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Abstract

We investigate the application of the least-squares finite element method (LS-
FEM) to static and time harmonic Maxwell’s equations in three spatial dimensions
in cases of industrial significance. We find analytically and numerically that, with
suitable residual weighting and mesh adaptivity, LSFEM gives satisfactory results
for problems with discontinuous magnetic permeabilities of largely different orders of
magnitude, but without strong corner singularities.
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1 Introduction

In a least-squares finite element method (LSFEM) a sum of suitable residual norms is mini-
mized over a piecewise polynomial space. The residuals may contain differential equations,
constitutive equations, interface and boundary conditions.

LSFEM is a general method with the following features, see, e.g., Bochev and Gun-
zberger [5], Jiang [12], and [1]:

e applicability to general, possibly overspecified, first order systems,

e stability follows directly from well posedness of the continuous problem,
e essential boundary conditions may be imposed weakly, and

e the resulting discrete system of equations is symmetric positive definite.

In particular, LSFEM is applicable to Maxwell’s equations in first order form. With the
divergence equations included, LSFEM does not suffer from the spurious solutions which
may occur in certain Galerkin methods, see, e.g., Jiang, Wu, and Povinelli [13] and the
book by Jiang [12].

The strong norm residual minimization of LSFEM in its standard form, makes com-
putation of singular solutions difficult. Another difficulty concerns the weighting of the
different residuals. In this paper, we address these problems, with focus on static and time
harmonic problems.

The paper is organized as follows. In Section 2 we present the magnetostatic problem
and formulate the least-squares method, in Section 3 we prove a priori and a posteriori
estimates, in Section 4 we apply the method to magnetostatic problems, and in Section 5
we extend the method to time-harmonic problems.
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2 The least-squares finite element method

2.1 A magnetostatic model problem

Assume that Q = [JI_, Q' is a domain in R?, where (2 and each Q* are bounded and either
of class CY'!, but may be non-convex, or convex, and denote the interface between regions
Q¢ and O by I'V, with i < j, see Figure 1.

Let

Y = é V, (2.1)
=1

with V¢ = [H'(2")]>. Assume that each subdomain have the magnetic permeability 1|q =
Wi o where p > 0 is constant and pg is the magnetic permeability in free space, py =
47 x 1077 H/m. The magnetostatic system then takes the form: find B € V such that

Vxpu'B=J in, (2.2a)
V-B=0 in(, (2.2b)
B-n=0 onT, (2.2¢)
and the interface conditions
[w'Bxn]=0 onl¥ (2.3a)
[B-n]=0 onT¥, (2.3b)

hold. Here n is the exterior unit normal on the boundary I'" and a fixed unit normal on
each interior interface I', and [u(z)] = lim,_,o+ u(z + sn) — u(z — sn) with z € ', denotes
the jump in u across the interface I'V.

Remark 2.1 The assumption that the domains are convex or of class C*! is not realistic for
engineering applications where we typically only have Lipschitz domains. We will discuss
and relax this regularity constraint when we have proved error estimates in Section 3.

Ql

r12

Figure 1: The notation used when a region is split into subregions.



2.2 Finite element spaces

Let K',s = 1,...,n, be decompositions of the subdomains 2 into, e.g., tetrahedral, ele-
ments K, and let K = UK’ denote the resulting decomposition of 2. Let h denote the
mesh function defined by h|x = hx = diam(K), i.e., a measure of the local size of the ele-
ments in the mesh, and let 4 = maxgcx h(K) denote the global mesh size. Non-matching
meshes are allowed, but we assume local quasi-uniformity and a minimal angle condition
on the triangulation, see Brenner and Scott [8]. Let

V=PV, (2.4)
=1

with V} defined by
Vi ={v e [C°Q)]: v|k € P(K),for all K € K},

where P, is the set of all vector polynomials of degree less than or equal to 7. Thus V, is
the set of all piecewise vector polynomial functions of degree r which are continuous in the
subdomains Q' such that, in each element, v|x € P, (K).

For the error analysis following below, we need the following approximation property
of Wy, see, e.g., [14] for a proof. There is an interpolation operator 7 = @;_, #* with
o [HY(2)]® — V), such that for v € @] [H*(€2)]?, it holds

|v = 7V||m,x < Ch% ™ |v|a,s(k), m=0,1, (2.5)

where o = min(r + 1, s), S(K) is the patch of elements neighboring K, and the constant
C is independent of the mesh parameter h.

