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ADAPTIVE HYBRID FEM/FDM METHODS FOR INVERSE
SCATTERING PROBLEMS

LARISA BEILINA

ABSTRACT. We apply an adaptive hybrid FEM/FDM method for an inverse scattering
problem for the time-dependent acoustic wave equation in 2D and 3D, where we seek to
reconstruct an unknown sound velocity ¢(x) from measured wave-reflection data. Typ-
ically, this corresponds to identifying an unknown object (scatterer) in a surrounding
homogeneous medium.

We use an optimal control approach where we seek a sound velocity ¢(z) which mini-
mizes the difference between computed and measured output data in a discrete Ly norm.
We solve the optimization problem by a quasi-Newton method where in each step we
compute the gradient by solving a forward (direct) and an backward (adjoint) wave prop-
agation problem.

To compute the backward and forward wave propagation problems we use an adaptive
hybrid finite element/finite difference method, where we exploit the flexibility of mesh
refinement and adaption of the finite element method in a domain covering the object,
and the efficiency of a structured mesh finite difference method in the surrounding ho-
mogeneous domain. The hybrid scheme can be viewed as a finite element scheme on a
partially unstructured mesh which gives a stable coupling of the two methods.

We use an adaptive mesh refinement algorithm to improve the accuracy of the recon-
struction and speed up the convergence of the quasi-Newton method.

1. INTRODUCTION

This work is devoted to adaptive hybrid finite element /finite difference methods for an
inverse scattering problem for the time-dependent acoustic wave equation of the form of
a parameter identification problem, where one seeks to determine an unknown variable
wave speed ¢(z) from measured wave reflection data. Typical applications concern nonde-
structive testing of materials, shape reconstruction, ultrasound imaging, subsurface depth
imaging of geological structures and seismic prospectation.

To solve the inverse problem we use an optimal control approach, where we seek to
minimize a cost functional :

1 -
(1.1) E@p)=5llp=51"
depending on the state p, satisfying a differential equation of state
(1.2) A(p,c) = ,
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2 LARISA BEILINA

by varying the coefficient ¢(x) representing the wave speed. Here, f is a given function, p
is observed data at a finite set of observation points and || . || is a discrete Ly norm.

The minimization problem is reformulated as the problem of finding a stationary point
of a Lagrangian involving a forward wave equation (the state equation), a backward wave
equation (the adjoint equation), and an equation expressing that the gradient with respect
to the wave speed c¢ vanishes. For efficient implementation of the backward and forward
wave propagation we use a hybrid finite element/finite difference method, see [4].
exploit the flexibility of mesh refinement and adaption of the finite element method in
a domain including the object, and the efficiency of a structured mesh finite difference
method in the surrounding homogeneous domain. The hybrid scheme can be viewed as a
finite element scheme on a partially unstructured mesh which gives a stable coupling of
the two methods.

The mesh adaptation is based on an a posteriori error estimate for the error in the
Lagrangian involving the residuals of the state, adjoint state equation and the gradient
with respect to c.

An outline of the work is following: in Section 2 we formulate the inverse scattering
problem for the wave equation, in Section 3 we formulate the finite element method, in
Section 4 we present a fully discrete version used in the computations. In Section 6 we
prove a posteriori error estimate underlying the adaptivity, and in Section 9 we present
computational results for reconstructions in 2 and 3 dimensions .

2. THE INVERSE SCATTERING PROBLEM

We consider the scalar wave equation modeling acoustic wave propagation in a bounded
domain Q ¢ R?, d =2, 3, with boundary T

1 0%

(21) C—Qw—AP = f, m Q X (O,T),
(2.2) p(-,0) = 0, %(-,0):0, in Q,
(2.3) pl, = 0, on I'x(0,7),

where p(z,t) is the pressure, c¢(z) is the wave speed depending on z € Q, ¢ is the time
variable and 7 is a final time, and f (x t) is a given source function.
Our goal is to find the coefficient ¢(x) which minimizes the quantity

(2.4) / / p—D)’00ps dzdt,

where p is observed data at a finite set of observation points x.s, p satisfies (2.1) and
thus depends on ¢, and 0,55 = D 6(Zeps) is a sum of delta-functions corresponding to the
observation points.

To approach this minimization problem we introduce the Lagrangian

1 0)\0p
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and search for a stationary point with respect to (), p, ¢) satisfying for all (), p, ¢)
(2.6) L'(A\,p,¢)(A, p, ¢) =0,

where L' is the gradient of L and we assume that A(-,7) = A(-,7) = 0 and p(-,0) =
p(-,0) =0, together with homogeneous Dirichlet boundary conditions.
The equation (2.6) expresses that for all (A, p, ¢),

oL 1 0X0 - -
(2.7) 0=S5(\p.c / / - C—Qaa—%va— ) dadt,
oL
(28) 0= ap ()‘ b, c / /p p p(Sobs dxdt +
19X dp
/ /(— 5o + VAVE) dadt,
0 Q
2.9 0= aL)\p, = (9/\:Ut apxt) dzdt, = € (.
oc c3

The equation (2.7) is a weak form of the state equation (2.1 - 2.3), the equation (2.8) is a
weak form of the adjoint state equation

1 0%\ .
c_QW_A/\ = —(p—D)bs, zEQ, 0<t<T,
T
(2.10) AT) LAa(t ) =0,

A = 0 on I'x(0,7),

and (2.9) expresses stationarity with respect to c.

To solve the minimization problem we shall use a discrete form of the following steepest
descent or gradient method starting from an initial guess ¢® and computing a sequence c"
in the following steps:

(1) Compute the solution p™ of the forward problem (2.1) with ¢ = ¢"
(2) Compute the solution A" of the adjoint problem (2.11).
(3) Update the velocity according to

2 TN (x,t) Op™(w, )
2.11 i) = () — a® ’ L dt,
(2.11) @) = (o) -0 [ R
where the step length o” is computed using the one-dimensional search algorithm given in

[20].
More precisely, we will consider a quasi-Newton method with limited storage with the
gradient method being a special case.
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3. FINITE ELEMENT DISCRETIZATION.

We now formulate a finite element method for (2.6) based on using continuous piecewise
linear functions in space and time. We discretize 2 x (0,7") in the usual way denoting by
K, = {K} a partition of the domain Q into elements K (triangles in R? and tetrahe-
dra in R® with h = h(z) being a mesh function representing the local diameter of the
elements), and we let J;, = {J} be a partition of the time interval (0,7") into time inter-
vals J = (tx_1,tx] of uniform length 7 = ¢, — tx_;. In fully discrete form the resulting
method corresponds to a centered finite difference approximation for the second order time
derivative and a usual finite element approximation of the Laplacian.

