CHALMERS

FINITE ELEMENT CENTER

PREPRINT 2002-03

Stability of explicit-implicit hybrid time-stepping
schemes for Maxwell’s equations

Thomas Rylander and Anders Bondeson

- . Chalmers Finite Element Center
<« p CHALMERS UNIVERSITY OF TECHNOLOGY
- Goteborg Sweden 2002






CHALMERS FINITE ELEMENT CENTER

Preprint 2002-03

Stability of explicit-implicit hybrid
time-stepping schemes for Maxwell’s equations

Thomas Rylander and Anders Bondeson

CHALMERS

Chalmers Finite Element Center
Chalmers University of Technology
SE-412 96 Goteborg Sweden
Goteborg, March 2002



Stability of explicit-implicit hybrid time-stepping schemes for Maxwell’s equations
Thomas Rylander and Anders Bondeson

NO 2002-03

ISSN 14044382

Chalmers Finite Element Center
Chalmers University of Technology
SE-412 96 Goteborg

Sweden

Telephone: +46 (0)31 772 1000

Fax: +46 (0)31 772 3595
www.phi.chalmers.se

Printed in Sweden
Chalmers University of Technology
Goteborg, Sweden 2002



STABILITY OF EXPLICIT-IMPLICIT HYBRID TIME-STEPPING
SCHEMES FOR MAXWELL’S EQUATIONS

THOMAS RYLANDER AND ANDERS BONDESON

ABSTRACT. An improved version of the stable FEM-FDTD hybrid method [T. Rylander
and A. Bondeson, “Stable FEM-FDTD hybrid method for Maxwell’s equations,” Comput.
Phys. Comm. 125, 75 (2000)] for Maxwell’s equations is presented. The new formulation
has a modified time-stepping scheme and is rigorously proven to be stable for time steps up
to the stability limit for the FDTD. The new scheme gives less reflection at the boundary
between the structured and unstructured grids than the original formulation. The hybrid
method is compared to the FDTD with stair-casing for scattering from a conducting
sphere. The discretization errors of the hybrid show quadratic dependence on mesh size,
while the scaling is less clear for the FDTD. The FDTD gives errors that are 5 - 60 times
higher than the hybrid, depending on resolution and stair-casing strategy.

1. INTRODUCTION

Each of the two main methods in time-domain Computational Electromagnetics, the
Finite-Difference Time-Domain (FDTD) [1, 2| and Finite Element Method (FEM) [3] with
edge elements [4], has advantages and disadvantages. The FDTD is very efficient, because
it is explicit and simple. However, it has difficulties with oblique and curved boundaries,
where stair-casing is the standard solution. Finite elements with tetrahedral grids, on the
other hand, are well suited for modeling complex geometry. However, the time-stepping is
generally implicit and the method has much higher operation count and memory require-
ment than the FDTD.

Hybrids have been formulated [5, 6, 7, 8], with the goal of combining the advantages of
the two basic methods. To maximize efficiency, such hybrids use FDTD in as large a volume
as possible, and finite elements in thin layers near boundaries that do not fit on the FDTD
grid. Early versions of FEM-FDTD hybrids [5, 6, 7] suffered from instabilities known
as late time growth. These instabilities were typically stabilized by means of dissipative
schemes for time-stepping.

Our hybrid method [8] eliminates the instabilities without recourse to dissipation. The
key to stability was to derive the spatial operators for the edges at the interface between the
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2 THOMAS RYLANDER AND ANDERS BONDESON

FEM and FDTD regions by FEM techniques. It was noted in [8] that the FDTD scheme
can be constructed by FEM techniques; Galerkin’s method was applied to edge elements
on bricks, and the matrices were “lumped”, or equivalently, calculated by trapezoidal
integration. This procedure gives symmetric matrices for the spatial operators even at the
FEM-FDTD interface. Symmetric, real matrices have real eigenvalues, and this removes
the source of instabilities occurring when the two types of grid are joined by more ad hoc
approaches.

A second order accurate scheme for general geometry has been introduced by Dridi et
al. [9] using interpolation points at boundaries. However, Ref. [9] does not prove stability
and reciprocity of this scheme, and the simulations shown in [9] are over relatively short
time intervals. Ref [10] describes a method using overlapping grids and ficitious points to
match solutions in different regions meshed by different structured grids. The approach
aims at high accuracy, but appears very demanding to apply in complex geometries.

