, we need the following lemmas which are simple con-
sequences of (1.1.6) and (1.1.7). The first lemma is quoted from Thomée [12, Lemma
8.2].

Lemma 2.2. Assume that r(z) is A(f)-stable with 0 € (0,7/2], and accurate of order
p > 1. Then for arbitrary R > 0 and ¢ € (0,0) there is ¢ > 0 such that

Ir(2)] < e_c‘z‘, for|z| < R, |argz| < 9.

Lemma 2.3. Assume that r(z) is A(0)-stable with 0 € (0,7/2], and accurate of order
p > 1. Let kj, 1 < j < n, be any positive numbers. Then for arbitrary R > 0 and
¥ € (0,0) there are ¢,C > 0 such that, with F,(z) = [[;_, r(k;jz) —e™"%,

(2.2.1) |F(2)] < CnlkmagzPTre " for |kmasz| < R, |argz| < 1,
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and

(2:2.2) |Fu(2)] < Clkmaaz[Ptalzle ™, for [kmas2] < R, |arg2| <4,

where kyqp = MaxXi<j<n kj.

Proof. Since r(%) is accurate of order p > 1, there exists a small > 0 such that
Ir(z) — e ?| < Clz|Ptt,  for |2] < n.

Further, by (1.1.6), we have, for arbitrary R > 0 and 9 € (0, ),

(2.2.3) Ir(z) — e | < Clz|P*!, for |z| < R, |argz| < 9.
We next observe that, if ¢ < cos,
(2.2.4) le7*| = e7®e* < ekl for |arg 2| < ¥

It is easy to show that
(2.2.5) |Fo(2)] < CZ (kj|2|)PTe=<tn=k)Z - for |kpneez| < R, |argz| < 4.

In fact, using Lemma 2.2, (2.2.3) and (2.2.4), we have, for |kn2| < R, |argz| < 1,
()] = [r(hi2) — €59] < Ozl ek,
and
B3 (2)| = |(r(k12) — e72)r(ky2) 4 e "% (r(kpz) — 7))
< Clk; z\pH —c(ta—k1)|z| +Ce—c(t2—k2)|z||k2z|p+1

2
Z (k;|2|)PLecttamkilz]
=1

In general, for n > 3,

Fu(2)| = |(r(k12) = ) ﬁr(ka) + e (r(ky2) - e7%) ﬁr

j:2 ]:3
n—1
4+ 4 (H e,ka) (T'(knz) _ e*an)
j=1
<C Z <efctj_1|z|(kjlz|)p+lefc(tnftj)\z|)
7j=1
= CZ(kj|z\)p+1e‘c(t""“i)‘z‘.
j=1

Thus, by (2.2.5), we get, using k;|z| < |kmaxz| < R, 1 < j <mn,
| (2)| < CnlkmagzPT e 2 for |kpapz| < R, |argz| < 1,
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and
n
[Fa(2)] < Cem ™ 3 (g2l
j=1
< Clkmazz|Ptalzle™ | for |kmeez| < R, |argz| < 1.
Together these estimates complete the proof. O

The following lemma gives the Dunford-Taylor spectral representation of a rational func-
tion of the operator A when the rational function is bounded in a sector in the right
halfplane, see Thomée [12, Lemma 8.1].

Lemma 2.4. Assume that (1.1.2) and (1.1.3) hold and let r(z) be a rational function
which is bounded for | argz| < ¢, |z| > € > 0, where ¢ € (§,7/2), and for |z| > R. Ife >0
is so small that {z : |z| < €} C p(A), then we have

1
r(A) =r(c0)] + — r(2)R(z; A) dz,
27“-1 ’YEUF§U’YR
where ve = {z : |2| = ¢ |argz| < ¢}, TR = {2 : |argz| = ¢,e < |2] < R}, and
B ={z:]z| = R,¢ < |argz| < 7}, and with the closed path of integration oriented in the
negative sense.

For our error estimates we shall apply the following spectral representation of the semi-
group, see Thomée [12, Lemma 8.3].

Lemma 2.5. Assume that (1.1.2) and (1.1.3) hold, let ¢ € (§,7/2), and j be any integer.
Then we have for € > 0 sufficiently small

AE(t) = —/ e "2 R(z; A) dz,
27 Joy ur,
where v = {z: |z| = ¢, |argz| <Y} and T. = {z : |argz| = ¥, |z] > €}, and where Imz is
decreasing along v. UT'c. When 7 > 0, we may take € = 0.