To formulate the finite element method for (2.6) we introduce the finite element spaces
Vi, WP and W} defined by :

(3.1) Vi = {vely):ve P(K),VK € K},

(3.2) WP = {pe H'(2xJ):p(-,0)=0,p|r =0},

(3.3) Wr = {Ae H'(Qx J): \(-,T) =0, =0},

(3.4) WP = {veWP: |k € PI(K) x Pi(J),VK € K;,VJ € Ji},
(3.5) W) = {veW?*:v|kxs € PI(K) x P(J),VK € Ky,VJ € J;.},

where P;(K) and P;(J) are the set of linear functions on K and J, respectively.
The finite element method now reads: Find ¢, € Vi, A\, € W), pp, € WP such that

(36) L,()\h,ph, Ch)(j\,ﬁ, E) =0 Vece Vh, 5\ € W}i‘,ﬁ € Wf

4. FULLY DISCRETE SCHEME

Expanding p, A and ¢ in terms of the standard continuous piecewise linear functions
@;(x) in space and 1;(t) in time and substituting this into (2.7 - 2.8), the following system
of linear equations is obtained:

1 2 1

(4.1) M(p*T — 2pF + p*7Y) = PP FF — 7°K (gpk_1 + gpk + EPHI);
1 2 1

(4.2) MR —2XF L A1) = 728k _ 12K (6)\’“71 + §>\k + 6)\“—1),

with initial conditions :

(4.3) p(0) =0, p(0) =~ 0,

Here, M is the mass matrix in space, K is the stiffness matrix, £ = 1,2,3... denotes the
time level, F*  S* are the load vectors, p is the unknown discrete field values of p, A is the
unknown discrete field values of A and 7 is the time step.
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The explicit formulas for the entries in system (4.1 - 4.2) at the element level can be
given as:

(4.5) M;; (01—2%, Pjes
(4.6) Ki; = (Vi V9j)e
(4.7) Fﬁm = (f,</?j¢m)e><,1,
(4.8) Sim = (P =D, 0jtbm)ex;

where (.,.). denotes the Ls(e) scalar product. The matrix M, is the contribution from
element e to the global assembled matrix in space M, K* is the contribution from element
e to the global assembled matrix K, F'¢ and 5S¢ are the contributions from element e to the
assembled source vectors F' and vector of the right hand side of (2.11), correspondingly .
To obtain an explicit scheme we approximate M with the lumped mass matrix MZ~,
the diagonal approximation obtained by taking the row sum of M, see e.g. [13]. By
multiplying (4.1) - (4.2) with (M%)~ and replacing the terms ;p¥~* + 2pF + ¢p*! and
é)\k_l + %Ak + %)\Hl by p* and A*, respectively, we obtain an efficient explicit formulation:

(49) pk+1 — 7_2(}\4L)—11_;1k + 2pk _ TZ(ML)—Ika _ pk—l’
(4.10) AU = (M) TSR 4 2N — 2 (M) TR AR — XFH
The discrete version of (2.9) takes the form:
oL 2 [T o0 _
(4.11) 0= %(Ah,ph,ch)(c) = g/o . a—tha—thc dxdt,Ve € Vj,.

5. OPTIMIZATION BY QUASI-NEWTON

5.1. quasi-Newton with limited storage. To solve the discrete problem (3.6), we use

a quasi-Newton method, where we compute a sequence cf, k = 0,1, ..., of approximations
of ¢;, with nodal values ¢, given by
(5.1) Chp1 = i — Q" HF gy,
where g, are the nodal values of
2 T Ok (z,t) Opf (,t
(5.2) d(x) = / 1) O, ) 5,
@@y Jo ot o

where pf and A solve the discrete analogs of (2.1-2.3) and (2.11), the H* are given by the
usual BFGS update formula of the Hessian (see [19])

(5.3) H*Y = (I — pspyi Y H* (I — pyrsy) + psesy
where p = 1/(yl's;,) and

(5.4) Sk = Cpy1— Cr,

(5.5) Ye = Gk+1 — Gk,

and the step length o* is given by a one dimensional search algorithm.
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We now describe a special BFGS with limited storage, where we only store a finite
number m of corrections. For example, suppose that we have performed 3 iterations,
allowing m = 2 corrections to be stored. Assuming Hy = I and writing

pi = 1/y] s,
(5.6) vi = (I—pyisy),
the usual BFGS update (5.3) gives
Hy = wv§ Hyvo + pososs ,
Hy, = vlv] Hyvgvy + v] pososi vy + pisist,

while the special BFGS with m = 2 stored corrections is given by

(57) ﬁg = UfH()’Ul + ,01818{,
and thus
(5.8) Hs = v vl Hyv1vy + va p1515T Vg + pasass .

In the general case, if £ + 1 < m, we have the usual BFGS update
(5.9) Hppn = vivf ..of Hyvg...vp_ 104

T T T
+ v ...V7] PoSoSy V1. Uk

+ Uizvlz—mk—ZSk—zS;{_gUk—lvk
4+ U Pr—1SK—1Sp_1Vk
+  PrSkSE-

If £ +1 > m we have the special BFGS update

T, T T
(5.10) Hipp1 = U Vp_1- V1 HoVk— 1. Uk—10

T T T
+ V-Vt 2Pk—m+25k—m+15k_m+1Vk—m+2---Vk

T T
+ Vg Pk—15k—15—1Vk
T
+  PrSKS) -

Note that instead of explicitely computing the Hessian H* in (5.1), we compute the
product product H**'g* from (5.3) to get:

(5.11)  ((I = psy")H* (I — pys") + pss™)g" = (I — psy")H*(¢* — pys" g*) + pss” g",
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involving only scalar products of a vectors and computing H*g* similarly. The gradient
method is a special case of the quasi-Newton method, with m = 0.

5.2. The complexity of the quasi-Newton method. In this section we analyze the
complexity of the quasi-Newton method with limited storage. To compute the product
v;g* in BFGS-method:

(5.12) vig® = (I - piist ) g* = g* — piyis! ¢,
we need

0. 2n — 1 operations to compute siTgk,

1. n operations to multiply the obtained constant on step 0 by vector y*,

2. n operations to compute product of the obtained vector in step 1 by const p',
3. 2n — 1 4 n operations to compute constant p°,

4. n operations to compute the difference g* — p;y;sT g*.

It follows, that complete number of operations to compute v;¢* is 8n — 2. The maximal
number of such multiplications is equal to 2m, where m is number of stored corrections.
Taking sum in BFGS formula we have number of operations equal to 8n -2m + 8n - 2(m —
1)+8n-2(m—2)+...+8n-2=8n-(2m+2(m—-1)+2(m—2)+...4+2) =8nm- (m+1).
Then the total complexity of the quasi-Newton method is 8nm(m + 1), where n is the
number of nodes in the grid and m is the number of stored corrections.