There are other methods related to the FDTD scheme which are stable and combine
efficiency with body-conforming capabilities. Weiland and coworkers have investigated
stable local refinement and non-orthogonal grids for the FDTD scheme [11, 12]. Gwarek
and coworkers have developed the Transmission Line Method (TLM) to treat complex
boundaries by cutting cells [13]. However, our FEM-FDTD hybrid method is generally
more flexible and it allows for local spatial refinement without reducing the global time-
step. Such local refinement is useful to resolve small geometric details and rapid variations
in the fields.

In the present paper, we present an improved time-stepping algorithm for the hybrid
method. The new algorithm incorporates FEM ideas also in the time-stepping. The new
scheme allows a simple proof of stability. A practical advantage of the new algorithm is
that it reduces the reflection at the interface between structured and unstructured grids.
Both the new scheme and the stability proof are of rather general nature, and could be
applied to similar hybrids for other equations, e.g., in acoustics or solid mechanics. We
present several different tests of the new method, comparing it both with the stair-cased
FDTD and with the original version of the hybrid. For scattering by a conducting sphere,
the hybrid is clearly superior to the FDTD.

2. THE HYBRID METHOD

2.1. Spatial discretization. Our hybrid method uses unstructured layers of tetrahedrons
close to complex boundaries, while large volumes are discretized by structured brick ele-
ments (typically cubes). The connection between the two types of elements is made by a
single layer of pyramids. The pyramids make it possible to expand the solution in edge
elements, whose tangential components are continuous everywhere.

Maxwell’s equations V x =1V x E+ eafE_" = —6tj are solved by expanding the electric
field in edge elements E(7,t) = D€ (t)N;(7) and applying Galerkin’s method. This gives
Se(t) + M d%e(t) = f(t), where the stiffness (or curl-curl) matrix S;; = [ 'V x N; -
V x dev is symmetric and positive semi-definite, and the mass (or epsilon) matrix M;; =
il e]\_fi -dev is symmetric and positive definite. The FDTD algorithm is also found by this
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FIGURE 1. Simple hybrid grid.

approach, if the mass and stiffness matrices are lumped. This corresponds to applying the
trapezoidal rule for the integration over the bricks. The properties of the matrices S and M
implies that the eigenvalues w?, of Se = w?Me, are all real and non-negative. Therefore,
it is possible to construct a stable time stepping algorithm.

2.2. Time-stepping. We emphasize that, in our hybrid scheme, the switch between
FDTD and FEM (which is done by the integration method) is linked to the finite ele-
ments and not the edges, or unknowns. Thus, the edges at the interface will neither be
treated as regular FEM or regular FDTD. In the first version of the hybrid [8], the switch
of time-stepping scheme was, however, made on the basis of the edges; edges interior to
the structured grid were time-stepped explicitly and those belonging to the pyramids or
tetrahedrons were time-stepped with the implicit algorithm [14]:

Ait?M el 26 4 o] = .

The algorithm (2.1) is stable for arbitrarily large time-steps if # > 1/4. An important
advantage of the implicit FEM part is that the time step need not be reduced if some
tetrahedrons are made very small. This allows for adaptivity and good resolution of small
geometrical details with only a modest increase of the computational work.

In the original version of the hybrid, we applied the same implicitness parameter 6 to all
the implicit edges. Concerning the FDTD, the time-stepping for E , after elimination of H ,
is the standard centered finite difference method, (2.1) with § = 0 and S and M lumped
according to trapezoidal integration.

In the new version of the hybrid, we assign the implicitness parameter # on the basis
of elements rather than edges. This follows the same ideas as the previous successful
prescription for the spatial discretization. Thus, the implicitness can be treated as a
parameter 6, for each element £ = 1,..., K where K is the number of elements. We

1) S [0 — (20— 1))+ g0 ] 4
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introduce the notation S for the contribution to S from element £, so that S = 215:1 Sk,
and analogously for M. The new algorithm, where 6 is assigned to the elements, is

K
Z (Sk [er("H) — (2019 — l)e(") + er("_l)]
k=1

1 n+1 n n—1

where 6y is chosen > 1/4 on the implicit elements and zero on the bricks. As will be shown,
this not only reduces reflections at the interface, but also makes possible a simple proof of
stability.