Proof of Theorem 2.1. Since U™ — u(t,) = [[j_, r(k;A)v — e~n4y = F,(A)v, we need to
show ||F,(A)v|| < CkP .. ||APv||, or in operator norm,

1 (A) (kmaz A) 7P| < C,

which we will do now. Let 7(2) = [[j_, 7(k;z)(Kkmaz2)™P. Since r(z) is A(f)-stable with
6 € (6,m/2], we find that 7(z) is bounded for |argz| < ¥, |z| > € with some ¢ € (4, 6)
and any € > 0. Further 7(z) is also bounded for |z| > R with R sufficiently large, since
7(00) = 0. Thus, applying Lemma 2.4 to the rational function 7(z), we have

n B 1 n B

Hr(ij)(kmawA) P=_— Hr(ka)(kmawz) PR(z; A) dz.

271 Y UPRUyR -

j=1 j=1
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By (1.1.3) and (1.1.6), we know that the integrand is of order O(z?~!) for large 2z which
implies that the integrand has no poles when |z| > R, so that we may let R tend to oc.
Using also Lemma 2.5 we conclude

1
Fo(A)(kpaeA) P = — Fo(2)(kmazz) PR(z; A) dz.

2 ~eUT.

Now by (2.2.1) we see that F,,(z) = O(2P*!) as z — 0. Combining this with (1.1.3) we

have that the integrand is bounded on the small domain with boundary . UTf, so that
we may let e — 0. It follows that, using also (1.1.3),

_ * i i _ d,O

[ E0(A) (kmazA) "l < C/O (IFn(pe™)| + |Fn(pe™™) ) (kmazp) ” —

By (2.2.2), we have, for arbitrary R > 0,

R/kmaz ) dp R/kmaz
L e L <0 [T e dp <
0 0

Since 7(z) and e~** are bounded on T', where I' = {2 : | arg z| = ¥}, we find

00 . ~ d o B d
[ 1B e L <0 [ (lnaan) 7 L <
R/kmae p R/kmaz p
Together these estimates complete the proof. O

We now show a nonsmooth data error estimate.

Theorem 2.6. Let U™ and u(t,)be the solutions of (1.1.5) and (1.1.1). Assume that A
satisfies (1.1.2) and (1.1.3), and that r(z) is accurate of order p > 1 and A(f)-stable with
6 € (0,7/2] and |r(oc0)| < 1. Assume further that {T} is a family of increasing quasi-
quasiuniform grids. Then there is a constant C such that

U™ — u(t,)|| < CkELP||v||, fort, > 0.
To prove Theorem 2.6 we need the following lemma.

Lemma 2.7. If the rational function r(z) is A(6)-stable with 6 € (0,7/2] and |r(c0)| < 1,
then for any v € (0,0) and R > 0 there are positive ¢ and C such that, for any sequences
ki < ky <--- <k, withk =r(c0),

(2.2.6) ‘ Hr(ka) — K"

< Clkiz| e ™, for |kiz| > R, |argz| < 4.

Proof. Since r(z) — k vanishes at infinity and r(z) is A(f)-stable with 6 € (0,7 /2], we have,
see Thomée [12, Lemma 8.5],

Ir(z) — k| < C|z\_1, for |z| > R, |argz| < 1.
Further,
(2.2.7) Ir(z)| <e ¢ forl|z| >R, |argz| < 9.
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In fact, || < 1 implies that (2.2.7) holds for |z| < R with R sufficiently large. By (1.1.6)
and the maximum-principle we have |r(z)| < 1 for |arg z| < 6, z # 0. In particular,

r(2)| < 1 on the compact set {z: R < |z| < R, |argz| < 1}, which shows (2.2.7).
(2.2.6) is obvious for n = 1. When n > 2, we have, for |k1z| > R, noting that k < e™¢
and ky < ko <o <k,
‘ Hr(ka) — k" = ‘(r(klz) - K) Hr(ka) + o+ K" (kp2) — K)

n
< C'e_cnz kjz|™! < Clkiz|'ne™" < Clkyz| e,
7j=1

which completes the proof of Lemma 2.7. O

Proof of Theorem 2.6. The case n = 1 follows from the constant time step case, see Thomée
[12]. We now consider n > 2. With F,(2) as in Lemma 2.3, we need to show ||F},(A4)] <
CkPtP. Since t,, < nk,, it suffices to show

[Fn(A)]| < Cn7?.

