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DOLFIN: DYNAMIC OBJECT ORIENTED LIBRARY FOR
FINITE ELEMENT COMPUTATION

JOHAN HOFFMAN AND ANDERS LOGG

ABSTRACT. In this report, we present a new software project intended to provide a plat-
form for adaptive finite element computation in both research and education. The software
DOLFIN is implemented in C++ and provides an object-oriented powerful and flexible
environment in which finite element methods for differential equations can be easily imple-
mented. The current version of DOLFIN already includes a number of modules for special
differential equations, including the incompressible Navier—Stokes equations. DOLFIN is
free and open-source, which we believe is a key point in creating truly useful software.

1. INTRODUCTION

Solving differential equations is one of the most important tasks in science and engineer-
ing. Given a mathematical model of the form

(1.1) A(u) = f,

where A is a differential operator on some domain and f is given data, the task is to find
the solution u. For non-trivial problems we are forced to seek an approximate solution U,
and the task is now to compute U such that the error e = U — w is smaller than a given
tolerance TOL > 0. Adaptive finite element methods provide a general framework for com-
puting approximate solutions of differential equations such as (1.1), including techniques
for estimating the size of the error e and techniques for adapting the computation to meet
the criterion ||e|| < TOL, see [7] for a general survey. In principle the task of computing
an approximate solution U to eq. (1.1) can thus be handled automatically, by software
implementing the framework of [7]. This is where DOLFIN comes into the picture.

A good code should be fiexible enough to handle many different equations and algo-
rithms, and efficient enough to handle large-scale three-dimensional problems on complex
geometries. We believe a good compromise between flexibility and efficiency is reached
by implementing the software as an object-oriented environment in C++. A good code
should also be easy to use. Usability does not have to conflict with flexibility as long as the
software is accessible at different levels. We explain this in more detail below. The last,
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2 JOHAN HOFFMAN AND ANDERS LOGG

but not the least important, cornerstone of a software project is that it is available, i.e.
free and open-source; this makes it easier to write flexible, efficient and usable software.

Flexibility is achieved by providing a set of standard tools which are commonly used in
finite element codes. These tools are implemented as C++ classes and can in principle
be combined to enable the implementation of any given algorithm. These tools or classes
include e.g. finite elements, equations, grids, vectors, sparse matrices and solvers. The
perhaps most important tool is the discretiser, which can automatically assemble sparse
matrices from the variational formulation of the differential equation. This approach makes
it easy to implement methods for simple problems such as the Poisson equation, as well as
more complex algorithms for solving e.g. the Navier-Stokes equations. To solve Poisson’s
equation all we have to do is to take the variational formulation and assemble into a sparse
matrix using the discretiser (which is one line of code). We then take a multi-grid solver
and solve the equations (another line of code). To solve the Navier-Stokes equations, we
have to do a little bit more, but the basic building blocks are the same.

With a good compiler at hand, we can write efficient code in C++, provided we are
careful and implement good algorithms. Since for large-scale three-dimensional problems
memory usage is often of importance, we have to be careful and cheap with memory at
all levels. Care is thus taken to ensure that all basic tools such as e.g. grids and sparse
matrices are stored and accessed as efficiently as possible. To further stress the importance
of being cheap with memory and cpu resources, constructs such as

Vector x(1000) = 1;
Vector y;

y = x5
are avoided since y = x involves allocating memory for y as well as copying all elements
of x. Instead the user has to be more explicit and do

y.CopyFrom(&x) ;

which makes it more obvious that we are performing an operation that may consume both
cpu and memory resources.

Usability means different things to different persons. A novice user who is not at all
familiar with finite element methods, or perhaps not even with differential equations, should
still be able to use the program. Ideally the true novice should only have to press the solve
button to make something happen. On the other hand, just pressing the solve button is
not enough for all users. Most users want to access the program at a lower level. This
level will be different for different users and thus the program has to be accessible at many
different levels. In this way the key to usability is accessibility. DOLFIN is accessible at
three different levels: user space, module space and kernel space, as is explained in more
detail below.

