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ADAPTIVE MULTISCALE COMPUTATIONAL MODELING OF
COMPLEX INCOMPRESSIBLE FLUID FLOW

JOHAN HOFFMAN AND CLAES JOHNSON

ABSTRACT. We consider the problem of computational solution of the 3d Navier-Stokes
equations in the case of complex non-stationary solutions with subgrid scales. We present
adaptive finite element methods based on a posteriori error estimation in different norms
of the discretization error and the modeling error from unresolved subgrid scales. The a
posteriori error estimates involve discretization residuals and estimates of modeling residu-
als by extrapolation, combined with multiplicative weights computed by solving linearized
dual problems. The a posteriori error estimates indicate computability of different quan-
tities and may be used to select optimal meshes as well as the best of avaliable subgrid
models. We present examples including transition to turbulence in shear flow, where we
estimate the modeling error to be of the same order as the discretization error, and local
quantities to be more demanding to compute than global. We also present results using
different subgrid models.

1. INTRODUCTION

Error control in Computational Fluid Dynamics CFD has long been restricted to differ-
ent forms of ad hoc approaches. In the last couple of years, new possibilities of quantitative
error control and adaptive computational modeling have been opened by adaptive finite
element methods based on a posteriori error estimates in the work by Johnson and Ran-
nacher with co-workers [2]. Applications to laminar flows have been made with consider-
able success, see e.g. [11] and [18]. The discretization uses the general space-time Galerkin
least squares stabilized finite element method, developed by Johnson and Hughes with co-
workers, referred to as the General Galerkin G2-method. This method includes the stream-
line diffusion method on Eulerian space-time meshes, the characteristic Galerkin method
on Lagrangian space-time meshes with orientation along particle trajectories, and Arbi-
trary Lagrangian-Eulerian ALE methods with different mesh orientation. The G2?-method
constitutes a general flexible methodology for the discretization of the incompressible and
compressible Navier-Stokes equations applicable to a great variety of flow problems from
creeping viscous flow to slightly viscous flow, including free or moving boundaries.

In [13] we extend the G%-method to turbulent incompressible flow. To computationally
resolve all scales in a Direct numerical simulation DNS may be possible for Reynolds
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2 JOHAN HOFFMAN AND CLAES JOHNSON

numbers Re of the order up to 1000, while Re larger than say 100.000 is beyond present
computational power. In typical applications in aero- and hydrodynamics we may have
Re = 10 or larger. In these cases turbulence modeling is needed to account for unresolved
subgrid scales on the computationally resolved scales. Turbulence modeling is one of
classical physics outstanding open problems where today computational methods open
new possibilities.

The a posteriori error estimates take into consideration both the numerical errors from
discretization and the modeling errors from unresolved subgrid scales, and bound the total
error in terms of an integral in space-time of a discretization residual times a dual weight,
and a modeling residual times a dual weight. The dual weight is obtained by solving an
associated linearized dual problem, and contains information about error propagation in
space-time. If we use a subgrid model in the computation, the subgrid modeling error is
included in the a posteriori error estimates, which opens the possibility of comparing the
error using different subgrid models. Altogether the a posteriori error estimates open the
possibility of adaptively choosing both an optimal mesh and an optimal subgrid model.
We present computations of transition to turbulence in Couette flow, investigated in [12],
with estimation of both the discretization error and the modeling error.

We emphasize that the error estimation depends on the computational goal: a pointwise
quantity, a global measure of the error, or some local average of the solution, such as the
temporal average of the drag force, for example. Through studies of the solution of the
dual problem we find that, in a turbulent flow, a local quantity is more computationally
demanding than a global.

2. ADAPTIVE FINITE ELEMENT METHODS FOR TURBULENT FLOW

The incompressible Navier-Stokes equations expressing conservation of momentum and
incompressibility of a unit density constant temperature Newtonian fluid with constant
kinematic viscosity ¥ > 0 enclosed in a volume 2 in R?, take the form: Find (u,p) such
that

i+ (u-Vu—vAu+Vp =f in Qx 1,
(2.1) diveu =0 in Q2 x 1,
) u =w on 0 x I,
u(-,0) =u in Q,

where u(z,t) = (u;(x,t)) is the velocity vector and p(z,t) the pressure of the fluid at (z,t),
and f, w, u®, I = (0,T), is a given driving force, Dirichlet boundary data, initial data and
time interval, respectively. The quantity vAu — Vp represents the total fluid force, and
may alternatively be expressed as

(2.2) vAu — Vp = divo(u, p),

where o(u, p) = (0;;(u, p)) is the stress tensor, with components o;;(u, p) = 2ve;;(u) — pdij,
composed of the stress deviatoric 2ve;j(u) with zero trace and an isotropic pressure: here
€ij(u) = (u; j+u;;)/2is the strain tensor, with u; ; = Ou;/0x;, and §;; is the usual Kronecker
delta, the indices ¢ and j ranging from 1 to 3. We assume that (2.1) is normalized so that
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the reference velocity and typical length scale are both equal to one. The Reynolds number
Re is then equal to v~!. Of course, the specification of the length scale may not be very
obvious and thus the Reynolds number may not have a very precise quantitative meaning.