Set F,(2) = F,(2) — k™knz/(1 + kyz), where k = r(c0). Since |x| < 1, and by the obvious
fact that ||k, A(I + k,A) || < C, we have

|5 kn AL + kn A) || < Cl6™ < CnP,

and it remains to show the same bound for the operator norm of F,(A). Since [T, r(k;2)—
k"knz/(1 + kypz) vanishes at z = oo, we may use Lemmas 2.4 and 2.5 to see that

Fo(A) = —— /F Fu(2)R(z: A) dz,

2mi
where I' = {z : |arg z| = ¢} for some ¢ € (4,6). By (1.1.3), we get

- . iwon Ap
IF < C [ 1Fpet) .
0
Let R be arbitrary. We will bound the above integral over the intervals [0, R/k,] U

[R/kn, R/k1] U [R/k1,00). We rewrite F,(2) = ([[j_, r(kj2) — ") + £ /(1 + kn2) — e7%.
Using (2.2.4) and Lemma 2.7 and |1 + k,z| > |k,z| for Rez > 0, we get

o ~ . d o0 d
[ 1BGe L <0 [ (e ) 4l ) ) L
R/ky P R/k1 p

Obviously,

= —cn —1 d,O * —en  —2 _

e Mkip) —< e " dx < Cn’?,

R/k1 P R

and, using k; < k,,
o0 d o
[ ) 2 < [T ik 7 e < o,
R

R/k:
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and, using nk; < t,,

/ e Ctnp @ < C/ (tnp)_p @
P

R/k1 p R/k1

< C/ (toky 1) Pz P ldr < Cn'?.
R
Thus

© g
(2.2.8) / F(pe™)| % < Cn, forn > 2.
R/k1 P

Using (2.2.1) and [1/(1 + k,2)| < 1 for Re z > 0, we have, since nk, ~ t,,

1 p 1 p n
/ F(pe)| 2 < / Fu(oe) 22 / 6"k dp
0 p 0 1Y 0
R/kn dp
<c / (kap)P e 22 1 Ol
0 p

R
< C/ aPe tn/k)Tp doy 4 C|k|" < Cn7P, forn > 2.
0

It remains to consider the integral over the interval [R/k,, R/k;] for n > 2. By Lemma
2.2 and (2.2.7) there exist constants ¢, and ¢, such that |r(z)| < e~/ for 2| < R, |argz| <
¥, and |r(z)| < e™® for |z| > R, |argz| < v, where ¢y can be chosen arbitrarily small.
Therefore, assuming that z € Fgﬁ:H with some m : 1 <m < n —1 so that k;|z| < R for
7 < m, we have

n
‘ Hr(ka)‘ < g Gtmizlgea(nom) < e <ec2m6701t’"|2|), for n > 2.
i=1

Further, by (1.1.19),
(2.2.9) citm|z| = c1(tm/km) (km/kms1) (kmat|2]) > clcOCo_lRm = c3m.

Thus if we choose ¢, < ¢3 and let ¢4, = ¢3 — ¢9, we get

n
(2.2.10) ‘ Hr(ka)‘ Semeam ife TR 1<m<n-1.
7j=1
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We rewrite F,(z) = [[5= r(kjz) — e % — K"knz/(1 + knz). Using (2.2.10) and noting
that In(kp,41/kn) <InC < C, we get
n -1

R//C1 d n R/km
i P
/ T(kjpe”)‘— <> /
R/kn . P R/km+1

- | d
11 (/fjﬂei“p)‘ ?p

Jj=1 m=1 j=1
n—1 R/km d,O n—1
(2.2.11) < / e e UM — e Z (e_c‘"” ln(km+1/km)>
1 o R/kmi1 P m=1

n—1
< Ce—czn( > e_c‘”") < Ce ™" < Cn™?, form > 2.
m=1

Further, using (2.2.4) and noting that (1.1.19) implies t,p > c(nky)p > cn for p €
[R/kn, R/k1], we have, since In(k,/ki) = S In(kpy1/km) < Ch,

Rk i k d Rk d
(2212) / (|e—tnpei ¢| + npP Kn) _p < / (e—cn + K,n) _p
R/kn 1+ knp p R/kn P
< (e 4+ k") In(k,/k1) < Cn(e™ " + k") < Cn7P, forn > 2.
Hence
R/k1 | _ ) dp
/ Fn(pei“p)‘ — < Cn7?, forn>2.
R/kn p
Together these estimates complete the proof. O

3. APPROXIMATION OF TIME DERIVATIVE — FIRST ORDER

In this section, we shall consider a smoothing property of the time discretization scheme
(1.1.5) and error estimates for the first order approximation of time derivative u;(t,,) defined
by