To ensure the availability of the program, DOLFIN is licensed under the GNU GPL, see
[2]. This means that anyone can download and install DOLFIN free of charge. This also
means that the source code is available and that anyone can modify the code to suit their
needs (and possibly redistribute the code).
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In the following sections we give an account for the features and the structure of DOLFIN.
Part of these features are already implemented. For a more detailed account on the progress
of DOLFIN visit the home page [9]. Comments and contributions are welcome.

2. BASIC CONCEPTS AND ORGANISATION

To achieve the goals stated in the introduction, we need to have a clear structure and this
is simplified by a modular and object-oriented approach. Different parts or components
of DOLFIN are thus implemented as C++ classes, which are organised in a modular way
according to Figure 1. The most fundamental of these classes is the FiniteElement.
Following Ciarlet [6] and Brenner-Scott [5], a finite element (K, P,N) is defined by

(1) A domain K C RM with piecewise smooth boundary, typically a triangle or a
tetrahedron;

(2) A finite-dimensional space P of functions on K together with a set of basis functions
(the shape functions);

(3) A basis N = {Ny, Ny, ..., Ni} for the dual space P* (the degrees of freedom).

A finite element thus contains geometric information about the domain K, a function
space P with certain properties and a set of degrees of freedom N connected to the function
space. This does not mean that we construct a large array of finite elements containing
this information, since that would consume large amounts of memory. Instead the infor-
mation is stored elsewhere and the FiniteElement class and its related classes, such as
e.g. FunctionSpace, ShapeFunction and LocalField are used only as temporary contain-
ers or interfaces. When assembling a linear system from a given variational formulation
(which may be part of a loop for solving a nonlinear system) the finite element, including
the domain and the local function space, is then for every element updated to represent
the current finite element: geometric information is fetched from the grid and data for the
local function space, e.g. derivatives of the shape functions, is computed. In Table 1 we
list the most important classes involved in this process.

Other important parts of DOLFIN are the Grid class which handles geometry informa-
tion and grid refinement, and algebraic solvers such as the KrylovSolver. Closely related
to the discussion above on the FiniteElement class are the two classes Discretiser and
Equation. We discuss the assembly routines contained in Discretiser in more detail
below in Section 3 and we also give an overview of the algebraic solvers in Section 6.

3. AUTOMATIC ASSEMBLING WITH OVERLOADED OPERATORS

An important step in automating the process of computational modeling is the automatic
assembling of a linear system from a given variational formulation. DOLFIN handles this
by operator overloading. In C++ binary operators can be defined for two objects of a class
or for two objects from different classes. This makes it possible to define the operator ’*’
between two objects v and w of type ShapeFunction, representing two shape functions v
and w on the domain K of a finite element. We define the operator '+’ in the following
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FiniteElement The finite element, containing geometric infor-
mation and information about the local function
space.

FunctionSpace A finite-dimensional space of functions on the
domain of a finite element.

TriLinSpace, TetLinSpace, ... Sub-classes derived from FunctionSpace.
ShapeFunction A member of the basis for a local function space
on the domain of a finite element.
TrilinFunction, TetLinFunction, ... Sub-classes derived from ShapeFunction.
LocalField A member of the local function space on the
domain of a finite element, i.e. a linear combi-
nation of the shape functions. A LocalField
can also be viewed as the restriction of a
GlobalField to the domain of a finite element.
GlobalField A function (possibly vector-valued) defined on
the whole of the computational domain.

TABLE 1. A list of classes closely related to our implementation of a finite element.

way:
(3.1) I / d

. v*w=-— [ v-wdx,

K] Jx
where | K| is the volume (or area) of the domain K. We also define
1

3.2 a*v:—/a-vdx,
2 K1 s

where « is a real number represented in the program by the variable a of type real. We also
define similar operations between two objects of the class LocalField, representing linear
combinations of shape functions, and also between two objects of class LocalField and
ShapeFunction respectively. These operations are defined as linear combinations using
the basic operators (3.1) and (3.2).