2.1. The averaged Navier-Stokes equations. In a turbulent flow we may not be able
to resolve all spatial and temporal scales of the velocity u computationally. We may instead
aim at computing a running average u” of u on a scale h, defined by

h/2
(2.3) ul(z,t) = %/ / u(x +y,t+s) dy ds,
Qn v —h/2
where h is a constant parameter and Q, = {y € R® : |y;| < h/2}. We note that this
operator commutes with space and time differentiation, and we now seek equations for u".
If we take the running average of the equations (2.1), with suitable constructions near the
boundary 052, we obtain

u + (uh - V)uh — vAul + Vph + F(u) = f in Qx1I,
divu® =0 in Q x 1,
(2.4) uh =w on 02 x I,
ul(-,0) =ud in Q,
where Fy(u) = div 7"(u), and 7/4(u) = (usu;)" — u}u}} is the Reynolds stress tensor.

Alternatively, we may restrict u” to denote pure spatial averaging. This procedure of
averaging the Navier-Stokes equations over a certain spatial scale is referred to as a Large
eddy simulation LES, see [5] for details. The crucial problem of LES is how to model F},(u)
in terms of u” in a subgrid model Fj(u"), or 7%(u) in a model 7,(u"). In the rest of this
paper we will let u" be a spatial average only, defined by

(2.5) ul(z,t) = %/Q u(z +y,t) dy.

The difference of considering the case when we have u" defined by (2.3) consist only in a
reinterpretation of 7% (u).

2.2. Subgrid modeling. There is a multitude of different subgrid models that correspond
to different assumptions on the form of the Reynolds stresses, and we may formulate a
“general” subgrid model on the form
1
~h sho_ sh() b\ o h

(2.6) Tij — 3Tk = iy (") + e (u”),
with an algebraic part and a viscous part, that contains several of the most commonly used
models. We note that when we apply the trace-free form of the model (2.6), the isotropic
part is absorbed into the pressure term, leading to a redefinition of the pressure, see [15].

The simplest, and most commonly used, subgrid models are the eddy viscosity models,
where the effect of the Reynolds stresses is modeled as an extra viscosity, and corresponds
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to 7y = 0 and 7;; = vy in (2.6). The classical eddy viscosity model is the Smagorinsky
model with

(2.7) vr = (Csh)?|e(u")],

where C's is the Smagorinsky constant, commonly set to 0.1 — 0.2. The eddy viscosity
models are considered too dissipative, and they are unable to predict backscatter.

In general, the resolved scales are assumed to lie in the so called inertial range, which
refers to a range of scales for which the energy spectrum has a simple power law behaviour,
corresponding to scale similarity. Different types of scale similarity assumptions on the
Reynolds stresses have been used to motivate various types of subgrid models. For ex-
ample, in the dynamic procedure the parameters in a particular model are determined by
comparing resolved Reynolds stresses on different scales, and in scale similarity models the
assumption is that the exact Reynolds stresses are proportional to the resolved Reynolds
stresses, possibly on coarser scales.

The concept of a dynamic model, first introduced by Germano [6], is not a subgrid model
in itself, but rather a procedure that can be applied to different subgrid models, where the
parameters in a particular model are determined by comparing resolved Reynolds stresses
on different scales. If applied to the Smagorinsky model, for example, it corresponds to
replacing the constant Cs by a function Cs = Cs(x,t), which is determined by the dynamic
procedure.

Scale similarity models, first introduced by Bardina [1], corresponds to 7;; = 0 in (2.6),
and takes the form
(2.8) T(uh) = (") = (uiug)® — (uf)" (uf)".

Variants of this type of models have been suggested by e.g. Liu [16], where the Reynolds
stresses on the computational scale h are assumed to be proportional to Reynolds stresses
of the resolved field on a coarser scale H:

(2.9) Ti(u") = Cory (u*) = Co((uiug)™ — (u)™ (uf)™).

There are also dynamic variants of the scale similarity models, where C}, is determined
by a dynamic procedure. The scale similarity models can predict backscatter, but are
considered not to be dissipative enough.

Since the scale similarity models are considered not to be dissipative enough, they are
often combined with an eddy viscosity model. This mized models takes the form of (2.6),
with 2;; = vr and 7/5(u”) being a scale similarity model. There are also dynamic variants
where the parameters of both the eddy viscosity part and the scale similarity part are
determined dynamically.

Among the subgrid models not mentioned above, we note the Variational multiscale
method by Hughes [14], where an eddy viscosity model acts only on the finest resolved
scales. There are Fractal models, see e.g. Scotti & Meneveau [19], that are based on fractal
interpolation of the velocity field for a direct evaluation of the Reynolds stresses, and also
models based on homogenization have been used, see e.g. [4].
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2.3. Scale similarity of turbulent solutions. Turbulent flow show some features of
scale similarity, which is expressed in the Kolmogorov 5/3-law [4], corresponding to Holder
continuity of the velocities with exponent 1/3. This gives some hope for scale similarity
models, but features of coherent structures also present in turbulent flow pose challenges.
In Section 4.1 we investigate the scale similarity with respect to a Haar MRA of a computed
solution in a turbulent shear flow.