2.3. Proof of stability. Here, we prove stability assuming, for simplicity, that ¢ and
i are constant. The proof relies on bounds for a quadratic form, and first we need the
corresponding result for the FDTD part.

2.3.1. Figenvalues of the FDTD for one brick element. To bound the quadratic form, we
wish to find bounds for the 12 eigenvalues of the FDTD matrices, for a single element

(2.3) Ske = )\Mke

with Sy and My lumped. Here, 7 eigenvalues are exactly zero. These correspond to the
“potential modes” E = —V ¢, where the potential ¢ is a trilinear function. The potential
can be set to zero at one node, and then there is one eigenmode of (2.3) with A = 0 for each
of the remaining seven nodes. To determine the remaining five eigenvalues, we studied the
eigenvalue problem (2.3) using Mathematica, for a brick with sides h;, hy, and h, in the
three coordinate directions. We found the remaining eigenvalues

LAl a1 1y a1 1
T e h2  ht)’ T \n2 T n2) T e\ 2 hz)’

and the largest eigenvalue is the pair

4 1 1 1
(2.4) /\11 = /\12 = a (h_?v + h_:,% + h_g) = /\max

As expected, the largest eigenvalues equal the eigenvalue for the fastest varying exponential
function exp[jm(z/hy + y/hy + z/h;)] on a uniform, infinite grid. This mode gives the
Courant-Friedrichs-Levy (CFL) limit for the FDTD time step

(2.5) At < At = 2/v/ Amax

If h, = h, = h, = h, (2.5) gives the usual CFL limit, h/cv/3. The explicit expression (2.4)
for the largest eigenvalues gives the following inequality, valid for any complex vector e

(2.6) ef’S e < Mnae’Mje

where e is the complex transpose of e.
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2.3.2. Quadratic form for the hybrid algorithm. We are now in a position to prove stability
by the von Neumann method. Let € be a complex eigenmode of the new hybrid algorithm
(2.2), and assume that it has a growth factor p such that e(® = p"&. For this mode
Eq. (2.2) gives:

K
(2.7) > | Sk [0kp” — (206 — 1)p + 64 + Lo [* —2p+1] |&=0.

P At?

Stability is equivalent to |p| < 1 for all modes €. With the substitution p = (1+¢)/(1—()

this condition becomes R(¢) < 0, and (2.7) is transformed into:

K K

He = | 4 -

(2.8) Y "alfse =) & [A—tsz + Sy (46, — 1)} 8.
k=1 k=1

Since all the matrices are Hermitian, ¢? is real. Furthermore, since the left-hand side
is non-negative stability follows if the sum on the right-hand side is positive for all €.
This sum can be split into the contribution from the explicit and implicit elements. The
contribution from the implicit elements is non-negative if 8, > 1/4 everywhere on this grid.
By virtue of (2.6), the contribution from the explicit elements is non-negative if the time
step satisfies the CFL condition (2.5) for the FDTD. Therefore, the new implicit-explicit
algorithm (2.2), with # > 1/4 on the implicit elements, is stable for time steps up to the
stability limit of the FD'TD.

Stability of a similar implicit-explicit hybrid in acoustics was proven by Belytschko and
Mullen [15]. These authors used the trapezoidal integration rule in time on the implicit
grid, with the displacement 5 and velocity v = 85 /0t placed on the same time levels.
This is equivalent to the implicit scheme (2.1) with § = 1/4. An extensive overview
over different time-stepping schemes used in computational mechanics, including explicit-
implicit hybrids, is given by Hughes [16].

3. NUMERICAL RESULTS

One possible drawback of a hybrid method is reflections at the interfaces between the
two types of grid. Here, we study such reflections for the new hybrid method and compare
with our original scheme [8]. We also compare the hybrid to the FDTD with the staircase
approximation, for scattering from a perfect electrically conducting (PEC) sphere.

3.1. Reflection at grid interfaces. A simple arrangement to test the reflection at the
FEM-FDTD interface is to inject a TE;y mode into a waveguide. This is illustrated in
Fig. 2, where a thin layer of tetrahedrons and pyramids is embedded in an FDTD grid of
cubes. Figure 1 shows the cross section of the waveguide around the implicit layer for such
a test. The width of the waveguide is twice its height.