Using these operators we can assemble directly from a given variational formulation. As
an example, consider the heat equation,

(3.3) u—V - (cVu) = f,

on © x (0,7] together with a suitable set of boundary and initial conditions, where ¢ =
c(x,t) is a given heat conductivity and f = f(x,t) is a given source term. Assuming that V'
is the space of continuous piecewise linear functions on a partition 7 = {K;} of Q = U; K;
and 0 =ty < t; < ... <ty =T is a partition of [0, 7], the cG(1)dG(0) method for (3.3)
reads: Find U" € V for n = 1,..., M with U° given such that

(3.4) /Q <Un_k7nUnl) v dx +/Qc(-,tn)VU” -Vv dz = /Qf(-,tn)v dz,
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Grid Discretiser Equation

Problem

EquationPoisson equation;
Solvers Dcilscretise[‘(grid,equation);
SparseMatrix A;

Linear algebra - | Vector u.b;

KrylovSolver solver;
discretiser—>AssembleLHSEgﬁ

discretiser—>AssembleRHS
solver—>Solve(A,u,b);

Input/output
File formats

Ficure 1. Conceptual organisation of DOLFIN.

for all v € V, where {k,} = {t, — t, 1} is a sequence of time steps. Solving for U" in
every time step, we assemble a linear system from the variational formulation (3.4). In the
notation used by DOLFIN we specify the left hand side as

A~ (uxv - up*v)/k + c*(u.dx*v.dx + u.dy*v.dy + u.dzxv.dz),

and the right hand side as
b ~ fxv,

where u and v are objects of class ShapeFunction and up, ¢ and f are given objects of
the class LocalField. We then solve Ax = b for x, where the vector = contains the
degrees of freedom for U", using the algebraic solver of choice. For piecewise linear test
and trial functions, derivatives (represented by (-).dx, (-).dy and (-).dz) are constant on
every element. For higher order elements the basic operators (3.1) and (3.2) have to be
defined also for the derivatives of the shape functions.

The actual evaluation of the integrals corresponding to the multiplication operators can
be implemented in various ways, depending on the type of elements and function spaces. As
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an example consider again piecewise linear elements on triangles or tetrahedrons, equipped
with the standard Lagrange shape functions: {1, A2, A3} and {1, Ao, A3, A4} respectively.
For these simple elements we have the exact formulas

i / AL \T2 AT o 2- ml!m2!m3!
|K| J 7278 (my +mg +mz +2)

and
3!. ml!mg!m3!m4!

1
— [ ATRADRATRATM dr = .
‘K‘/K L (m1+m2+m3+m4+3)'
From this it follows that if v represents a shape function A;, we have

),
axv=— [ a\jdr=a/3
K Ju /

for triangles and
.
a*xv=— [ a\dr=a/d
K| Jx

for tetrahedrons.

For other types of elements, especially higher-order elements, we may want to use quad-
rature. The only difference is then the actual implementation of the operators, not the
specification of the variational formulation.

4. ACCESS LEVELS

As discussed above, DOLFIN is accessible at a number of different levels. Currently
the three main levels are user space, module space and kernel space. In simple terms,
user space is for the person who just wants to solve a particular problem (for which there
already exists a module). Module space is for the person who wants to implement a new
algorithm for a specific equation, or perhaps improve an existing module. Kernel space is
for the person who needs to add core features or improve the existing basic tools.

4.1. User space. In user space, DOLFIN is accessed through a simple C/C++ interface
providing a basic set of commands. Using these basic commands, a user only has to specify
the geometry and the equation that should be solved, together with boundary conditions
(including initial conditions for time-dependent problems). The behaviour of the solver for
the specified equation can be controlled by changing the values of different parameters (for
which default values are supplied). In the future, an extra layer in the form of a graphical
user interface may be added on top of the basic C/C++ interface. In Table 2 we show a
typical example of a simple program that solves Poisson’s equation using DOLFIN.