To motivate Holder continuity of the velocities with exponent 1/3 we may argue as
follows: If [ is the smallest scale present in the flow and v is the corresponding velocity
amplitude, then we should have vl ~ v (local Reynolds number ~ 1) and v(v?/{?) ~ 1
(turbulent dissipation on the smallest scale), which gives v® ~ [, that is Holder continuity
with exponent 1/3 on the smallest scale, and by scale similarity we should have the same
exponent also on coarser scales.

2.4. The General Galerkin G’-method for laminar flow. In [11] we presented the
general space-time Galerkin least squares stabilized finite element method, referred to as
the General Galerkin G*-method, for the incompressible Navier-Stokes equations (2.1).
The least-squares stabilizations present in the G2-method, take care of the two main diffi-
culties traditionally met in the discretization of the incompressible Navier-Stokes equations,
namely (i) instabilities from Eulerian discretization of convection terms, and (ii) pressure
instabilities in equal order interpolation of velocity and pressure.

Let 0 =ty < t; < ... <ty =T be a sequence of discrete time steps with associated time
intervals I,, = (¢,-1,t,] of length k, = ¢, — t,,_1 and space-time slabs S,, = Q x I,,, and let
W, C H'(Q) be a finite element space consisting of continuous piecewise polynomials of
degree p on a mesh T, = {K} of mesh size h,(z) with Wy, the functions in W, vanishing
on I'. H'() is the Hilbert space of Lebesgue square integrable functions with Lebesgue
square integrable first order partial derivatives. To define the G*-method for (2.1) with
homogeneuos Dirichlet boundary conditions for the velocity (w = 0), let for a given velocity
field B8 on S, = Q x I, vanishing on I' x I,, the particle paths z(z, ) be defined by

(2.10) % — B(a,D) Tel, and 2(Ft)=F T,

and introduce the corresponding mapping F? : S, — S, defined by (z,t) = F’(z,1) =
(z(z,t),t), where z = z(x,t) satisfies (2.10). Define for a given g > 0, the spaces

VP ={ve H'(S,) 0z,1) = (f-t,)U;(z), U; € [Woul*},

=0
q
Q={ge H'(S,) : q(z,1) = Y (T — tu)4;(Z), 45 € Wa},
=0
together with their analogs in (z,t)-coordinates: V.’ = {v : 5 € VF} QF ={q: 7€ Q°},

where v(z,t) = 9(7,%) and g¢(z,t) = q(7,%). Defining finally V# x Q% = [] V.’ x Q&,
we can now formulate the G:-method as follows: Find (U, P) € V? x Q¥, such that for
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(U + (U -V)U,v), — (P,divv), + (¢,divU), + (2ve(U), €(v)),
(2.11) + (61a(U; U, P),a(U;v, q))n + (82divU,divv), + (U], 0771
= (f7 v+ 610’(U; v, q))ﬂ V(U: Q) € Vn/j X Qﬁv

where a(w;v,q) = Dy v+ Vq—rvAv with the Laplacian defined elementwise, §; = %(kn—2 +
\U|?h,2)~%/2 in the convection-dominated case v < Uh,, and &, = k;h? otherwise, dy = Koh
if v < Uh,, and 6y = koh? otherwise, with x; and k9 positive constants of unit size, and

)= [ o), @u)= Y [ vowds,
In ket K
3
(e(v), e(w)) = 3 (653(0), e (w)):
ij=1

Further, [v"] = o7 — v” is the jump across the time level ¢, with v} the limit from
t > t,/t < t,. In the Eulerian streamline diffusion method we choose § = 0, which means
that the mesh does not move in time. The characteristic Galerkin method is obtained by
choosing 8 = U (and then &, = k;h?), which means that the mesh moves with the fluid
particles. We may also choose ( differently which gives various versions of ALE-methods,
with the mesh and particle velocity being (partly) different; for example we may move
the mesh with the particle velocity at a free boundary, while allowing the mesh to move
differently inside the domain.

The variational formulation (2.11) with 6; = 2 = 0 is obtained by multiplying the
momentum equation by v, integrating over S,, including integration by parts, and adding
the incompressibility equation multiplied by ¢ and integrating over S,,. Choosing d; and 0
positive as indicated introduces stabilizing least-squares terms. Note that the viscous term
(2ve(U), €(v)), may alternatively occur in the form (vVU, Vo), = Yo_, (vVU;, Vo;),. In
the case of Dirichlet boundary conditions the corresponding variational formulations are
equivalent, but not so in the case of Neumann boundary conditions, see [11].