B Un _ Un—l
(3.3.1) U™ = — forn > 1.
n

We begin with a smooth data error estimate for the approximation (3.3.1).
Theorem 3.1. Let U™ and u(t,)be the solutions of (1.1.5) and (1.1.1). Assume that A

satisfies (1.1.2) and (1.1.3), and that r(z) is accurate of order p > 1, and A(0)-stable with
6 € (6,7/2]. Let kj,1 < j <mn, be increasing. Then we have

(3.3.2) 10U™ — u,(t,)|| < Ckyl|A%v||,  fort, > 0.
Proof. The case n = 1 follows from the result in constant time step case, see Yan [13]. Now

we consider the case when n > 2. Setting

n—1

Gu(2) = [ [ r(ki2) (r(kn2) = 1) = (=knz)e 7,

j=1
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our result will follow from
|Gn(A)(k,A)72|| < C, forn > 2.

Let 7(z) = (H] L r(kiz)(r(knz) — 1)) (knz)~2. As in the proof of Theorem 2.1, applying
Lemma 2.4 to the rational function 7(z) and using also Lemma 2.5 we conclude
1
Gn(A)(kgA) ™2 = — Gr(2)(kn2)"2R(2; A) dz.

21 J .o,
Since 0 € p(A), we have, by (1.1.3),
(3.3.3) |R(z; A)|| < C, ford < |argz| <.
We will show that
(3.3.4) Gn(2) =0(2*) asz— 0.

Combining this with (3.3.3) shows that the integrand is bounded on the small domain with
boundary v, UL{, so that we may let ¢ — 0. It follows that, with I' = {z : | arg 2| = ¢} for
some 9 € (4,0),

1

(3.3.5) Gr(A)(kyA) ™2 = omi /- Gn(2)(kn2)"2R(2; A) dz.

In order to show (3.3.4), we write
Gn(2) = GL(2) + GA(2) + G2(2), forn > 2,

where
Gl(z) = ﬁr(ka) (r(knz) — 1+ kyz),
=1
and, with F,,(2) = [Tj_, r(k;z) —e Jt“z,
G%(2) = —knzﬁr(ka)(l —1(kn2)), G2(2) = —kn2F,(2).
By (1.1.7), there exists a smail:; > 0 such that
(3.3.6) r()| < C, |r(2) =1 < Clal, |r(2) =1 — 2] < CJzf*, for |2 <.

Combining this with (2.2.2) shows |G, (z)| < Clk,z|? for |k,z| <1, which is (3.3.4).

It remains to consider (3.3.5). Let us first consider the integral over ['/**. By (1.1.2) and
(1.1.3), R(z; A) is analytic in the domain {z : § < |arg z| < 7}, and hence G, (2) (kn2) 2R(2; A)
is analytic in the domain bounded by Fg/ Fr Jyn/kn (see Lemmas 2.4 and 2.5 for the definition
of the curves). We then can replace the path of integration in (3.3.5) by T' = y"/*» UT, s, .
We find, using |G,,(2)| < Clknz|? for |k,z| < 1,

d
(3.3.7) H/ )(knz) 2R (2; A) dzH </ ldz| _ ¢
ryﬁ/kn n/kn ‘Z‘

Y
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and, by the boundedness of r(z) and e~*»* over T,
o0 d
(3.3.8) H/ )(kn)*R(z: 4) de]| < c/ (C + Clhnp)) (knp)2 2 < €.
To/bn n/kn P
Together these estimates complete the proof. O
We now turn to smoothing properties of (1.1.5). Recall from the introduction that the
smoothing property (1.1.11) is not valid if r(oco) # 0. However, if r(co) = 0, the analogue
of (1.1.11) holds also for some special schemes r(z) with no restriction on the time steps,
see Eriksson, Johnson, and Larsson [4]. For a general scheme r(z) we have the following

smoothing property:

Theorem 3.2. Assume that (1.1.2) and (1.1.3) hold, and r(z) is accurate of order p > 1
and A(0)-stable with 0 € (§,7/2], and that r(co) = 0. Let {k;} satisfy ck; < kj41 < Ck;.
Then there is a constant C such that

(3.3.9) HAHr(ij)UH < Ct Y|, fort, > 0.
j=1

Proof. The case n = 1 follows the result in the constant time step case, see Hansbo [6].
Here we consider the case when n > 2. We show that, with g,(2) = ta2 [[;_, 7(k;2),

llgn(A)|| < C, forn > 2.