6. AN A POSTERIORI ERROR ESTIMATE FOR THE LAGRANGIAN AND ADAPTIVE
ALGORITHM

We shall now indicate a proof an a posteriori error estimate for the Lagrangian. By C
we denote various constants of moderate size. We start by writing an equation for the
error e in the Lagrangian as

e = L(/\ap,c)_L()‘haphﬁch)

(6.1) _ %L'uh,ph,ch)(u,p, ¢) = (A phoc)) + R

1
= ELI()\h,ph, Ch)(/\ — Ap, P — Dy C— Ch) + R,

where R denotes (a small) second order term. For full details of the arguments we refer
to [3] and [10]. Using the Galerkin orthogonality (3.6) and the splitting A — A, =
A=X)+ X\ =), p—pn=(—0pi)+ (p}, — 1), c—cn=_(c—ch)+ (ct, — cn), where
(A, ph, ch) denotes an interpolant of (A, p,c) € W x WP x Vj,, and neglecting the term R,
we get:

1 1
(6.2) e~ §LI()"”ph’ ) A=A, p—ph,c—ct) = 5(11 + I + I3),
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where

1 o\ — )\ 0
o9 h= / / )ﬂJ“V(A—)\ﬁ)Vph

ot ot
—f(A— )\I) dzdt,

(64) IQ = / /(ph_ﬁ)(p_pi) (Sobs dxdt

_i% p ph) g

" / / ( 2ot ot + VMV —pp) | ddt,

(6.5) I, = / / a)\h (1) aphaf 1) c—cl) dodt

To estimate (6.3) we integrate by parts in the first and second terms to get:

(6.6) || = |/ /<laphA AL — Aph(A—Ag)—f(A—Ag)) dwdt

ch ot?

6ph T
(A= Ay, dsdt
* Z/ /61(8"1( ) °
1
_ Z/ aph )\ )‘h tk d.T‘
ofC

where the terms gnﬂ and [%} appear during the integration by parts and denote the
K

derivative of p, in the outward normal direction ng of the boundary 0K of element K, and

the jump of the derivative of py, in time, respectively. In the second term of the (6.6) we

sum over the element boundaries, and each internal side S € S, occurs twice. Denoting

by Opp the derivative of a function pp, in one of the normal directions of each side S, we

can write

8ph I / I
6.7 / (A— )\ ds = B /\ Ay) ds,
(6.7 DY Il > J, ol

where [8Sph] is jump in the derivative d;p, computed from the two triangles sharing S.
We distribute each jump equally to the two sharing triangles and return to a sum over
elements edges 0K :

(6.8) 3 /S Bun] - (A= M) ds =3 %h;{l /a 0= A e s

We formally set dr = hxds and replace the integrals over the element boundaries 0K by
integrals over the elements K, to get:

1
Zih,{ / [8spn) (A = A1) hic ds

where [0;py] |K = maxgcox |Osph) ‘5'

(6.9)

<C et [ |[on]|| - M) do,
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In a similar way we can estimate the third term in (6.6):

VAN

ch [aph ] O= X)) o) < D f & Ha;;"( )H (= M) (k)| 7de

< //—r Y [Opng ]| |(A = AL)| dadt
Jk

Q

= 0/0 Qaf L [0pne] | |(A = Ap)| dadt,
where
(6.0 o] = max (| B 00)] | B ).
(6.11) [Opns] = [Ophy,] on Jy.

Substituting both above expressions for the second and third terms in (6.6), we get:

1aph

(6.12) |I| < i Ch yra

— Apyp— f)(A=Ap) d:rdt‘

T
+ / max hi' - | [Ospa]| - [(A = A)| dadt
Q

SCOK

+ / / |[Opns] |- [(A = AR)| dadt
c,

1 (92ph _ f )\
2 gp O o2

(D)
o] o uasp,,“.@ 2

ot
0%\
C L [ (-

a YD)
where we used standard interpolation estimates for A — A/, and C denotes interpolation

constants. Next, the terms aat’;" and Apj, disappears in the first integral in (6.13) (pj is

+h2|D2A\) dudt

+ h2|D§A\> dzdt

h2|D§)\\> dedt,
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Np, OAp,
continuous piecewise linear function). We estimate 2 6t2 R e ] and D2\ ~ ["’—,f] to get:

T

(’Mh oA
(6.13) |L] < / /|f| ( +h2 [h]) dadt
OAp OAp
+ C/o sné%ﬁh | sph]| (7’ [T] + h? [h]) dxdt
aAh Ay,
+Ch//_1|3pt ( ]+h2[h]>da:dt.

We estimate [, similarly:

(6.14)L,| < / / (16%

c; Ot
- / max h ‘ 85)\;,” . |(p —p,Il)| dxdt

q SCOK

+—// 6)\ht|‘p ph‘dxdt

1 02\ -
(——Qh — AN, — (pn —p)> ‘ |0 —ph)| dadt
ch ot

—pl) = DM - ph) — (o — H)(p — pg)) ‘ dwdt

IN

+ C/ /maxh 8)\h]| ‘p ph‘ dxdt

SCOK

+—// 8)\;“5|‘p ph‘d:vdt

1 92\ %p
< (Ch 8t2h A/\h—(ph—p))‘< o) + h*|D? |) dxdt
+ //maxh1 o] (72| 22| 4 12 0%)) doa
SCOK " ot?

S [ (o

Ip | g2 |p2 \) dedt

), |2

< //\ph— ( i + h? e ) dzdt

(%], o | 22]
+0//maxhk\aAh\( o Rl ")dmdt

SCOK T h
L] [0 ]
+ 3 / / ([0 |- e R O s dadt.
h
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To estimate I3 we use a standard approximation estimate of the form ¢ — ¢} ~ hD,c to
get:

t
S 6)\h .I t 3ph(x t ‘ ‘[Ch]‘ dudt
ot
6)\h (x,t) 8ph(x,t
< | en)| dadt.
Defining the residuals
1 1 _
B = |1l Bo= g e 5| 0l]s B = 5|0
1 1 _
Ry = 5 max hy H[85An] |, RA3=QT H[0Aw] ],
_ 2 8/\h 8ph
Re = ot | | ot
and interpolation errors in the form
B o\ 8)\h
Opn Opn
. = — h
(6.17) o Cr {Bt] +C Han
(6.18) o, =

we obtain the following a posteriori estimate

1. (T T T
(6.19) le| < —(/ /RplaA dmdt+/ /Rma,\ d:cdt—|—/ /Rpgo,\ dxdt +
2 Jo Ja o Ja 0o Ja
T T T
+ / /Rhap dxdt—i—/ /R,\Zap dxdt+/ /R,\Bap dxdt
0o Ja 0o Ja 0o Jo
T
+ / /RcaC dxdt).
0o Ja

In the computations below we use the following variant of the gradient method with
adaptive mesh selection:

1. Choose an initial mesh K}, and an initial time partition J; of the time interval
(0, 7).
2. Compute the solution p on K}, and J; of the forward problem (2.1) with ¢ = ¢ .
3. Compute the solution A of the adjoint problem
1 0%\

gw_A)\:—(p—ﬁ)éobs, re0<t<T
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on K; and J;.
4. Update the velocity on K} and J;, according to

T oMz, t) Op(z, t)

2
D) () = ¢ (1) — o™ Z
") (z) =V (z) — « 3 /(; o o dt.

Make steps 1 — 4 as long the gradient quickly decreases.
5. Refine all elements, where R.o. > tol and construct a new mesh K, and a new
time partition J. Here tol is a tolerance chosen by the user. Return to 1.