In extreme situations, we may add residual dependent shock-capturing artificial viscosity,

replacing v by # = max(v, k3| R(U, P)|h?), where R(U, P) = >_i_, R;(U, P) with
R(UP) = |U+U-VU+VP — f—vAU|,

Ry(U,P) = wDy(U),

(2.12) Ry(U.P) = |[U™Y|/kn on Sh,
R.(U,P) = |divU],

where

(2.13) Dy(U)(r,1) = max(ha(@) [ 5 (4,0)],

for x € K, with [-] the jump across the element edge 0K, and k3 is a positive constant
of unit size. Note that R; (U, P) is defined elementwise and that with piecewise linears in
space, the Laplacian AU is zero. In the computations presented below, we chose k3 = 0
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corresponding to shutting off the artificial viscosity. Note that Ry (U, P)+ Ry (U, P) bounds
the residual of the momentum equation, with the Laplacian term bounded by the second
order difference quotient Dy(U) arising from the jumps of normal derivatives across element
boundaries.

The order of the G?>-method with polynomials of degree p in space/time is generally
p+ 1/2, see [3]. For more details on the G2-method see [11].

2.5. The G*-method for turbulent flow. In [13] we present the G®-method for the
averaged Navier-Stokes equations (2.4) using the subgrid model (2.6), with 7;; = vr: Find
(Un, Pr) € VP x QP such that forn =1,2,..., N,

(Un + (Un - V)Unh, 0) = (Pa, div o) + (g, div Up)a
+(7€(Un), €())n + (01a(Up; Un, Pr), a(Un; v, 4))n

—(#"(Un), V)n + (82div Uy, divv), + ([UF~], 0771

(f v+ 51G(Uh,’l) Q)) V(’U,q) € Vnﬁ X Qna
where a(w;v,q) = Dy v+ Vq—vAv with the Laplacian defined elementwise, §; = %(k‘n_Q +
\Up|?h,2)~/? in the convection-dominated case 7 < Uph, and §; = k,h? otherwise, &y =
koh if U < Uph,, and d, = koh? otherwise, with x; and ko positive constants of unit size,

v = max(v + vy, k3| R(Uy, P)|h?), where vr is the turbulent eddy viscosity from (2.6), and
7" is the algebraic part from (2.6), and R(Up, Py) = S.r_, Ri(Us, Py) with

(2.14)

Ri(Up,Py) = |Up+Uy-VU,+ VP, — f +div #4(U,) — 0AUy|,
Ro(Up, Pr) = ©#Dy(Uy),

Ry(Un, Pr) = |[Up"|/kn on S,

R4(Uh,Ph) = |diVUh‘,

with Dy(U,) defined by (2.13), and where R;(Uy, Py) is defined elementwise and with
piecewise linears in space, the Laplacian AU, is zero. In the computations presented
below, we chose k3 = 0 corresponding to shutting off the artificial viscosity.

2.6. The cG(1)cG(1)-method for turbulent flow. The ¢G(1)cG(1)-method is a vari-
ant of the above G%:-method using the continuous Galerkin method ¢G(1) in time instead
of a discontinuous Galerkin method. With ¢G(1) in time the trial functions are continuous
piecewise linear and the test functions piecewise constant. The ¢G(1)cG(1)-method for the
averaged Navier-Stokes equations (2.4), using the subgrid model (2. 6) with 7;; = vp reads:
Forn =1,..., N, find (Uh P e VO x Q% with V¥ =W, and Q% = W, such that

ky,

+ 0y (div UF, divo) + (V- U, q) + VUL, Vo) — (2 (U1), V)

= (f" v+ 86U - Vv+Vq) Y(v,q) €V x Q0

)+ (U - VU + VP v+ 6,(UP - Vv + Vq))
(2.15)

where U" = 1(Up +Up~"). This method corresponds to a second order accurate Crank-
Nicolson time-stepping, but the stabilization suffers from an inconsistency up to the term
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01u resulting from using piecewise constant test functions. The inconsistency seems to
be be acceptable unless @ is large, and we use ¢G(1)cG(1) in the computations presented
below.

3. A POSTERIORI ERROR ESTIMATION FOR TURBULENT FLOW

To derive a posteriori error estimates for the averaged Navier-Stokes equations (2.4), we
have to take into account both the numerical error from discretization and the modeling
error from unresolved subgrid scales. Aiming at error control of the quantity || 0 (uh —Tp) -
Ydr dtin Q = Qx I, with o € Ly(I;[L2(2)]?) given, we introduce the following linearized
dual problem: Find (¢, 0) € Lyo(I; [H}(Q)]® X Lo(Q)) = W such that

—p— (W V)p+VU,-p+VO—0Ap =19 inQ
divp =0 in Q

¢ =0 onI'x I,
o(nT) =0 in®,

(3.1)

where (VU - ¢); = (Uy) ;- ¢, and we note that we use the viscosity 7, including the eddy
viscosity vr. Depending of the choice of ¢, the quantity |, Q(u" —Uy) -1 dx dt may represent
different norms of the error or, by the Riesz representation theorem, any linear functional
of the error, such as the mean drag force, for example.