The injected wave has the time dependence Ey(t) = exp[—(t — ty)?/d3] sin(2n ft), where
ty = 6.25/f., dy = 2.5/ f., f = V/2f. and f, is the cutoff frequency for the TE;y mode. The
power reflection coefficients are shown as contour plots in Fig. 3 and Fig. 4 for the original
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FIGURE 2. Waveguide with the incident pulse traveling towards the implicit layer.

and new hybrid scheme when the waveguide is discretized by 10 x 5 FDTD cells in the
cross section.

1 T T T T
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-40 dB
Lo.gf 1
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0'5 1 1 1 1
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F1GURE 3. Level contours of the power reflection coefficient in the waveguide
test for the original scheme with 14 cells per wavelength.

The reflection for the new hybrid is much less sensitive to the choice of # and At than
the original scheme. For the maximum FDTD time step and # = 1/4, the new hybrid gives
a power reflection coefficient below -46 dB, while the original hybrid gives -40 dB.

Riley [17] proposed another modification of the hybrid method, namely to apply trape-
zoidal integration over the bases of the pyramids. Figure 5 shows how the power reflection
coefficient depends on resolution for # = 1/4 and At = Atcpr, and all four combinations
of discretization techniques at the interface between the explicit and implicit grids. Here,
the dimensions of the waveguide were kept fixed, while the thickness of the layer of tetra-
hedrons and pyramids was constant in number of cells. Results for the original and new
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FI1GURE 4. Level contours of the power reflection coefficient in the waveguide
test for the new hybrid scheme with 14 cells per wavelength.

hybrid scheme are indicated by circles and squares, respectively, while dashed and solid
lines correspond to exact and trapezoidal integration over the base of the pyramids, re-
spectively. A least square fit to our results for A/h > 17 shows that the power reflection
coefficient varies as h>7

3.2. Scattering from PEC sphere. We have also made tests comparing the hybrid
to the FDTD for scattering by a PEC sphere. The hybrid was run with 6, = 1/4 on
the tetrahedrons and pyramids and the time step at the CFL limit for the FDTD. The
PETSc [18] sparse matrix package was used to solve the implicit equations in the FEM
region. The inversion is done efficiently by the conjugate gradient method with a zero-fill-in
ILU-preconditioner. The residual is reduced by about 10~% with nine iterations.

An incident plane wave Ei,.(t) = Egexp|—(t — to)?/d%] sinwy(t — tp)] is imposed at a
Huygens surface [2]. The wavenumber vector of the incident plane wave is parallel to one
of the Cartesian axes of the FDTD grid. The radiation pattern is obtained by means of a
near-to-far-field (NTF) transformation [2]. We apply an NTF transformation using third
order Lagrange interpolation and four point Gauss quadrature. It converges with an O(h?)
error and gives a maximum error of 0.05 % when \/h = 18. The scattered wave is absorbed
at the outer boundary by a “sponge layer” [19].

In [20], our original hybrid was validated with this setup against the analytic results for
a PEC sphere. Here we apply the same test to the new version. The bistatic RCS for
a sphere of radius @ = 1 m is computed on three different meshes with FDTD cell size
h = n/15y/3 m for n = 9, 6 and 4. The hybrid grids are constructed as described in [§]
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Power reflection coefficient [dB]

Ah[A]

FIGURE 5. Power reflection coefficient for § = 1/4 and At = Atcpy, versus
number of cells per wavelength. The new scheme is shown as squares, the
original as circles. Dashed lines indicate exact integration over the pyramids,
while solid lines indicate trapezoidal integration.

and parts of the grid for n = 9 are shown in Fig. 6. In this particular case, we generated
tetrahedrons with edges of the length roughly equal to the corresponding FDTD cell size
h. (For all resolutions, the average length of a tetrahedron edge is within 4% from A and
the standard deviation is 20-23% of h). Furthermore, we kept the thickness of the FEM
grid constant in terms of cells when the resolution was increased and the average thickness
was slightly below 2h. Consequently, the fraction of the computational effort spent on the
FEM region is proportional to h for high resolutions. Although it is not needed for this
particular test case, we emphasize that our hybrid allows local refinement of the FEM grid
without reduction of the global time-step. Such refinement can be necessary to resolve
small geometrical details or the field in the vicinity of a singularity.