Since 7(00) = 0, we have, see Thomée [12, Lemma 7.3],
3.3.10 < —
(3:3.10) ) < 1o
which implies that g,(z) is bounded for |arg z| < ¢ and g,(occ) = 0. Thus there exists
R > 0 such that g,(z) is bounded for |z| > R. Lemma 2.4 shows that

1

gn(A) = 2—/ gn(2)R(z; A) dz.
T Jy UTRUyR

Noting that g,(z) is analytic for |z| > R, ¢ < |arg z| < 7, and g,(z) = O(z) as z —
0, |arg z| <1, we may let R — oo and € — 0, so that
1

() = 5 [ 2R A)

where I' = {z : |argz| = ¢} for some 9 € (§,0). We split the path of integration as
[ =T¢/" UTg,. By (2.2.7), we have

R/tn dp
H/ R(z; A) dzH < C/ tppe P = < (.
R/tn P

We now consider the integral over I'gy,. If kpoe < 15 /2, then we have

= ik? + Zk‘lkj < kmaztn + Zklkj < ti/? + Zklkj,

=1 ] I# I#

for |arg z| <,
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so that >°, . kik; > t7 /2 and hence

n

H(l-l—ckjp):l-f—c(z )p+Cp (Zkl ) - >cthp?,

j=1 I#j
which implies that, by (3.3.10),

°° tnp dp
gn(2)R(z; A) dzH <C — —
TRty R/tn Hj:l(l + ijp) p
<C "_dp<C
R/ty CP°U, P=

If kpmaz > tn/2, then, assuming that kpee = ki, for some m with 1 < m < n, and since
n > 2, we have

* t * t
zAdzH<C/ 7"dp§0/ I _gp<c
H /FR/t R/tn (1 + Ckmp)2 R/tn (]. + Ctnp)2
Together these estimates complete the proof. O

As in Yan [13] for the constant time step case, if |r(c0)| < 1, using difference quotients in
time rather than the elliptic operator A in (3.3.9), we have a following smoothing property:

Theorem 3.3. Let U™ be the solution of (1.1.5). Assume that (1.1.2) and (1.1.3) hold and
that the discretization scheme is accurate of order p > 1, and A(6)-stable with 6 € (6, 7/2],
and |r(c0)| < 1. Assume that {T} is a family of increasing quasi-quasiuniform grids. Then
there is a constant C such that

(3.3.11) laum) < Gt loll,  forta > 0.

Proof. The case n = 1 follows from the constant time step case, see Yan [13]. We now
consider the case when n > 2. We want to show that, with g, (z) = [[}- L7 (kjz) (r(kn2)—1),

|3.(A)|| € Cn~t, forn > 2.

Since ¢, < nk this implies [|g,(A)|| < Cknt;* . i
Since |r(co)| < 1 we find that g,(co) exists, which implies that there is R > 0, such

that for fixed n, g,(2) is bounded for |z| > R. Further, by (1.1.6), §,(2) is bounded for
|z| > €, |argz| < ¢ with ¢ € (4,60). Applying Lemma 2.4, we get

. . 1 .

gn(A) = gn(o0)I + -  Gn(2)R(2z; A) dz.

T 'YGUI‘?U'YR

Since the integrand is bounded for |z| > R, we may let R tend to co. Moreover, by (3.3.6),
we have §,(z) = O(z) as z — 0, so that we may let ¢ — 0. Thus

() = G0 + 5 [ )Rz 4)

where I' = {z : | arg z| = ¢} for some ¢ € (4, 6).
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Clearly,
13 (00)I || < |r(00)™(r(00) = 1)| < Ce™" < Cn™".
Since |r(00)| < 1, there exist R > 0 and ¢ > 0 such that
(3.3.12) Ir(z)| <e~¢ for|z| > R,

which shows that the integrand has no poles when |z| > R/k;, § < |argz| < 7. In fact,
using also (3.3.3), we have

(3.3.13)
G0 (2)R(2; A)|| < Ce™®V(e™¢+1) < Ce™, for |z| > R/ky, 6 < |argz| < .