Theorem 1. With u” the solution to (2.4) and v € Ly(I;[Lo(Q)]?) given, we have the
following error representation formula for (Uy, P,) € VP x QF:

/(uh—Uh)'@bd.’E dt:/Rl(Uh,Ph)(pd.T dt+/R4(Uh,Ph)0d$ dt
Q Q Q

N
1
430 [ RlUnP) - ds d
OK xI,

n=1 KeT,

N
3 /Q Ry(Un, Pa) - 9ltns) da
n=1

+/ Ry (u,Up) - ¢ dx dt
Q

where (¢, 0) are the solutions to the dual problem (3.1), and
Ri(UpPy) = f— (Up+Uy- VU, + VP, — AU, + div #2(U)),

RoUn ) = o] 0"

Rs(Un, Pn) = U] on S,

R4(Uh,Ph) = le Uh,

RM(U, Uh) = div %h(Uh) — (le Th(h) + VTAU}L),

with (¥, vy) from (2.14).
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We note that Theorem 1 is valid for any (U, P,) € V# x Q®. If (U, P,) are computed
using a Galerkin method, for example the c¢G(1)cG(1)-method with §; = §, = 0, then
we may use the Galerkin orthogonality property for the discretization error to subtract
interpolants of the dual solution (¢, #), and then estimate the interpolation errors in terms
of derivatives of (¢, #) and powers of the space and time discretization parameters. As an
example, we present the corresponding error estimates for the ¢G(1)cG(1)-method, and for
simplicity we consider the case when §; = d, = 0.

Theorem 2. If u" solves (2.4),(Un, Py) € V2 x QY solves (2.15) with §; = 63 = 0, and
¥ € Lo(I; [La()]?) is given, then

|/Q(uh—Uh)-w dz dt|si;/1 Z{/K{ | Ras (u, Un)| - |0

n KeTy
+ [Ri(Un)| - (Chhiy | D™ 0lloo, 1 + Crkin || €] 0, x,n)
+ [R4(Un)| (Crhy xl|D™0|00,kn + Crknl0l|co,xn) } dz

4 [ RO Ul D™ i + Ol i) s }
0K

for m = 1,2, where || - ||o,kn = MaX@perxiy | - |, |w| = (Jwi], ..., |wa]) for w € R,
hn,x = maxeey, hi(t) with hi(t) the diameter of element K at t, D™ measures derivatives
with respect to x of order m, and C}, Cy, represents interpolation constants.

Remark 3. We note that there are several possibilities to pose the dual problem. In (3.1)
we chose to include the turbulent viscosity vy in the dual problem, but we could alternatively
have chosen to only use the viscosity v, which would have given a different modeling residual
Ry (u,Up). The motivation for using the larger turbulent viscosity is improved regularity
of the dual solution (y,0).

Remark 4. If 61,00 # 0, we may view the stabilizing terms as a modification of the con-
tinuous equation, which we solve by a standard Galerkin method, according to Section ?7?.
We then modify the dual problem accordingly, to obtain Galerkin orthogonality for the
discretization error of the solution of the stabilized equations.

4. NUMERICAL RESULTS

In this section we investigate different aspects of error analysis for turbulent flow, using
the ideas developed in the previous sections. In [12] a computational study of transition
to turbulence in shear flow is conducted which we use here as an example of a turbulent
flow, and we make some comparisons with laminar flows from [11]. In the computations we
use the ¢G(1)cG(1)-method from Section 2.6, on the unit cube with a regular tetrahedral
mesh with 65 x 65 x 65 nodes. We use periodic boundary conditions in the streamwise x-
direction and in the spanwise x3-direction, and we have streamwise velocity +1 on top and
bottom. In Fig.1 we see the velocity isosurfaces for |u| = 0.2, after transition to turbulence
in a Couette flow described in [12], where we have used v = 1/10000.
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FIGURE 1. Velocity isosurfaces for |u| = 0.2 in Couette flow for ¢ = 20,22, 24, 26, 28,30
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4.1. Estimation of the modeling residual. From Section 3 we know that the total
computational error, when we compute approximate solutions to (2.4), is a sum of a dis-
cretization error and a modeling error. We may compute either with or without a subgrid
model. If we do not use a subgrid model in the computations, we still need to estimate
the modeling error. We may then use a subgrid model to estimate the modeling error,
without using the subgrid model in the computations. For example, we may use the scale
similarity model (2.8), or we may use the ideas in [7, 8, 9, 10] to extrapolate 7,}(u) from
coarser scales 2h and 4h. The extrapolation formula then takes the form

(4.1) 75(Un) = 9(735(Un), 733" (Un), 735" (Un))
with g(a, b, ¢) from [11] defined by

c— b4h b4h _ 0,4h

(4.2) g(a,b,0) = (1= () ") —

bah — g4h

-1

and 27"h is the finest scale present in the exact solution. (4.2) is based on an Ansatz of
the form

(4.3) Ey(v,w)(x) = C(x)hﬂ(z)

for covariances of the form Ej (v, w) = (vw)? —v"w" and a fundamental question is now if
the Ansatz (4.3) is valid for 7%(u) in the computations, that is if we have scale similarity.
We test this hypothesis for the computed solution Un, where we compute a}j = Tfjh(Uh) —
755 (Un), af; = 7" (Un) — 7 (Un), and af; = 75" (Uy) — 73 (Uy). As an approximation of the
running average operator on the scale h we use a projection [-]* onto the space of piecewise
constant functions on the mesh corresponding to h. The spaces of piecewise constant
functions on successively uniformly refined meshes form a Haar MRA of the space Lo(€2),
where the uniform refinement, dividing one tetrahedron into eight new ones, is described
in Fig.2.