7. AN A PRIORI ERROR ESTIMATE FOR THE WAVE EQUATION.

In this section we prove an a priori error estimate for the wave equation approximation(4.9)
in the simplified case with ¢ = 1:

0%p .
(7.1) ﬁ—Ap = f, in Qx(0,7),
(7.2 p0) = 0, P(0)=0, in 9
(7.3) pl, = 0, on T x (0,7).

We thus consider the corresponding discrete problem: Find p} € WP, for n =1,..., N such
that

(7.4) (07ph,v) + (Vph, Vo) = (f",v) Yve W},
where
n—+1 n n—1
n Dy 2Py +p
(75) at2ph = h Tgh h )

and p) = 0,p; = 0. For simplicity we assume that h is constant.

For w € H}(2) we define the elliptic projection 7w € V} 1, where Vi1 :={v € Hj : v €
Pl(k)a\V/K € Kh} by
(7.6) (Vrw, yv) = (Vw, V) Yv € V1.

We shall estimate the difference between the discrete solution p} € W} and the elliptic
projection mp" € W}, and we define

(7.7) O" = pl — Tpp,.
Using the definition (7.6) and (7.1) - (7.3), we obtain:
(07 (mp™),v) + (V(mp™), vv) = (8 (7p™),v) + (Vp", V)
(7.8) = (p"v) + (") Yve W},

where p" = 0?(mp™) — %(tn) and p" = p(., t,)-

Subtracting (7.8) from (7.4) and using (7.7), we get the following error equation:
(7.9) (070",v) + (VO", vv) = —(p",v) Vv e Wy,
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where

(7.10) p"[| < C(*[|(Dip)"|| + p?||(DZD7p)"|]).

We now choose

@n—f—l —_en en — @n—l
_|_

T T

(7.11) v= %(

)

and use the fact that

- @n—}—l — 20" + @nfl 1 (@n—H —en er — @nl)
oen = - =_ — ,
T T T T

to get

1 @n—l—l _ @n en _ @n—l @n—i—l _ @n @n _ @n—l 1

_ _ - enr @n+1 _ @nfl

27 ( T T ’ T + T ) 27 (v, v( )
— i n Qnt+tl _ qn-—1
- or (p ’ 6 @ ),

which reduces to

(7.13)

@n—i—l _ @n 2 @n _ @n—l 2 " " - " " -
(H i (el H>+W@Jﬂgﬂ_@1»:@,gﬂ_@1)

Summing over n in the first term of (7.13) we get :

Nz:l ||®n+1 B ®n||2 B ||@n _ @n—1||2 B ||@N _@N—1||2

2 2 2 !

(7.14)

T T T

n=1
and in the second term of (7.13) :

N-1

(7.15) Y (vor,v (et —em ) = (ver,veV ),
n=1
and thus we have:
QN _ N-12 B N-1 B
(716) H = H + (v@N’ v@N 1) — (pn’ @n+1 —_en 1).

1

3
Il

Using an inverse estimate and assuming <& <1 we have

(voV,voN ) = (yoV,yel) - (ve" -, veV)
v(@N _ @N—l)

> ||y N - v e
cr, (N — N1
> Jlverr- T g e

(@N B @N_l) ||2

v

1 1
z N2z
LA |
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We conclude that

||@N o @N—1||2 N N-1 o @n—i—l _ @n—l
(7.17) 2 +lve HQSQTZ P )
n=1
Using the definition of p and (7.10), we get:
T A AR o W 21 T2 2
(7.18) >0 =)= Y _(lDip)" | + K*[|(D:D}p)"|)2:6.
n=1 n=1

We substitute this expression into (7.17) to get:

T T
80|+ || v OV ||* < 27 ( | 1oipyae+ i [ ||<D§D§p>"||dt> - max ||9,0"],
0 0 n

which gives the following a priori estimate for ©:

(7.20 max (1 %511+ 11 v 0717) < €+ 1)
Using the fact that

(7.21) max(|[0y(p — mp)" || + || v (p = 7p)"|]) < Ci(7 + h),

we get finally

(7.22) max ([[0y(p = pa)" || + || v (p = pa)"|]) < Ci(7 + h),

Integrating (7.22) we can also obtain

(7.23) max([|(p — pa)"[| + [ V (p = pa)"[]) < C(7 + h).

8. IMPLEMENTATION ISSUES

We have chosen C++ as the implementation language. It allows us to implement the
problem and the algorithms on a high level of abstraction without much loss of efficiency.
We have implemented important notions such as grid, boundary, operator, and grid func-
tion as C++ classes. The software package PETSc [2] is used for matrix vector computa-
tions. See [4] for more information about implementation of the hybrid method.

The run program to implement reconstruction algorithm for solving inverse problem is
written in perl and has following form:

$FILE = $ARGV[O];
$data = $ARGV[1];
$rc=0;
# return code of step4 controls the loop
# 0 means continue, 1 —— the fixpoint is reached, OxFF —-internal error
$iter = 0;
$1=1;

$codel = 0;
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$code2 = 0;

# compute exact solution of the problem
‘stepl_3d_4w $FILE $data‘;

while ($rc==0)
{

$iter++;
$it = Piter;

print"\n\n#######H##E#EE iteration $it ######\D" ;
# compute solution of the forward problem

‘step2_4waves $FILE $data‘;
# compute solution of the adjoint problem
print ‘step3_3d_4w adjref2_ubot.dat $data‘;

$code2 = 0;
# alfa-optimization algorithm
while ( $code2 == 0)
{

$codel = 0;

while ($codel == 0 )

{
print ‘step4_alfa_3d $FILE $data‘;
‘alfa_4w $FILE alfa2.m $data‘; # solve problem with parameter alfa2
‘alfa_4w $FILE alfa.m $data‘; # solve problem with parameter alfa
print ‘find_alfa2_3d $FILE $data‘; # returns codel
$codel = $7 >> 8;

}

‘alfa_4w $FILE alfal.m $data‘; # solve problem with parameter alfal

print ‘find_alfal_3d $FILE $data‘; # returns code2
$code2 = $7 >> 8;
print"\n\n after find_alfal_3d : code2 is $code2.\n";

15
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print"\n\n===== works step4 ---> compute new velocity \n ";
print ‘step4_3d $FILE $data ;

‘cp New_Vel.m ref2_ 4w_$it.m‘;
‘cp vel.inp ref2_4w_$it.inp‘;

print"return code = $rc \n";

}

print $rc==1 7 "fixpoint reached after $iter iteratiomns \n" :
"there was an internal error\n";

9. NUMERICAL EXAMPLES

In this section we present computational results for our adaptive method for two and
three dimensional inverse scattering problems.