2.3 The least-squares finite element method with weak boundary
and interface conditions

The solution B to problem (2.2)—(2.3) minimizes the least-squares functional

n

1) =Y (Ii(¥ x (57'B) = D)z + IV - BII%:) (2.6)

=1
+ > (U2l B x w2 + V2B n) )
1<i<j<n

+[|A712[B - n]|IE.

Here we have introduced a weight p in the volume integral terms containing the curl
equation. This is a natural scaling of the equations and the least-squares functional is
thus better balanced between the curl and the divergence conditions. The parameter [
corresponds to the multiplication with p in the volume integrals, but is an average value
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(a) Conforming triangulation (b) Non-conforming triangula-
tion

Figure 2: Examples of matching and non-matching triangulations of two subdomains.
In the first case, we have the choice of both strong and weak enforcement of interface
conditions. For the non-matching grid, however, we must use weak enforcement.

since p is not defined on the interface. We will return to the exact definition of this average.
Moreover, on the boundary and interfaces, the L?(I')-norm scaled by h~'/? has been used
instead of the computationally cumbersome H'/?(I')-norm, see Bochev and Gunzberger [5]
and the references therein. For non-matching meshes it may be necessary to use an average
also for h. The least-squares method amounts to finding this minimizer: find B € V such
that

I(B) = inf I(v). (2.7)

veEY

Remark 2.2 Note that the boundary condition (2.2c) and the interface conditions (2.3) are
imposed weakly. Strongly imposed boundary and interface conditions have been suggested
in e.g. Jiang, Wu, and Povinelli [13], but are non-trivial to implement in polyhedral
domains since the normal is not defined everywhere. Further, enforcement through the
least-squares functional makes it possible to use different finite element spaces on either
side of the surfaces, and the convergence properties of the method is better when using
weakly imposed conditions, see Costabel and Dauge [11] and Bao and Yang [3].

A necessary condition for a function B € V to satisfy equation (2.7), is

lim 2J(B +7B) =2(a(B, B) — I(B)) =0, (2.8)

7—0 aT



for all B € V, where

a(B,B)=> (Vx B,V x B)gi + (V- B,V B)g (2.9)

+ 3 (e B <l ila B x nl)rs

1<i<j<n
+ (h7Y[B-n),[B- Tb])m)
+(h™'B-n,B-n)r,
and

n

UB) =3 (1, u¥V x (17 B))ar. (2.10)

Thus seeking a minimizer to I in V leads to the variational problem: find B € V such that
a(B, B) = I(B), (2.11)

for all B € V.
The least-squares finite element method is defined by seeking an approximation Bj in
V), such that
I(By) = inf I(v), (2.12)
VEV
with corresponding variational form: find Bj, € V), such that

a(Bp, B) = I(B), (2.13)
for all B € Wh.

3 Error estimates

3.1 A priori error estimates
We begin by introducing the energy norm
Ilv][|* = a(v,v) forwv eV, (3.1)

Under our assumptions, ||| - ||| is a norm in V when there exists a unique solution to
problem (2.2)-(2.3).
Further, we have the following interpolation error estimate.

Lemma 3.1 If v € @ ,[H*(Q)]*,s > 1, then there is an interpolation operator T :
@; [H*(Q)]> — V, such that

llv = mol|| < Ch*Hola, (3:2)

with o« = min(r + 1, s) and where C' only depends on p and SQ.
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Proof. Let n = v — mv. We show that

lInll* < &Y~ hlnllz +1n

Kek

e (3.3)

The desired result (3.2) then follows from (2.5). For the interior terms, we directly have
IV x|k < Cluli k, (3-4)
and
IV - nllf < Clnli «- (3-5)
For the boundary term we get

Iy nli= Y I nlliker (3.6)

{KeK:0KNT#0}

< > crnllx (b Inllk + Inl.x)
{KeK:0KNT#0}

<C D> hllx+In

{KeK:0KNT'#0}

2
1,K?

interface jump terms we use the triangle inequality

where we used the trace inequality ||v||3;x < Clv|lx(hx |v]lx + |v|1,x). Finally, for the

L R g L P [ e (3.7
and
||h_1/2 ﬂ [/1,_177 X n]”%” < ||h—1/2 /1 (ui)—l ni % TL”%w (3.8)
A2 () <ol
and then treat them with the same technique as for the boundary term. O

Remark 3.1 If the meshes X! match on the interfaces and 7v satisfies the interface condi-
tions (2.3), then the constant C' is also independent of u since the interface terms vanish.