The wavelength is A = 4.16 m (ka = 1.5) and the time constants are t, = 1.73 - 10°%
s, dp = 6.00 - 107% s. The relative error e(h) = ||o, — 04||2/||oal|2 is shown in Fig. 7 by
circles and squares for the original and the new hybrid scheme, respectively, using exact
integration for the pyramids. Here o, and o, are the numerically computed and analytic
bistatic RCS, respectively, and ||- [|> = [[,,(-)2d€)]"/2. The improved hybrid scheme reduces
the error by 20-30% compared to the original version. With trapezoidal integration over
the bases of the pyramids the relative error increased 2-3% for the original and 3-5% for
the new hybrid scheme.

Least square fits to the model e(h) = ch® are shown by the dashed lines in Fig. 7, and
for the original and the new hybrid scheme we found o ~ 2.02 and o ~ 1.84, respectively.
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FIGURE 6. Parts of the hybrid grid for the PEC sphere when n = 9. The
discretized surface of the sphere is shown together with some of the pyramids.
The first layer of FDTD cubes, connecting to the bases of the pyramids, is
indicated by lines.

One effect that contributes to deviations from second order convergence is the non-uniform
refinement of the unstructured grid.

Table 1 shows the number of cells required, for 5% accuracy in the bistatic RCS measured
by the Ly (rms) and Ly, (max) norms with the original and the improved hybrid scheme.

TABLE 1. Required resolution A/h for 5% accuracy in the bistatic RCS for
the PEC sphere.

Original hybrid Improved hybrid
5% accuracy in Lg-norm 16.2 13.5
5% accuracy in L.-norm 20.7 18.9

We have applied this test to the stair-cased FDTD. Some rather arbitrary decisions
have to be taken for the stair-casing. Figure 7 shows results obtained with three different
criterions for an FDTD cell to be PEC: (a) at least one corner of the cell is inside the
physical sphere (A), (b) the midpoint of the cell is inside the physical sphere () and (c)
all corners of the cell are inside the physical sphere (7).

The errors for the stair-cased FDTD are about 5 - 60 times larger than those for the
hybrid scheme. At all resolutions, the best FDTD result is obtained with method (c)
where the FDTD cubes are modeled as conducting only when they are completely inside
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[ERCANIEANS

Alh[A]

F1GURE 7. The relative error in the bistatic RCS for a PEC sphere is shown
by circles and squares for the original and the new hybrid scheme, respec-
tively, and fits to the model e(h) = ch® are shown by the dashed lines. For
the stair-cased FDTD we used three different criterions for an FDTD cell
to be PEC: (a) at least one corner of the cell is inside the physical sphere
(A), (b) the midpoint of the cell is inside the physical sphere ({) and (c) all
corners of the cell are inside the physical sphere (7).

the sphere. This gives errors that are 5 - 9 times larger than for the hybrid. To achieve
a given relative error, the best FDTD (c) needs more than twice the linear resolution of
the hybrid. Consequently, for the same accuracy as the FEM-FDTD hybrid method, the
best FDTD (c) needs roughly 20 times more execution time and 10 times more memory.
Moreover, the stair-cased FDTD schemes do not show a very clear order of convergence,
which reduces the predictive power of extrapolation.

Table 2 shows the number of mega floating point operations (Mflops) per time-step for
the FDTD- and FEM-part of the computation. Here, one flop is defined as one real number
operation of the type: multiplication, division, addition or subtraction. The computational
cost is almost six times higher for the sponge layer compared to the standard FDTD in
homogeneous space, which is included in Tab. 2. For the FEM-part, the initial costs
associated with the setup of the linear system of equations (computation of the element
matrices excluded) and the computation of the preconditioner are amortized equally over
all time-steps. It should be mentioned that the total number of time-steps is rather small
for this particular problem, e.g. 206 time-steps for n = 9, and that, for all resolutions, the
iterative solver used about 15 iterations for each time-step. It is possible to reduce the
flops per time-step for the FEM-part, keeping sufficient accuracy. Note that the number
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of operations for the FEM-region, relative to the FDTD-region, decreases as the resolution
increases and 10% of the flops are spent on the FEM-part for the highest resolution with
27 points per wavelength.