Thus we can replace the path of the integration by T = FR/ ko PBRIEL ~B/k1 - We have,

R/kn
since |gn(2)| < Ce= for |z| > R/k;,
d
n(2)R(z; A) dzH < C/ e " ldz| <Cnt,
JRIk1 AR/k1 E
By (1.1.6) and (3.3.6), we know that, for arbitrary R,
(3.3.14) r(2) =1 < Clz|, Ir(2) =1 —2| < C|z|?, for|z| <R, |argz| <.
Using this, Lemma 2.2 and t,_1/kn, = (tn_1/kn_1)(kn_1/kn) > C(tn_1/kn_1) > C(n — 1),
we have
_Ctn 1p p
H/R/kn zAdz‘<C/ (kp)p

< C’/ e~ tn-1/kn)z g4 < C’/ e~ dr < COn~1.
0 0

Finally, we write

/FR/kl gn(z)R(z; A) dz = (/FR/kn_1 + /pR/kl )gn(z)R(z; A) dz=1T+II.

R/kn R/kn R/kp_1

If n = 2, we have, by Lemma 2.2 and In(ky/k1) < C,
R/k:l dp
H/ R(z;A)dz|| < / e~hr L << Cn
R/kl

R/k p
If n > 3, using Lemma 2.2 and (1.1.6) and (2.2.9) with m = n — 1, we obtain, for

Zergﬁ:_H, 1<m<n-2,
n—1
|§n(Z)| S C‘ Hr(ka)‘ S Ce_Ct"—1|z‘ S Ce—cs(n—l)’
j=1

which implies that, since k,_1 ~ k,,

R/knfl dp
||| < C / e==1) 2 < Cem In(ky /kn_1) < Ce™,
R/kn p
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Further, by (1.1.6) and (2.2.10),
lgn(2)| < ‘ H r(ka)‘ < Qe n=bemam  for 2 € F%Z:H, 1<m<n-2,
7j=1
which shows that, following the proof of (2.2.11),

171]] < CZ/

R/km
/ —02 n—1) e—C4m dp < Ce—cn

/k:m+1 1Y

We therefore obtain

/PR/"’I gn(2)R(z; A) dz
R/kn

(3.3.15) ‘ <Ce ™ <Cn7t, forn>3.

Together these estimates complete the proof. O
Our next result is a nonsmooth data error estimate.

Theorem 3.4. Let U™ and u(t,)be the solutions of (1.1.5) and (1.1.1). Assume that A
satisfies (1.1.2) and (1.1.3), and that v(z) is accurate of order p > 1 and A(0)-stable with
6 € (0,7/2] and |r(c0)| < 1. Assume further that {T} is a family of increasing quasi-
quasiuniform grids. Then there is a constant C such that

|0U™ — Dyu(t,)|] < Ckut;2||vll, fort, > 0.

Proof. The case n = 1 follows from the constant time step case, see Yan [13]. Here we
consider the case when n > 2.
With the notation of Theorem 3.1 and since ¢, < nk, we need to show

|G (A)|| < Cn~2, forn > 2.
We set, with k = r(c0),
(3.3.16) Gn(2) = Gp(2) = K" Nk = Dknz/(1 + ky2).
For the same reason as in the proof of Theorem 2.6, we have
|&" 1 (k — Dk, AT + k, A) Y| < Cle|™ P < On 2,

G 27TZ/G

where T' = {z : | arg z| = ¢} for some ¢ € (4,6).
We write

(3.3.17) G(2) :(ﬁ Pk2)(r(knz) = 1) = £ (k= 1))

+ 6" k=1 /(1 + kp2) — (=kp2)e ™?.

and
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By Lemma 2.7 and |1 + k,z| > |k,z| for Re z > 0, we have

< i d = —cn — n — —c d
/ Gu(pe*)| 2 < © / (= (kup) ™ + Il (k)™ + ()t ) 22
< Cn 2

Using |1/(1+k,z)| < 1 for Rez > 0, we have, by (3.3.16), with G! (2),] = 1,2, 3, as in the
proof of Theorem 3.1,

Rlkn 4 R/kn d R/kn
/ Gu(pe)| 2 < / Gupe*®)| 22 4 © / " kndp
0 1Y 0 p 0

3 R/ky
<> /
1=1 70

Obviously, we have, by Lemma 2.2 and (3.3.14) and ¢,, 1/k, > C(n — 1),

R/kn R/kn
319 [ G ie L [ et
0 0

d
G| ;” +Clxl".