In [7, 8] covariances with respect to Haar MRA is investigated, and it is shown that
[wgu]® — [willug]® = 3,<, {Haar coeff. of u; x Haar coeff. of u;, on scale k}, and
aﬂ,aﬂ,a;’Z now represents the sum of Haar coefficients of 78"(Uy) on the scales 2h, 4h,
and 8h respectively. If Ansatz (4.3) is valid, 78" (U,) is scale similar and thus possible to
extrapolate, aj;, a%;, and a3; should decrease regularly. If we have scale similarity in the
coarser scales 2h, 4h, and 8h, we anticipate scale similarity in finer scales, since we assume
that we are in the inertial range. In Fig.3 we present the L;-norms of a}i, a?z, and aﬂ,
showing that we have a certain degree of scale similarity, and we find that the decrease is
typically by a factor 1.5. From [7, 8] we have a dependence af; ~ (2kh)%+0i | for 6;, §; being
the Holder exponents of u; and u; respectively. If we assume that 0; = 0; =0, we get that

aft! /aZ] = (2¥+1h)?/(2kh)¥ = 2% = 1.5, which gives that § = log(1.5) /210g(2) ~ 0.29,
Wthh is very close 6 = 1/3, corresponding to the velocity being Hélder continuous with
exponent 1/3, which is consistent with the Kolmogorov 5/3-law for the energy spectrum,
see [4]. The results in Fig.3 support the Ansatz (4.3), although we note that these are

global results (using the global Li-norm).
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Ficure 2. Haar MRA generated from successively refining unstructured
tetrahedral and triangular meshes, in 3d and 2d respectively.

If we use a subgrid model in the computations we need to estimate the difference Fj,(u)—

F,(U,), and we are thus lead to model terms of the form A, = 7/ (u) — 7/ (Un). We may
base our estimation of A; on extrapolation, and we then have to find approximations to
Aop = 77 (u) — 7 (Usn) and Ay = 73 (1) — 7" (Usn). Using the Ansatz 4.3, may use
the approx1ma1:10n ot (u) ~ 7 (Uy), where 70 (Un) = Gon(7)2(Un), 72 (Un), 7,3 (Un)) with

Gon(a, b, ¢) defined by

. c=b" .. c—b"
(4.4) gan(a,b,0) = (1= () ™) ——m
pih —gih

and in a similar way we get 7.5 (u) & 7" (Uy), where 7.0 (Uy) = Gan (72 (Un), 72 (Un), 7(Uy))
with gap(a, b, ¢) defined by
_ b4h c— b4h

. c n
(4.5) Gun(a,b.0) = (= (Gr—om)” ") g — g
1 —

c — bh
We then get A, ~ A, = g(O,Agh, A4h) with Ay, = 7' MU — 7' " (Uap), Ay = 7' hU,) —
7:7"(Usp), and g(a, b, c) defined by (4.2).
4.2. Discretization error vs. modeling error. We now use the results in Section 3 to
estimate the error in the computation of the turbulent flow described above, where we use

the velocity from ¢ = 20 as initial condition. We consider the initial condition to be exact,
and we compute to ¢t = 30. From Theorem 2, we have that

|/(uh—Uh)-¢ dz dt| < ep + ex,
Q
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represents a discretization error and

w=3 | 3 [ IRt -l do at

In ke,

represents a modeling error. Here h = 1/64 in the definition of u”, which corresponds
to the uniform mesh size, and v = 1/10000, so that the underlying flow contains finer
scales than h. The effective Reynolds number in the computations is further discussed
in Section 4.5. We use no subgrid model, and we are now going to estimate ep and
ey using Theorem 2. For both the discretization and the modeling error we need to
approximate the dual solutions (¢, #). The discretization residuals are directly computable
from the approximate solutions (Up, P,), whereas the modeling residual Ry (u,Uy) has
to be estimated. If the modeling error without a subgrid model is neglible compared
to the discretization error, then we do not need a subgrid model. If on the other hand
the modeling error dominates, we need to either use a subgrid model or to refine the
computational mesh. Here we use (2.8), with C, = 1, to estimate the modeling residual
without a subgrid model. In the estimate of the discretization residual we use C, = 1/8
and Cy = 1/2, which are approximations of the interpolation constants motivated by a
simple analysis on a reference element.