TABLE 2. The number of mega floating point operations (Mflops) per time-
step for the FDTD- and FEM-part of the computation.

n FDTD FEM
9 16 6.0
6 26 11
4 189 21

3.3. Scattering from the FEM-FDTD interface. To investigate the scattering at the
FEM-FDTD interface, we replaced the interior of the sphere by vacuum, discretized by
tetrahedrons. The computed RCS of the empty grid is shown in Fig. 8 with respect to A
for different discretizations at the explicit-implicit interface. Here, the FDTD cell size is
fixed to h = \/5/ 5. (Since, in this figure, the quantity that varies is the wavelength, rather
than the grid size, and the geometry is fixed, the result cannot not be interpreted strictly
as a convergence test.) The solid curves with circles and squares correspond to the original
and the new scheme, respectively. Our new scheme for time-stepping significantly reduces
the scattering from the grid interface. According to Fig. 8, the improved hybrid reduces
the RCS of the empty grid about 10 dB for A\/h > 25. For 12 cells per wavelength, the
computed RCS of the empty grid was at least 35 dB below that of the conducting sphere
in all directions. Trapezoidal integration over the bases of the pyramids changes the RCS
of the empty grid less than 1 dB.

4. CONCLUSION

We have presented an improved version of the stable FEM-FDTD hybrid [8] and given
a proof of stability for the new explicit-implicit time integration. The new hybrid reduces
the reflection from the interface between the FEM and FDTD grids.

The standard FDTD scheme, with the staircase approximation, was compared with the
hybrid for scattering from a PEC sphere. The hybrid converges towards the exact solution
with an O(h?) error. For scattering from a conducting sphere with ka = 1.5 the hybrid
achieves a root mean square accuracy of 5% with 13.5 cells per wavelength. For the FDTD,
three different approaches for the stair-casing gave significantly different results. The best
FDTD results were obtained when only the cubes completely inside the conductor were
modeled as conducting. This gave errors that were about 5 - 9 times higher than for the
hybrid scheme. With other choices for when to make an FDTD cell a conductor, the error
could be as much as 60 times that of the hybrid. None of the tested stair-casing strategies
for the FDTD produced a very clear order of convergence. To obtain results of comparable
accuracy as the hybrid, the FDTD needs at least twice as many cells per wave-length as
the hybrid. Since the number of the operations for the FEM part of the hybrid is typically
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F1GURE 8. The norm of the bistatic RCS for an empty sphere versus number
of points per wavelength. Results for the new hybrid are shown as squares
and for the original hybrid as circles.

less than for the FDTD part, the hybrid algorithm significantly reduces the total number
of operations needed for a given accuracy.

We conclude that the hybrid method works robustly and combines the main advantages
of the FDTD with those of edge finite elements on unstructured grids. In comparison to
the stair-cased FDTD, the hybrid method is significantly more efficient when the geometry
contains curved surfaces.

5. ACKNOWLEDGMENT

This work was supported in part by grants from National Graduate School of Scien-
tific Computing (NGSSC) and the Technical Research Foundation (TFR). The Center of
Computational Electromagnetics is supported by the School of Electrical and Computer
Engineering at Chalmers University. The research has profited in many ways from a col-
laboration with the Finite Element Center at Chalmers University.

REFERENCES

[1] K. S. Yee, “Numerical solution of initial boundary value problems in isotropic media,” IEEE Trans.
Antennas Propagat. 14, 302 (1966).

[2] A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech
House, Norwood, MA, 1995).

[3] J. Jin, The Finite Element Method in Electromagnetics (Wiley, New York, 1993).

[4] J. C. Nédélec, “Mixed finite elements in R3,” Numer. Math. 35, 315 (1980).



STABILITY OF EXPLICIT-IMPLICIT HYBRID TIME-STEPPING SCHEMES FOR MAXWELL’S EQUATIONS

[5] K. S. Yee, J. S. Chen and A. H. Chang, “Numerical Experiments On PEC Boundary Condition
and Late Time Growth Involving the FDTD/FDTD and FDTD/FVTD Hybrid,” IEEE Antennas
Propagat. Soc. Int. Symp. 1, 624 (1995).