In all the examples we solve the model problem (2.1) in the domain Q = [0,1]¢, d = 2, 3,
with a combination of Dirichlet and absorbing boundary conditions, and with the initial
conditions u = %—1; = 0. The domain €2 is decomposed into two domains Qrgrr and Qrpas
in such a way that their meshes overlap in two layers of nodes, see [4]. In Qppy domain we
effectively use a FDM with a combination of Dirichlet and absorbing boundary conditions.
The space mesh for finite element method in in 2z gy, consists of triangles, and in the three
dimensional examples of tetrahedra. For the reconstruction we use plane waves initialized
at a boundary of €2. A plane wave, moving in the positive z; direction, has the form

w(z, 1) = { 8.1sin (k (t—21) —7/2) +0.1 izfls?ag t—z <2,

and is initialized for z; = 0 by using a Dirichlet condition.

We choose k£ = 25,100, 200, corresponding to increasingly sharp waves. In one experi-
ment we use one plane wave moving from left to right side. In other experiments we use
several plane waves, moving from left to right, from right to left or from top to bottom or
bottom to top.

For all computational tests we choose a time step to respect the CFL criterion:

h
(9.1) T< ot
where h is the minimal local mesh size of the elements, and «a is a constant.
We choose the observation points outside in Qppys close to Qpgy giving somewhat
better reconstruction.
First, we present a model applications of reconstructing one or two elliptic scatterers
in two dimensions. Next, we present three dimensional reconstructions of a one or two
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scatterers. In all the examples we apply the adaptive mesh refinement algorithm described
in Section 6.

9.1. Two dimensional numerical examples. In this section we describe the experi-
ments with one and two plane waves and one or two elliptical scatterers. Appropriate
initial values of the parameters in both experiments in the one dimensional optimization
algorithm are o = 0.001 and 8 = 0.001. In the experiments with one plane wave, the
wave is initialized at the left boundary z; = 0 of 2 and goes through the Qpg,, to the
right boundary xz; = 1 during the time interval [0,%], ¢ < T. We use absorbing boundary
conditions on the other boundaries. As the observation points we choose eleven nodes near
the right boundary at x = 0.88.

We obtain the data for the reconstruction by solving the direct problem with ¢ = 1.3, 1.5
in the scaterrer, depending on the experiment, and ¢ = 1 outside. The solution is presented
in Fig. 6-a. The observation time is 0.5 and the time step is 0.002.

In Fig.(6-c - 6-d) we present reconstructions of a single elliptic scatterer. We start
running the reconstruction algorithm with ¢ = 1.0 in the whole domain and continue until
the stopping condition || 22|, < 0.001 is achieved.

To improve the reconstruction and achieve better convergence we use the adaptive algo-
rithm, described in Section 6.

The mesh refinement algorithm is as follows(we call two elements neighbours if they have
a common edge):

(1) Mark all elements to be refined with code 1, neighbors of these elements with a
common edge - mark with code 2, and neighbors of the elements with code 2 -
mark with code 3.

(2) Check condition: if neighbors of the element with code 2 have code 2 - mark both
elements with code 3.

(3) If the element with code 2 has two neighbour elements with code 1, we mark these
elements with code 1 and go to the step 1.

(4) Refine elements with code 1 into 4 triangles, using the middle points of the edges.

(5) Refine elements with code 2 into 3 triangles. When refining by three triangles, we
take the largest side of the triangle and find middle point of this side.

(6) Triangulate elements with code 3 into 2 triangles in the following way : make
connections between added new nodes and nodes in the elements from the coarse
grid.

To illustrate the effect of the adaptively refined meshes we present reconstructions of one
and two ellipses. The exact scatterer is shown in Fig. 2-a. In Fig. 3 we present a sequence
of adaptively refined meshes for reconstruction this scatterer.

We make experiments with two plane waves: the one plane wave is initialized at the left
boundary z; = 0 of €2 and goes through the Qpgy, to the right boundary z; = 1, and a
second plane wave is initialized at the right boundary x; = 1 of Qppy and goes through
the Qppy to the left boundary z; = 0 during the time interval [0,¢], t < T. We use
absorbing boundary conditions on the other boundaries.
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The observation points are located at both the left and right sides of the object, as
described in Section 9, using a total of 22 observation points. The maximal computational
time is 1.0 and the number of the time steps is 500 for the exact type of material equal
to 1.3, and 1000 for the exact type of material equal to 2.0 inside the scatterer. The
computations have been performed on three different locally adaptive refined meshes. See
Fig. 10 for the exact type of material equal to 2.0, and Fig. 11-13 for the exact type of
material equal to 1.3. In Fig. 5-a we present an exact solution of the problem (2.1) at the
time 0.18, and at Fig. 5 - b,c,d we present the solution of the forward problem for different
meshes at the same moment of time.

Another example is a reconstruction of two ellipses with the exact type of material equal
to 1.3 inside the scatterers. The computer simulations are presented in Fig. 14 — 15. The
exact scatterers are shown in Fig. 2-b .

The Tables 1 and 2 show that we can gain a significant reduction of the number of
iterations steps in the reconstruction algorithm by using appropriately refined meshes.

9.2. Three dimensional numerical examples. In this section we describe the experi-
ments to reconstruct three dimensional objects. We use the adaptive algorithm for com-
putation of the parameter ¢ described in Section 6. We perform experiments with 2,4 and
6 plane waves. Appropriate initial values of the parameters in both experiments in the one
dimensional optimization algorithm are o« = 0.01 and g = 0.01. The adaptive method is
as follows:

(1) Choose an initial mesh K and an initial time partition J; of the time interval

[0, 7).
(2) Compute the solution p on K, and J, of the forward problem (2.1) with ¢ = ¢™ .
(3) Compute the solution A of the adjoint problem

1 9%\ .
(92) ?ﬁ_A/\: _(p_p)éobsa T EQ,O<t<T,
on K, and Jg.
(4) Update the velocity on K} and Ji according to
2 [T oAz, t)Op(z,t)
9.3 (D) (z) = (™ (z) — o™ / ! Y gt
6:3) ) =) mo TS L T

(5) Compute a posteriori error estimate for ¢ defined in (6.19).