4.2. Writing modules. If the simple interface discussed above is not enough or no module
exists for a particular equation, a new module has to be added. On module level the user
has access to a set of basic tools implemented as C++ classes. The most important of these
are Equation, Discretiser, GlobalField, SparseMatrix and Vector. An Equation con-
tains the variational formulation for a specific equation. Using the Discretiser we can
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#include <dolfin.h>

int main(int argc, char **argv)
{

dolfin_set_problem("poisson");

dolfin_set_parameter ("output file", "poisson.dx");
dolfin_set_parameter("grid file", "tetgrid.inp");
dolfin_set_parameter ("space dimension", 2)

dolfin_set_boundary_conditions(my_bc) ;
dolfin_set_function("source",f);

dolfin_init(argc,argv);
dolfin_solve();
dolfin_end();

return O;

TABLE 2. An implementation of a solver for Poisson’s equation at user level.

automatically assemble a SparseMatrix and a load Vector from the variational formu-
lation, and then solve using one of the algebraic solvers which are also provided as basic
tools. These basic classes or tools can be combined in many ways. As an example we can
have many equations and the solution of one equation may be fed into another equation, for
example in a fixed point iteration between the momentum and the pressure equations when
solving the incompressible Navier-Stokes equations in an operator splitting approach.

A GlobalField represents a function, possibly vector-valued, and can be used to couple
the degrees of freedom contained in a Vector to a real-valued function, or to represent a
user supplied function for the right-hand side or a coefficient in an equation. This class
is important, since it allows the user to make reference to functions in the variational
formulation independent of their actual representation. We give an example of this below
in Tables 3 and 4 where we present a simple implementation of a module for Poisson’s
equation.

A DOLFIN module in its simplest form is composed of two main classes: an Equation
sub-class and a Problem sub-class. The Equation implements the variational formulation
of the problem and the Problem class implements the algorithm to be used. In simple
cases, such as the Poisson problem, all that has to be done is to assemble a sparse matrix
from the variational formulation and then solve a linear system using one of the algebraic
solvers provided by DOLFIN. For other problems the algorithm may be more complex.
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class EquationPoisson: public Equation{
public:

EquationPoisson() :Equation(3){
AllocateFields(1);
field[0] = &f;

}

real IntegratelLHS(ShapeFunction &u, ShapeFunction &v){
return ( u.dx*v.dx + u.dy*v.dy + u.dz*v.dz );

}

real IntegrateRHS(ShapeFunction &v){
return ( f * v );

}

private:
LocalField f;
};

TABLE 3. An implementation of a module for Poisson’s equation: the class
EquationPoisson.

4.3. Kernel. At kernel level the user has access to the actual implementation of all the
basic tools that are available at module level. This is where the real action takes place, and
this is where the user (or the developer) can add new functionality to DOLFIN, including
the addition of new algebraic solvers, improvement of existing methods, addition of new
input and output formats, or perhaps addition of completely new functionality. As an
example 5 shows part of the Equation base class, from which EquationPoisson and other
equations are derived.

5. INPUT AND OUTPUT

DOLFIN is a solver. It does not have have any pre-processing tools (mesh generation),
nor any post-processing tools (visualisation). This specialisation makes it possible to focus
entirely on the solution process. This also means that we have to rely on other codes in
order to have a complete system containing also pre- and post-processing. There already
exist a number of such tools, both free and non-free, that can be used with DOLFIN, and
the idea is not to focus and adapt DOLFIN to work well with only one of these tools,
but instead provide interfaces to as many pre- and post-processing tools as possible. The
current version can import data from GiD [1] and MATLAB [3] (which are both commercial
software) and export data to OpenDX (which is a free open-source package, [4]), GiD and
MATLAB. The code is organised in a way that should allow for easy addition of new
formats for input and output.
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void ProblemPoisson: :Solve()

{

EquationPoisson equation;

SparseMatrix A;

Vector x,b;

KrylovSolver solver;

GlobalField u(grid,&x);