In Fig.4 we present estimates of the relative discretization error and modeling error, nor-
malized by Uy = ||Ux(30)|; = 0.43 (|||l = [, |:| dz), in the computation of a space-time av-
erage over w x [30 —d(w), 30] of the solution u", with w being a spatial cube with side length
d(w), centered at (0.5,0.5,0.5). This corresponds to ¥ = Xux[30-d(w),30]/ | Xwx[30-d(w),30]| i
the dual problem (3.1), where xp is the characteristic function for D, and |D| denotes the
space-time volume of D. Fig.4 should be understood as the errors for different starting
times, assuming that the particular starting solutions at these starting times are exact.

time t time t time t

FIGURE 4. ep/Ur (’-’) and epr/Ur("*’) for d(w) = 0.125 (left), 0.25 (middle),
0.5 (right)

We find that the discretization error and the modeling error are of the same order
in this computation, both errors are less than a few percent of the size of the solution,
and the errors of course increase if we compute over a longer time. In the estimate of
the discretization error we have neglected the residual Ry(Uj), since the other residuals
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dominate for » small when we do not use an eddy viscosity subgrid model. We note that
both ep and e;; are larger for smaller space-time averages, supporting our belief that it is
harder to compute smaller space-time averages than larger. We also note that the difference
between ep and ey is smaller for larger d(w).

In Fig 5 we present plots of the discretization residuals Ry(Up, Py), R4(Us) and the
modeling residual Ry/(u,U,). We see that first Ry (Uy, Py) is large in the middle of the
domain, but after a while R;(Uy, P,) is largest at the top and bottom. This is because
the flow is changing from a Couette profile (linear profile in the vertical direction of the
streamwise velocity), where the residual is large in the middle, into a solution with small
velocities in the middle and sharp boundary layers at top and bottom that the mesh is
not capable of resolving, causing large residuals in these layers. The modeling residual
Ry (u, Up) behaves similarily, whereas R4(Uy,), on the other hand, is more isotropic.

Remark 5. In the computation of the dual problem we use a ¢G(1)cG(1)-method, corre-
sponding to the method used for the primal problem, on a uniform tetrahedral mesh with
32 x 32 x 32 nodes, and we approzimate both u*and Uy, with Uy, projected onto this mesh.

Remark 6. Since we use a stabilized Galerkin method there are also terms from the stabi-
lization present in ep and epr. In this study we assume these terms to be small compared
to the other terms since they are weghted by a small stabilization parameter.

4.3. Error propagation and the dual problem. Theorem 1 shows that the error is of
the form of space-time integrals of residuals times the solutions to a dual problems. The
residuals measure how well the computed solution satisfies the differential equation, and
the solution of the dual problem determines how the residual influences the particular error
measure considered. We may alternatively view the dual problem as describing how the
error, produced through a non zero residual, is propagated in space-time. The linearized
dual Navier-Stokes equations are closely related to the linearized Navier-Stokes equations
[12], where the linearized dual Navier-Stokes equations describe the propagation of errors
and the linearized Navier-Stokes equations describe the propagation of perturbations.

The sizes of the residuals are fairly constant in time, whereas the solution of the dual
problem, on the other hand, is growing (backwards) in time. We consider the example of
computing the space-time average from Section 4.2. In Fig.7 we show the dual solutions for
d(w) = 0.5,0.25,0.125, and in Fig.6 we plot the L;-norms of the dual solutions. In the initial
phase (for backward time) the dual solutions grow through the action of the force ¢ during
the time interval [30 — d(w), 30]. This initial growth is larger for small d(w), which may be
explained by the larger quotient ¢(d(w)) = surface area/volume = 6d(w)?/d(w)?® = 6/d(w)
for smaller d(w). This is because the divergence free condition, which is active in increasing
the dual solution, depends on ¢(d(w)). Since this phenomena is connected to the divergence
free condition, we can observe the same phenomena also in the simple problem

shown in Fig.6.
In the next phase, after the force 1 is shut off, there is a growth due to the reaction term
in (3.1). This growth is later neutralized by cancelations, causing diffusion to dominate,
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FIGURE 5. High value isosurf.: |Ry(Up, P)| (upper), |R4(Up)| (middle),
|Rus(u, Up)| (lower), t = 20,30
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N ERE

time t time t time t

FIGURE 6. ||¢||; for d(w) = 0.5,0.25,0.125 (left), ||¢||; for problem (4.6)
d(w) = 0.5,0.25,0.125 (middle), laminar bluff body: ||¢(t)]|1 for d(w) = 0.25
(right).

and the dual solution slowly decays. Cancelations cause the growth to be weaker for larger
d(w). The intensity of the growth through the reaction term is connected to the irregularity
of the computed solution, through the term VU, - ¢, and cannot be observed for laminar
flows, where the diffusion dominates this reaction term. As an example, in Fig.6 we plot
the dual solution for d(w) = 0.25 in the case of a laminar bluff body flow from [11], where
w is centered at (2.5,0.5,0.5). We note that there is no growth of the dual problem due to
the reaction term, instead the solution decays monotonically when the force v is shut off.