[6] R. B. Wu and T. Itoh, “Hybrid Finite-Difference Time-Domain Modeling of Curved Surfaces Using
Tetrahedral Edge Elements,” IEEE Trans. Antennas Propagat. 45, 1302 (1997).

[7] A. Monorchio and R. Mittra, “A hybrid Finite-Element Finite-Difference Time-Domain (FE/FDTD)
technique for solving complex electromagnetic problems,” IEEE Microw. Guided Wave Lett. 8, 93
(1998).

[8] T.Rylander and A. Bondeson, “Stable FEM-FDTD hybrid method for Maxwell’s equations,” Comput.
Phys. Comm. 125, 75 (2000).

[9] K. H. Dridi, J. S. Hesthaven and A. Ditkowski, “Staircase-Free Finite-Difference Time-Domain For-
mulation for General Materials in Complex Geometries,” IEEE Trans. Antennas Propagat. 49 749
(2001).

[10] T. A. Driscoll and B. Fornberg, “Block pseudospectral methods for Maxwell’s equations II: two-
dimensional, discontinuous-coefficient case,” SIAM J. Sci. Comput. 21, 1146 (1999).

[11] P. Thoma and T. Weiland, “Numerical Stability of Finite Difference Time Domain Methods,” IEEE
Trans. Magnetics 34, 2740 (1998).

[12] R. Schuhmann and T. Weiland, “Stability of the FDTD Algorithm on Nonorthogonal Grids Related
to the Spatial Interpolation Scheme,” IEEE Trans. Magnetics 34, 2751 (1998).

[13] M. Celuch-Marcysiak and W. K. Gwarek, “Generalized TLM Algorithms with Controlled Stability
Margin and Their Equivalence with Finite-Difference Formulations for Modified Grids,” IEEE Trans.
Microwave Theory Tech. 43, 2081 (1995).

[14] J.F. Lee, R. Lee and A. Cangellaris, “Time-Domain Finite-Element Methods,” IEEE Trans. Antennas
Propagat. 45, 430 (1997).

[15] T. Belytschko and R. Mullen, “Stability of Explicit-Implicit Mesh Partitions in Time Integration,”
International Journal for Numerical Methods in Engineering 12, 1575 (1978).

[16] T. J. R. Hughes, The finite element method: linear static and dynamic finite element analysis
(Prentice-Hall, Englewood Cliffs, NJ, 1987).

[17] D. J. Riley, “Transient Finite-Elements for Computational Electromagnetics: Hybridization with
Finite Differences, Modeling Thin Wires and Thin Slots, and Parallel Processing,” Applied Computa-
tional Electromagnetics Society (ACES) Symposium (2001).

[18] S. Balay, W. D. Gropp, L. C. Mclnnes, and B. F. Smith, “PETSc home page,”
http://www.mcs.anl.gov/petsc (1998).

[19] P. G. Petropoulos, L. Zhao, and A. C. Cangellaris, “A Reflectionless Sponge Layer Absorbing Bound-
ary Condition for the Solution of Maxwell’s Equations with High-Order Staggered Finite Difference
Schemes,” J. Comput. Phys. 139, 184 (1998), doi:10.1006/jcph.1997.5855.

[20] T. Rylander and A. Bondeson, “Application of Stable FEM-FDTD Hybrid to Scattering Problems,”
IEEE Trans. Antennas Propagat. (2002).



14

THOMAS RYLANDER AND ANDERS BONDESON



STABILITY OF EXPLICIT-IMPLICIT HYBRID TIME-STEPPING SCHEMES FOR MAXWELL’S EQUATIONS

2000-01

2000-02

2000-03

2000-04

2000-05

2000-06

2000-07

2000-08

2000-09

2000-10

2000-11

2000-12

2000-13

2001-01

2001-02

2001-03

2001-04

2001-05

Chalmers Finite Element Center Preprints

Adaptive finite element methods for the unsteady Mazwell’s equations

Johan Hoffman

A multi-adaptive ODE-solver

Anders Logg

Multi-adaptive error control for ODEs

Anders Logg

Dynamic computational subgrid modeling (Licentiate Thesis)

Johan Hoffman

Least-squares finite element methods for electromagnetic applications (Licenti-
ate Thesis)