(6) Refine all tetrahedra, where R.0. > ¢, € is a desired tolerance. Each tetrahedron can
be divided into 2, to 8 new tetrahedra. We present different ways of the refinement,
of the one tetrahedra in Fig. 4.

(7) Construct a new mesh Kj: we connect a refined grid with the previous one, to
maintain the consistence of the grid.

9.2.1. Ezample 1. In this test we use four plane waves from the left,right,top and bot
boundaries. To get data for the reconstruction we solve the wave equation with four plane
waves of the form (9) with & = 100. The time interval is [0, 0.4] and is divided into four
phases, 0.1 each: first, one plane wave starts at the left boundary z; = 0 of Q2 and goes
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through the Qpgy to the right boundary z; = 1, then at time 0.1 a second wave starts
at the right boundary xz; = 1 of €2 and goes to the left, and the third and fourth plane
waves begin at time 0.2 and 0.3 at the top/bottom boundaries of Qrpys, respectively, and
goes to the bottom/top boundaries. We use absorbing boundary conditions on the other
boundaries. The observation points are placed around the object.

We obtain the data for the reconstruction by solving the direct problem (2.1)-(2.3) with
¢ = 2 in the scatterer and ¢ = 1 outside.

In Fig. 16 we present the computed exact solution of the problem (2.1) — (2.3) inside
Qrgy with four plane waves and absorbing boundary conditions at all the boundaries.
The computer simulations of the reconstructed scatterer on the adaptive refined meshes
are shown in Fig. 20. First, we compute parameter c using the reconstruction algorithm
on the coarse grid. Then we refine the coarse grid by using the estimate (6.19), and
interpolate the previously computed parameter ¢ into a new refined mesh. This value
is used as starting value for computations on the new mesh. Next, we perform all the
steps of the reconstruction algorithm and repeat the previously described procedure of the
interpolation of the computed parameter ¢ into the refined mesh, until the desired tolerance
is achieved.

9.2.2. Example2. Reconstruction using quasi-Newton method. We recall that we update
the coefficient ¢ by

(9.4) =+ ofH*(m)g",

where H*(m) is a quasi-Newton matrix and m is the number of the stored correction pairs
(Sk7 yk)a defined by

(9.5) Sk = Ckt1 — Ck,
(9.6) Ye = Gkt1 — Gk-

Here, ¢, and g are the stored vectors of the computed parameters and the gradients at
the iteration k.

Instead of forming the Hessian H(m), we can store scalars p; and vectors (s;, i), =
k —1,....k — m, which determine the matrices V;, defined as (5.6). The advantage of the
recursive formula (5.3) is that we can compute the product H*(m)-g* without matrix vector
multiplications. In the numerical examples we choose m = 0,5, 7, which corresponds to the
number of stored vector pairs (s, yx) equal to 1,6, 8. Note, that when m = 0 we have the
usual steepest descent method. To perform quasi Newton computations, we define the first
m approximations of the Hessian H*(m) using BFGS update formula, until the storage is
full. Then we delete the oldest correction pair from the set (sg,yx) and add a new one .
Then the new Hessian approximation is defined again by (5.3), using the newly added set
pair. This process is repeated during all iterations of the optimization algorithm.

We performed different experiments with m = 0,5, 7 on adaptively refined meshes. First
we present reconstruction of a cube inside Qpgy,. The exact scatterer is shown in Fig. 2-e.
The computational mesh inside {2z, is unstructured and was generated using a quality
tetrahedral mesh generator, which can be obtained from http://www.weboo.com/sh. The



20 LARISA BEILINA

meshes for computing the data are presented in Fig. 1. In the Fig. 28-a we present computed
L2-norms %—’;4 of the gradient for different adaptively refined meshes. Here, the number of
stored corrections is m = 5. The number of the nodes and elements in the adaptively
refined meshes are presented in the Table 5. We restart the quasi-Newton method on a
new mesh interpolating the computed approximation on the previous mesh into the new
mesh.

Second example is a reconstruction of star-shaped scatterer presented in Fig. 2-d. In
Fig. 28 - b we present computed L2-norms of the gradient for different adaptive refined
meshes. The number of stored corrections is m = 5. The number of the nodes and elements
in the adaptively refined meshes are presented in the Table 4. In the Table 4 we present the
effectiveness of the quasi-Newton iteration, compared with a steepest descent method. We
note that increasing the storage beyond 5 corrections will not have a very big effect: the
time, which is required to compute the Hessian, will increase with no increase in accuracy.

The reconstructed objects in both examples can be viewed in Fig. 21 and Fig. 25.

9.2.3. Example 3. Reconstruction with reflected waves. In order to get a better reconstruc-
tion of the object we tested a focusing technique, letting the incoming wave be equal to
a reflected non-plane measured wave. It seems to be helpful to make tests with reflected
waves from the boundaries of Qppy,. We hope that with such kind of tests we can get
more information about the nature of the object.

Tests with non-plane incoming waves from the left and the right side of Qrps.

We modulate problem in the following steps:

0. A plane wave (9) is initialized at the left boundary of Qpps during the time interval
[0, 27“] We use absorbing boundary conditions on the other boundaries.
1. Values at the observation points of the incoming wave are registered during the
time interval [0, 7).
2. Values of the incoming wave are registered at time T at the right boundary of
Qrpum-
3. A non-plane wave is initialized at the right boundary of Qpps, during the time
interval [T, T + 2Z], using the values of 2.
4. Values at the observation points are registered during the time interval [T, 27] for
the new incoming wave.
5. Values of the incoming wave are registered at time 27" at the left boundary of Qppjy.
6. A new incoming non-plane wave is initialized at the left boundary of Qppjs during
time interval [27), 2T + 27, using the values of 5.
7. Values at the observation points are registered during the time interval [27, 3T] for
incoming wave.
8. Values of the incoming wave are registered at time 37" at the right boundary of
Qrpum-
Steps 3 — 8 can be performed many times. We have tested with waves being reflected 2 and
4 times. The observation points are placed in (2gpy, at the left and right side of Qpgay.
In our examples we have used 76 observation points, 38 at the left and 38 at the right
side of Qpgys. To illustrate the strategy with reflected waves, we try to reconstruct the
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object given in Fig. 23-a. The reconstructed object is presented in Fig. 23-b using a 5 — 6
times adaptively refined mesh. In the optimization algorithm we have used quasi-Newton
method with m = 0,5,11. We present the computed Ls-norm of the gradient for different
adaptive refined meshes in Fig. 27-23-c,d. We see, that the best reconstruction is obtained
with a 4 times refined mesh. If we refine 5 or 6 times, the Ly-norm of the computed
gradient increases. This is because we use a 5 — 6 times refinement to compute the data.
We see a significantly better convergence, when we use 5 or more stored corrections in the
quasi-Newton method than in the obvious steepest descent method, what corresponds to
m = 0.