R R
< / e~ Cltn—1/kn)o 0 0 < / e~ =Ty 4y < Cn™2,
0 0

and, by (2.2.1) with p = 1 and nk, ~ t,,

R/kn d R/kn d B
/ |GS’L| ap < C/ (knp) (knp)Qe—ctnpn ap _ / 2e—cltn/kn)e ) 4o
0 p 0 e

R
< C/ 22e ndr < Cn~2.
0
Thus, combining this with |[|* < Cn™2, we get
R/kn ~ . dp
/ 1G(pe)| P < Cn2, forn > 2.
0 P

It remains to consider the integral on interval [R/k,, R/ki]. We rewrite

n—1
~ kn,
o2 = [T () = 1) = (choe)e™ = 5 =
We have, since t,p = (t,/kn)knp > Cn for p € [R/k,, R/k1],
R/k1 ) R/kl R/k:l
(3.3.19) / g tnpett (knp) dp < / e~ ““Pk,dp < e‘cn/ e 2Pt dp
R/kn p R/kn R/ky

o0
< e_c"/ e 2 dy < Ce™" < Cn~2,
0
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and, since In(k,/k1) < Cn,

R/k1
(3.3.20) / Fub (v 1y P < Gpn il Jhy) < On2.
R/kn, 1+ knp p

Combining this with (3.3.15) shows

Rlk1 _ dp
/ Glpet®)| 2 < On2, forn > 2.
R/kn p

The proof is complete. O

4. APPROXIMATION OF TIME DERIVATIVE — SECOND ORDER

In this section we shall consider the following second order approximation of wu;(t,) of
the solution of (1.1.1),

_ _ _ Un _ Unfl Un—l _ Un72
(4.4.1) U™ = a,0U™ + b, 0U™ ' = n—— + bnk—,
n n—1
ap = (2kn + knfl)/(kn + knfl)a by = _kn/(kn + knfl)a

where U™ is the discrete solution of (1.1.1) defined by (1.1.5). Combining (4.4.1) and
Theorem 3.3, we obtain the following smoothing property of discrete scheme (1.1.5).

Theorem 4.1. Let U™ be the solution of (1.1.5). Assume that (1.1.2) and (1.1.3) hold and
that the discretization scheme is accurate of order p > 1, and A(6)-stable with 6 € (6, 7/2],
and |r(o0)| < 1. Assume that {T} is a family of increasing quasi-quasiuniform grids. Then
there is a constant C such that

10U < CtM|vll,  forn > 2.

Note that (4.4.1) can also be written in the form
- 1
(4.4.2) U™ = T (coU" +c U+ cgU"’2>, for n > 2,

where ¢; = 14 7,2 =Y2/(1 + V), co = ¢1 + o and vy, = ky [ k1.
We shall now consider error estimates for the approximation (4.4.1). We begin with a
smooth data error estimate.

Theorem 4.2. Let U™ and u(t,)be the solutions of (1.1.5) and (1.1.1). Assume that A
satisfies (1.1.2) and (1.1.3), and that r(z) is accurate of order p > 2, and A(f)-stable with
§ € (6,7/2]. Let kj,1 < j <mn, be increasing. Then we have

(4.4.3) 10U — Dyu(ty)|| < CE2||A3v||,  forn > 2.
Proof. With P(z,y) = ¢y + c1y™' + cox ™'y~ and

Gn(z) = Hr(ka)P(r(kn,lz),r(knz)) — (=kp2)e ™%, forn > 2,

J=1
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we want to prove
|G (A)(knA) P < C, forn > 2.
Let 7(z) = (H,n-zl r(ka)P(r(kn_lz),r(knz))>(knz)_3. As in the proof of Theorem 2.1,

applying Lemma 2.4 to the rational function 7(z) and using also Lemma 2.5 we conclude
1

Gn(A)(k,A) 3 = - " Go(2)(knz) ®R(z; A) dz.
We now show that
(4.4.4) Gn(2) = 0(2%), asz—0.
In fact, we write
(4.4.5) Gn(2) = GL(2) + GA(2) + G2(2), forn > 2,
where

Gn(2) = Hr(ka) (P(T'(k‘n_lz), r(knz)) — P(e—kn—w’ e—knz))7

and, with F,(z) = [[}_, 7(k;z) — e ™*,

Jj=1
n

Ga(2) = [[rlksz) Ple7Fr %, e75%) — (—kn2), Gi = kn2Fo(2).
j=1

It is easy to see that there exists a small n > 0 such that

(4.4.6) Ir(k;2)| < C, forl<j<mn, k2| <,

and

(4.4.7) |P(e7Fn-17 ehn?) — (—k,2)| < Clknz|®, for |knz| <,

and

(4.4.8) \P(r(kn12),7(kn2)) — P(e "% e ") | < Clknz|®, for |knz| < 7.
Combining this with (2.2.2) shows

(4.4.9) |Gn(2)] < Clkpz?,  for |knz| <,

which is (4.4.4). We remark that we can not extend (4.4.7) and (4.4.8) to |k,z| <
R, |argz| < ¢ for arbitrary R and ¢ € (6,0), since P(z,y) is not a polynomial for
variables z,y. Combining (3.3.3) with (4.4.9) shows that the integrand is bounded on the
small domain with boundary v, UIY, so that we may let ¢ — 0. It follows that, with
['={z:|argz| = ¢} for some ¥ € (4,0),

Gn(A) by )~ = 2%” /F G(2) (k) R(2; A) dz.