4.4. Evaluation of different subgrid models. In Section 4.2 we estimated the dis-
cretization error and the modeling error, when we did not use a subgrid model. We now
consider the problem of estimating the modeling error for different subgrid models. We
seek u", with h = 1/32, and we use 7"(Uy/2) as an approximation of the true Reynolds
stresses 7"(u). We compare the scale similarity model (2.8) and the Smagorinsky model
(2.9).

Experience tells us, see e.g. [5], that neither an eddy viscosity model nor a scale similarity
model is perfect as a stand alone subgrid model. Instead a combination of the two seems
potentially better. A possible explanation is that 7"(u) is combined of a low frequency
part and a high frequency part, and that an eddy viscosity model has typically a better
chance to model the high frequency part whereas a scale similarity model typically has
a better chance to model the low frequency part. As a test we try to fit the the scale
similarity model (2.8) and the eddy viscosity model (2.9) to our approximation of the true
Reynolds stresses 7" (u) ~ 7"(Uy ), by changing the constants Cs and Cf, where we base
the models on the solution Uy 3, projected onto the scale h.

We find that we are unable to fit the Smagorinsky model by changing Cs. Using the
scale similarity model we are able to reduce the modeling error by 20%, for C;, = 0.25.

Remark 7. We note that this test does not rule out the Smagorinsky model as a possible
subgrid model, since it is known [5] that eddy viscosity models does poor in these type
of tests, possibly because of the form of the Reynolds stresses being composed of a low
frequency part as well as a high frequency part. We may split the Reynolds stresses as
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FIGURE 7. Streamwise high dual velocity isosurfaces: d(w) = 0.125 (upper),
d(w) = 0.25 (middle), d(w) = 0.5 (lower), for t = 29.5,24



ADAPTIVE MULTISCALE COMPUTATIONAL MODELING 19

h(u) = (th(u))® + (7" (u) — (7" (u))?), H > h, where a scale similarity model might be
a good model for the low frequency part (7"(u))¥, and an eddy viscosity model would be a
good model for the high frequency part 7"(u) — (7" (u))".

021 22 23 24 25 26 27 28 29 21 22 23 24 25 26 27 28 29 3
time t time t

FIGURE 8. ey, /Ur for C;, = 0.25,0.5,1.0 (>-’) and Cp = 0 ("*’) (left), and
Cs = 0.05,0.1,0.2 (') and Cs = 0 (’*’) (right), for d(w) = 0.125

4.5. What is the effective Reynolds number? The use of a stabilized Galerkin method
corresponds to solving a perturbed equation using a standard Galerkin method, see [13].
A part of the stabilizing terms typically corresponds to an increased effective viscosity in
the computation. In a turbulent flow computation, this numerical viscosity may dominate
the original viscosity v, causing the effective Reynolds number in the computation to be
smaller than Re = v~!. Using the ¢G(1)cG(1)-method, we have an anisotropic visosity
term of the type v;; = 6(Uy)i(Us);, and if we use artificial viscosity we have an additional
isotropic viscosity of the type vy, = k3|R(Uy, Pp)|h?, with R(Uy, Py) defined by (2.12). If
we use artificial viscosity the effective viscosity in the computation is the sum v + v, and
if v is dominated by v,,, the effective viscosity is independent of the choice of v. If we
on the other hand do not use artificial viscosity, the numerical viscosity is anisotropic and
not trivially coupled to v. The question is if also in this case the solution is independent
of the choice of v, for v below a certain limit, and if so, where is this limit corresponding
to the effective numerical isotropic viscosity? We now present a test where we have used
an initial solution from the test example in Section 4 at ¢ = 20, and we solve using the
c¢G(1)cG(1)-method for different v. We present the Lo-norm of oU; /0z; and 0U;/0z, in
Fig.9, for different v. We find that for v=! < 100000, the flow is not independent of v. It is
hard to relate the anisotropic numerical viscosity to an effective Reynolds number Re.;y,
but a rough estimate may be Re;flf ~ 6|Uy|%, with Uy, a mean value of Uy, which would
give Re.ss ~ 1000 in the computations in this paper with h = 1/64.
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time t time t

FIGURE 9. ||0U;/0x1|| (left) and ||0U,/dzs| (right), for »=! =
100, 500, 1000, 10000, 100000

5. ADAPTIVE STRATEGIES FOR TURBULENT FLOW COMPUTATIONS

In this paper we have outlined methods to evaluate the errors in a turbulent flow com-
putation, and there are several possible adaptive strategies in which these methods can be
put into work.

Since we may estimate both the discretization error and the modeling error, a possible
adaptive strategy is pure mesh refinement, with a refinement criterion based on both the
discretization error and the modeling error. In this case we are less sensitive to the quality
of the subgrid model, since we only need to estimate the size of the modeling error using
a subgrid model.

We may include a subgrid model in the adaptive algorithm, since we have methods for
estimating both the discretization error and the modeling error also for this case. The
refinement criterion is based on both the discretization error and the modeling error, and
we may also include the possibility to test different subgrid models to find the best one for
the particular problem.
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