Rickard Bergstrom

Discontinuous galerkin methods for incompressible and nearly incompressible
elasticity by Nitsche’s method

Peter Hansbo and Mats G. Larson

A discountinuous Galerkin method for the plate equation

Peter Hansbo and Mats G. Larson

Conservation properties for the continuous and discontinuous Galerkin methods
Mats G. Larson and A. Jonas Niklasson

Discontinuous Galerkin and the Crouzeiz-Raviart element: application to elas-
ticity

Peter Hansbo and Mats G. Larson

Pointwise a posteriori error analysis for an adaptive penalty finite element
method for the obstacle problem

Donald A. French, Stig Larson and Ricardo H. Nochetto

Global and localised a posteriori error analysis in the mazimum norm for finite
element approzimations of a convection-diffusion Problem

Mats Boman

A posteriori error analysis in the mazimum norm for a penalty finite element
method for the time-dependent obstacle problem

Mats Boman

A posteriori error analysis in the mazimum norm for finite element approxi-
mations of a time-dependent convection-diffusion problem

Mats Boman

A simple nonconforming bilinear element for the elasticity problem

Peter Hansbo and Mats G. Larson

The LL* finite element method and multigrid for the magnetostatic problem
Rickard Bergstrom, Mats G. Larson, and Klas Samuelsson

The Fokker-Planck operator as an asymptotic limit in anisotropic media
Mohammad Asadzadeh

A posteriori error estimation of functionals in elliptic problems: experiments
Mats G. Larson and A. Jonas Niklasson

A note on energy conservation for Hamiltonian systems using continuous time
finite elements

Peter Hansbo



16

2001-06

2001-07

2001-08

2001-09

2001-10

200111

2001-12

2001-13

2001-14

2001-15

2001-16

2001-17

2001-18

2001-19

2001-20

2001-21

2001-22

2002-01

2002-02

THOMAS RYLANDER AND ANDERS BONDESON

Stationary level set method for modelling sharp interfaces in groundwater flow
Nahidh Sharif and Nils-Erik Wiberg

Integration methods for the calculation of the magnetostatic field due to coils
Marzia Fontana

Adaptive finite element computation of 8D magnetostatic problems in potential
formulation

Marzia Fontana

Multi-adaptive galerkin methods for ODEs I: theory & algorithms

Anders Logg

Multi-adaptive galerkin methods for ODEs II: applications

Anders Logg

Energy norm a posteriori error estimation for discontinuous Galerkin methods
Roland Becker, Peter Hansbo, and Mats G. Larson

Analysis of a family of discontinuous Galerkin methods for elliptic problems:
the one dimensional case

Mats G. Larson and A. Jonas Niklasson

Analysis of a nonsymmetric discontinuous Galerkin method for elliptic prob-
lems: stability and energy error estimates

Mats G. Larson and A. Jonas Niklasson

A hybrid method for the wave equation

Larisa Beilina, Klas Samuelsson and Krister Ahlander

A finite element method for domain decomposition with non-matching grids
Roland Becker, Peter Hansbo and Rolf Stenberg

Application of stable FEM-FDTD hybrid to scattering problems

Thomas Rylander and Anders Bondeson

Eddy current computations using adaptive grids and edge elements

Y. Q. Liu, A. Bondeson, R. Bergstrém, C. Johnson, M. G. Larson, and K.
Samuelsson

Adaptive finite element methods for incompressible fluid flow

Johan Hoffman and Claes Johnson

Dynamic subgrid modeling for time dependent convection—diffusion—reaction
equations with fractal solutions

Johan Hoffman

Topics in adaptive computational methods for differential equations

Claes Johnson, Johan Hoffman and Anders Logg

An unfitted finite element method for elliptic interface problems

Anita Hansbo and Peter Hansbo

A P2%-—continuous, P'-discontinuous finite element method for the Mindlin-
Reissner plate model

Peter Hansbo and Mats G. Larson

Approximation of time derivatives for parabolic equations in Banach space:
constant time steps

Yubin Yan

Approximation of time derivatives for parabolic equations in Banach space:

variable time steps
Yubin Yan



200203 Stability of explicit-implicit hybrid time-stepping schemes for Mazwell’s equa-
tions
Thomas Rylander and Anders Bondeson

These preprints can be obtained from

www.phi.chalmers.se/preprints