The remainder of the proof is similar to the proof of Theorem 3.1. The proof is complete.
]
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We close this section with an error estimate in the nonsmooth data case.

Theorem 4.3. Let U™ and u(t,)be the solutions of (1.1.5) and (1.1.1). Assume that A
satisfies (1.1.2) and (1.1.3), and that r(z) is accurate of order p > 2 and A(f)-stable with
6 € (0,7/2] and |r(oco)| < 1. Assume further that {T} is a family of increasing quasi-
quasiuniform grids. Then there is a constant C such that

(4.4.10) 10,U™ — Dyu(t,)|] < Ck2t3||vl|, for n>2.
Proof. With the notation of Theorem 4.2 we need to show
|G (A)|| < Cn™3, forn > 2.
Following the argument in the proof of Theorem 3.4, we set, with x = r(00),
(4.4.11) Gn(2) = Gp(2) — K"P(k, K)knz/(1 + kn2),
and we have

|&"P(k, k)knA(I + k,A) Y| < Cls|® < Cn~3,

and
Gald) = o /F G (2)R(z: A) dz.
We write
(4.4.12) G(2) :(H r(k;2) P(r(kn_12), 7(kn2)) — K" P (5, m))

+K"P(k, k) /(1 + kpz) — (=kn2)e” ™%  forn > 2.

By Lemma 2.7 and |1 + k,z| > |knz| for Rez > 0, we have, with 7 as in the proof of
Theorem 4.2,

* 7 dlo = —cn - n - - d,O
(/|awﬁ%v—sc/ (7 (ki)™ + [ ()™ + (kup)e~™0) 22
n/k1 p n/k1 p

< Cn 3.

Using |1/(1+ knz)| < 1 for Rez > 0, we have, by (4.4.11), with G',(2),1 = 1,2, 3, as in the
proof of Theorem 4.2,

n/kn o d 3 prn/kn d
3 p l P n
aneﬂ“p — < / G,| —+ C|&|".
| Gt & > [ G+l
Obviously, using Lemma 2.2, (4.4.6), (4.4.7) and (4.4.8), we have
n/kn d
| ei+iean L < o
0 p
and, by (2.2.1) with p = 2 and nk, ~ t,,

7T/kn d ﬂ/kn d
| <o [T ket % < o
0 P 0 P
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Thus, combining this with |x|" < Cn™3, we get
n/kn » . dp
/ |G (pe™)| " <Cn™3, forn>2.
0

It remains to consider the integral on the interval [n/k,,n/ki] for n > 2. If n = 2, we
write, by (4.4.2),
Go(2) :<Co7"(k12’)’l"(k22) + cir(kiz) + 02> — (—kygz)e?*

_ kQZ
1 + kQZ

(cok® + 1k +co) =T+ 11+ 111,

where the integrals related to 1 and II1 can be bounded by (3.3.19) and (3.3.20), respec-
tively. For I, we have

H /Fn/k1 (cor(klz)r(kgz) +cr(kiz) + 02>R(z; A) dzH

n/k1 dp
< c/ < Cn(ks/ky) < C < Cn>.

n/k2 B

If n > 3, we write, by (4.4.2),

z) = (co H r(kjz) + ¢ 1:[ r(k;z) + c2 1:[ r(ka)) — (=kpz)e ™

n<

> (cok™ + 1K™t + ok ) =T+ I+ II1.
n?

We can consider the case for n = 3 as for n = 2. If n > 4, the integrals related to I1 and
I1T can be bounded by (3.3.19) and (3.3.20), respectively. Following the argument in the
proof of (3.3.15), we have

n/ky  "M—2 1dp
/ Hr(kjpeiw)‘ = < Ce™™ < On3.

Using this and the boundedness of r(k;z) on I" we obtain the desired bound for the integral
related to I.
Together these estimates complete the proof. O
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