Tests with reflected wave from the left side of Qrpar.

We perform a similar experiments with reflected waves. The observation points are
placed at the left boundary of Qrpy,. We modulate the problem in following steps:

0. A plane wave (9) is initialized at the left boundary of Qpas during the time interval
[0, 27”] We use absorbing boundary conditions on all boundaries.

1. Values at the observation points are registered during the time interval [0, 7] for
the reflected wave.

2. Values of the reflected wave are registered at time T at the left boundary of Qppy,.

3. A new incoming non-plane wave is initialized at the left boundary of 2z pys during
the time interval [T, T + 27].

4. Values at the observation points are registered during the time interval [T, 27'] for
incoming wave.

5. Values of the reflected wave are registered at time 2T at the left boundary of Qppay.

Steps 3 — 5 can be repeated. We have tested with 2 and 3 times reflected waves. The
observation points are placed as in the previous example. To test this model, we recon-
structed the object, given in Fig. 23-a. We performed computations of the inverse problem
on a 5 times adaptive refined meshes. In the optimization algorithm we have used quasi-
Newton method with different numbers of the stored corrections equal to m = 0,5,11.
We present the computed Lo-norm of the gradient for different adaptive refined meshes
in Fig. 29. As we see from the computed norm, these model gives worse result than the
previous model with reflected waves from the left and the right side of Qppyy.

9.3. Performance comparisons. We demonstrate the performance comparison of the
adaptive mesh refinement procedure on the computer implementation of the reconstruction
algorithm. The benchmarks were run on Intel 600 Mhz processor with 192800Mb memory,
512992Mb in swap, 274280Mb used and 234780MB free memory. Table 1 presents the rate
of the convergence to reconstruct an ellipse. Inside an ellipse the wave distribution speed
parameter ¢ = 1.3 and in the rest of the domain ¢ = 1.0. In the Table 2is presented the
rate of the convergence to reconstruct two ellipses. Computational grids in these tables are
generated by the adaptive procedure. All tests have been performed for the time interval
[0, 1] with time step satisfying the CFL-criterion.

In the Table 3 we present performance of the computing for the forward and adjoint
solutions of the two dimensional reconstruction in the terms of the memory and cpu time.
The forward and adjoint solutions have been computed for a time interval [0, 1] with the



22 LARISA BEILINA

Type of the mesh | No. of nod. | Rate of the convergence, n.r it. | eps
coarse 624 85 0.001

1 time ref. 719 43 0.001

2 times ref. 852 16 0.001

TABLE 1. 2D reconstruction. Rate of convergence to reconstruct one ellipse.

Type of the mesh, 2D | No. of nodes | Rate of the convergence, n.r it. | eps
coarse 1039 120 0.001

1 time ref. 1322 49 0.001

2 time ref. 1506 35 0.001

TABLE 2. Rate of convergence to reconstruct two ellipses.

No. of | No. of | Forward problem | Adjoint problem
nodes | elements | mem | time, sec | mem | time,sec
466 834 19 5 36.0 6
624 1150 20.5 5.5 38.3 7
719 1340 21.1 7 39.3 9
852 1606 22 7.2 40.2 11
1160 2222 24 8 43.6 13
1296 2494 25 10 44.9 15

TABLE 3. Performance for the Forward and the Adjoint problems

time step computed satisfying the CFL-criterion. We choose time step 7 = 0.002 in all
the tests for all grids to compare memory consumption and time performance for different
grids. In the Table 4 we present performance of the computing for the forward and adjoint
solutions of the three dimensional reconstruction in the terms of the memory and cpu time.
The forward and adjoint solutions have been computed for the time interval [0, 4] with time
step 7 = 0.0002. The tests have been performed with 6 plane waves, going from the 6 sides
of the outer cubic domain.
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No. of | No. of | Forward problem | Adjoint problem
nodes | elements | mem | time, min | mem | time,min
466 1908 15 0.23 50.7 1.05
683 2852 17 1.02 51.2 1.56
1097 5410 18 1.34 51.8 2.28
1396 7248 19 2.02 52.3 3.02
2041 10006 | 20.5 2.30 54 3.28
2565 12096 21 2.41 55 3.31
2812 13578 22 2.2 57 3.49
3376 16008 25 3.54 58 4.50
4342 21854 28 4.50 60 6.36
7270 39602 30 5.76 70 8.38

TABLE 4. Performance for the Forward and the Adjoint prob
three dimensional reconstruction of the star shaped object.

No. of | No. of | Forward problem | Adjoint problem
nodes | elements | mem | time, min | mem | time,min
1430 5981 17.1 1.34 50 2.02
1559 6621 18.8 1.40 58 2.30
1813 8097 24.6 1.80 65 3.15
2117 9789 25 2.2 68 3.40
TABLE 5. Performance for the Forward and the Adjoint prob

three dimensional reconstruction of the cubic object.
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mesh for computations of the exact solution of the wave equation.
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FIGURE 10. Reconstruction of a single elliptic scatterer with c=1.5 in the scatterer.



ADAPTIVE HYBRID FEM/FDM METHODS FOR INVERSE SCATTERING PROBLEMS

PLOT

Y-Axis

Y-Axis

PLOT

Y-Axis

25-th it.

FiGURE 11. Reconstruction of a
which consists of 624 nodes.

PLOT

Y-Axis

0.7 08
X-Axis

06

36-th it.

Vé

7S

Va
8
s

Y-Axis
PN
Qi
X
"Ah

0.6 07 0.8

X-Axis

81-th it.

Y-Axis

08

06 0.7
X-Axis

83-th it.

single elliptic scatterer on coarse mesh

33



34

LARISA BEILINA

PLOT PLOT

2 2
B B
> >
0.6 07 0.8
X-Axis
20-th it.
I X 1?;
06 0.7 0.8
X-Axis
10-th it. 25-th it.
PLOT
3+
0.6 07 0.8 0.6 07 0.8
X-Axis X-Axis
15-th it. 43-th it.