GlobalField f(grid,"source");
Discretiser discretiser(grid,equation);

equation.AttachField(0,&f);
discretiser.Assemble (&A,&Db);
solver.Solve (&A,&x,&b);

u.SetLabel("u","temperature");
u.Save();

TABLE 4. An implementation of a module for Poisson’s equation: the class
ProblemPoisson.

class Equation{
public:

Equation(int nsd);
“Equation();

virtual real IntegrateLHS(ShapeFunction &u, ShapeFunction &v) = 0;
virtual real IntegrateRHS(ShapeFunction &v) = 0;

void UpdateLHS(FiniteElement *element) ;
void UpdateRHS(FiniteElement *element) ;
void AttachField(int i, GlobalField *globalfield, int component = 0);

TABLE 5. Part of the base class Equation at kernel level from which
EquationPoisson and other equations are derived.
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Mesh generation
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X DOLFIN
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o

Visualisation

FIGURE 2. The solver (DOLFIN) is the key part in the larger system con-
taining also mesh generation (pre-processing) and visualisation (post-
processing).

6. ALGEBRAIC SOLVERS

In the current version of DOLFIN several algebraic solvers are implemented to handle
the large sparse linear systems of equations that arise in the discretisation of differen-
tial equations. Apart from a direct solver and the standard classical stationary iterative
methods, such as the Jacobi and the Gauss-Seidel methods, Krylov methods, such as the
conjugate gradient method and GMRES, are implemented. Future versions of DOLFIN
will include also preconditioners, multigrid solvers, and solvers for eigenvalue problems.

7. EXAMPLES

In this section, we present a couple of basic examples of equations we have solved using
DOLFIN: Poisson’s equation, convection—diffusion, and the incompressible Navier—Stokes
equations. Solvers for these equations are implemented as modules in DOLFIN, and more
modules for other equations will be added in the future.

7.1. Poisson’s equation. We solve Poisson’s equation:
(7.1) —Au(z) = f(z), z€Q,
on the unit square Q = (0,1) x (0,1) with homogeneous Dirichlet boundary conditions

on two opposing edges and homogeneous Neumann boundary conditions on the other two
edges. The source term f = f(z) is given by

[ 100, (z—0.5)2+ (y—0.5)2 < 0.32
F@ =30, (2=05)2+(y—05)> 032
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0 0

FIGURE 3. Poisson’s equation on the unit square. The grid was generated
with GiD and the solution is visualised using the pdesurf command in MAT-
LAB.

7.2. Convection—Diffusion. Another basic example is the time-dependent convection—
diffusion equation:

(7.2) U+b-Vu—V-(eVu) = f,

together with a set of boundary and initial conditions, where b is a given vector field for the
convection, € is a given diffusivity and f is a given source term. The solution v = u(z,t)
represents the temperature (or the concentration of a substance) at (z,¢). We compute
the solution for a given velocity field b = (—10,0), with f = 0 and € = 0.1 on the domain
presented in Figure 4. The temperature u is taken to be u = 1 on the dolphin and v = 0
on the right inflow boundary. On the remaining three edges of the boundary we choose
homogeneous Neumann boundary conditions: 0,u = 0.
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F1GURE 4. Convection—diffusion around a dolphin. The grid was generated
t+u-Vu—vAu+ Vp=f,
V-u=0,

with MATLARB:s PDE toolbox and the solution is visualised using contour

lines in GiD.

7.3. The incompressible Navier—Stokes equations. The third example consists of the

incompressible Navier—Stokes equations:

(7.3)
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from which we want to compute the velocity field v and the pressure p. The viscosity is
given by v and f is a given force term. In Figure 5 we plot isosurfaces for the stream-wise
velocity in a computation of transition to turbulence for a jet flow with periodic boundary
conditions, on a mesh consisting of 390,000 tetrahedral elements as described in [8].

P . \\\«\\«
e e
=,
K
4 Was
N B -

FIGURE 5. Transition to turbulence in a jet: isosurfaces for the stream-wise
velocity. Visualisation using OpenDX.
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