FIGURE 12. Reconstruction of a single elliptic scatterer on a mesh with 719 nodes.
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FIGURE 13. Reconstruction of a single elliptic scatterer on a mesh with 852 nodes.
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FIGURE 14. Reconstruction of two ellipses on a mesh with 1322 nodes.
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time is 0.08 time is 0.11

time is 0.09 time is 0.12

FIGURE 16. Exact solution of the problem (2.1) - (2.3) with one scatterer
inside of Qpgyr with ¢c=2 in the scatterer. At the boundary Qgpas we apply
absorbing boundary conditions. We present also the location of the isosurface
with value 0.04 at the different time moments, when the plane wave goes from
the left to the right side.
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1

time is 0.045

time is 0.105 time is 0.3

FIGURE 17. Exact solution of the problem (2.1) - (2.3) with one star-shape
scatterer inside of Q2ppys with ¢=2 in the scatterer. Here we present the
solution in Qppy. At the boundary Qprpyp we apply absorbing boundary
conditions. We present also the location of different isosurfaces.
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FIGURE 18. Exact solution of the problem (2.1) - (2.3) with one star-shape
scatterer inside of Qpg)s with ¢=2 in the scatterer. Here we present the
solution in Qpgys. At the boundary Qgpys we apply absorbing boundary
conditions. We present also the location of different isosurfaces.
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FiGure 19. Reconstruction of the one scatterer in Fig. 2-c on adaptively
refined meshes: a) on a coarse mesh after 32 iterations, b) on a one time
refined mesh after 9 iterations, c) on a two times refined mesh after 5 iter-
ations d),e) on a three times refined mesh after one and three iterations, f)
on a four times refined mesh after 5 iterations of the steepest descent algo-
rithm.
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a) b)

FIGURE 20. Reconstruction of the one scatterer on a five times adaptively
refined mesh from different views. The value of the showed isosurface is 1.98.
In a) we present another scatterer and in b) its reconstruction on a four times
refined mesh.
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FIGURE 21. Reconstruction of the second in Fig. 20 scatterer on adaptively
refined meshes: a) on a coarse mesh after 6 quasi-Newton iterations, b) on a
6 times refined mesh after 4 quasi-Newton iterations, ¢) on a 5 times refined
mesh after 4 quasi-Newton iterations, d) on a 7 times refined mesh after 5
quasi-Newton iterations.
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a) b)

F1GURE 22. Reconstruction of the scatterer from Fig. 2-f on adaptively re-
fined meshes: a) on a 2 times refined mesh after 40 steepest descent method
iterations, b) on a 3 times refined mesh after 7 steepest descent iterations.
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FIGURE 23. a),b) Exact and reconstructed scatterer on a five times refined
mesh; ¢)d) Ly norm of the computed gradient on the coarse, 2 and 4 times
refined meshes for different number of the stored corrections.
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c) d)

FIGURE 24. Reconstruction of the scatterer in Fig. 23 a) on adaptively
refined meshes: a) on a coarse mesh after 4 quasi-Newton iterations (m=7),
b), ¢) on a 5 and 6 times refined mesh after 4 quasi-Newton iterations(m=7),
d) after 60 quasi-Newton iterations.
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a)after 2 QN it. b) after 5 QN it.

e) after 4 QN it. f) after 7 QN it.

FiGURE 25. Reconstruction of a cubic scatterer on the 3 times adaptive
refined meshes using the quasi-Newton method (QN).
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e) f)

FIGURE 26. Exact and reconstructed scatterers on adaptively refined
meshes. We performed computations of the inverse problem on a 4 times
adaptive refined meshes. In the optimization algorithm we have used quasi-
Newton method with the number of the stored corrections equal to m = 5.
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FIGURE 27. L, norm of the computed gradient for number of the stored
corrections m = 0,5 and 11 on adaptively refined meshes for the scatterer in
Fig. 23.
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L2-norm of the computed gradient at the adaptive meshes in 3 dimensional reconatruction L2 norm of the computed gradient to reconstruct star-shaped object
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FIGURE 28. a) L2-norm of the computed gradient in the quasi-Newton al-
gorithm for different adaptive refined meshes for reconstruction of a cubic
scatterer. The number of stored corrections is m = 5. b) L2-norm of the
computed gradient in the quasi-Newton algorithm for different adaptively re-
fined meshes for reconstruction star-shaped scatterer. The number of stored
corrections is m = 5.
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: :
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FiGURE 29. L2-norm of the computed gradient in the quasi-Newton algo-
rithm for different adaptively refined meshes for reconstruction of the scat-
terer in Fig. 23 . Tests performed for reflected waves registered on the same
side of the scatterer as the incoming wave with: a) number of stored correc-
tions is m = 0, b) number of stored corrections is m = 11.
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APPENDIX A. OPTIMIZATION ALGORITHMS

A.1. The steepest descent with optimal step size. Let E(z) is functional to be min-
imized, then method of steepest descent is following:

(1) Choose 2°, M,e. For m =0, ..., M do

(2) Compute h™ = — 7 E(2™).

(3) Compute p™ = arg min E(2™ 4 ph™) Vp > 0.
(4) Set 2™t = 2™ 4 pmp™,

(5) If | v E(z™)]| < €, stop.

A.2. Conjugate gradient. Algorithm:
(1) Choose 2°, M,e. Set h ! =0,g7! = — <7 E(z°). For m =0, ..., M do
(2)
1

(A.1) g* = -V EE"),
< gm _ gm—l,gm >
(A.2) 7" - ,
g™
(A ) pm = gm_i_,ymhm—l

4) Set z™*! = 2™ + ph™.

3
(3) Compute p = arg min,so E(z™ + ph™).
(
(5) If ||g™|| < e, stop.

A.3. Newtons method for the wave equation. We here present Newtons method for
the problem (2.1)-(2.3). Let us write this problem in the operator form

(A.4) Au) = f,
where u = (p, A, ¢), A(u) is the differentional operator

FoE = O
R v
0 “@orardt
a‘nd f (f’ ’ )
Newtons method takes the form:
(A.5) u"tt =" — oA (u™) AU,
where
19 _ 0 _29p
, c2? ot? 1 536%)%
A (U) = . -1 i?t — A i 3
2 01 8 2 9p 8 69
0 ZBLdt — [; Z%hd [; 528t

and involves the solution of the equation A'(u") du = A(u").
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A.4. One-dimensional minimization. Let

(A.6) E(p) = E(z™ + ph™) — E(=™)
and
(A7) 9 0) =< YE(E™), " >= || v E(=")|]2.

dp
The one-dimensional minimization algorithm is following:

0. Choose p and set d = p > 0.

1. Set po =p+d,p1 =p—d.

2. If E(p) > E(p2), then set p = p+ d and go to step 1. If E(p;) < E(p), then set

p=p—d/2,d=d/2 and go to step 1; else go to step 3.

3. Compute the minimum of the parabola running through

the three points p1, E(p1), p, E(p), p2, E(p2), i.€., set

1 E(p1) — E(p2)
(4 P03 P B+ B — 2B

4. If more precision is required go back to step 1, d = d/2.
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