Now we are ready to state the following result:

Theorem 3.2 Let B € @) | [H*(Q)]? be a solution to (2.11) and By, € V,, the approzimate
solution defined by (2.13). Then there is a constant C, independent of h, such that

|B = By||| < Ch* !|Bla, (3.9)

with & = min(r + 1, s).



Proof. Let e = B — B;, denote the error. Then

lel[[* = a(e, B — B) (3.10)
=a(e,B— 1B+ 7B — By)
= a(e, B —7B),

where we use the Galerkin orthogonality a(e, B) = 0, for B € V), in the last equality.
Using the Cauchy-Schwarz inequality and dividing by [||e||| we arrive at

llefll < [[|B — =Bl
< Ch* Y B|,, (3.11)
where we used Lemma 3.1 in the last inequality. 0

3.2 A posteriori error estimates

A simple calculation gives that the energy norm of the error when using a bilinear form
derived from least-squares principles simply equals the residual. Thus we can state the
following a posteriori error estimate in the energy norm.

Theorem 3.3 Let B € V be a solution to (2.11) and By, € V, the approzimate solution
defined by (2.13). Then

1B = By|||* = Z Rk (Bh) - Ri(Bh) (3.12)

KeK

where the element residual Ry (Bp) € R* is defined by

|6(V x = By — J)||x
IV - Bl
ZIP 2l By x nlllaryr | 2

|k 172(B, - lllox

R (Bn) = (3.13)

where « 18 a function, such that o = 1 on faces F with F N T # 0 and o = 2 otherwise.

Remark 3.2 Under our assumptions, these results are meaningful since we have enough
regularity on the solution B. In more realistic situations where €2 is only Lipschitz, we
have B € @) ,[H*(Q)]? for s € (1/2,1], see Amrouche, Bernardi, Dauge and Raviart
[2], and the least-squares finite element method generally fails to converge to the correct
solution, see e.g. Bramble, Lazarov and Pasciak [7] or the regularity results of Costabel
[10]. However, the use of weak boundary and interface conditions still gives a theoretical

8



convergence, see Costabel and Dauge [11].

For many applications, one wants to measure the error in other quantities than the
energy norm. In the remainder of this section, we use duality arguments to derive an a
posteriori estimate for the the error in energy,

' 1
Wwwzg/ﬂlmﬁ—gfulwﬁ. (3.14)
Q Q

Moreover, this estimate shows that we can have convergence even when B ¢ V), as is the
case for a general Lipschitz domain with corners.
3.2.1 Definition of the dual problem

To prove estimates of the error in the energy, we start by studying the following problem:
find (¢,p) € H*(Vx,Q) x Hj(Q) satisfying

VXxuVx¢—Vp=T inQ (3.15a)
V-¢=1 inQ, (3.15b)
p=0, ¢xn=0 onl, (3.15¢)

with interface condition

[W'¢xn]=0 onl¥, (3.16a)
[p-n]=0 onIY, (3.16b)

WV x ¢ xn]=0 onI¥, (3.16¢)
[p]=0 onI¥. (3.16d)

Here we introduced the space H*(Vx,Q) = {v € [H}(Q)]? : V x v € [H*(Q)]*}. This
problem is analysed in Chen, Du, and Zou [9], where it is shown that there exists a unique
solution. Furthermore, p = 0 for all ¥ with V - ¥ = 0.

3.2.2 Estimate of the error in energy

Using the Helmholtz decomposition, see e.g. Bossavit [6], we can write the error e =
B — B, = B® — (B + Bj), where we have V- F® = 0, and F*+ = V[ for some scalar
function f. We choose

v =B+ By, (3.17)

making V- ¥ = 0 and thus p = 0, and ¥ such that it satisfies the auxiliary weak problem:
find ¢ € H'(Q) such that

n

(Vwﬂ VU) = Z(V ) (ﬂilB}JL_)ﬂ v)ﬂi - Z ([:U'ilBli_ ) n]’ U)TU’ (3'18)

i=1 1<i<j<n



for all v € H*(Q). This problem is well posed and we have the equality —(V, Bi) =
(' Bj, Bif) since By is a gradient of a scalar function.
Taking the inner product of (3.15a) with p~'e® = p™'(B% — B)) and of (3.15b) with
V-e!t = —V - B, yields for the right hand side
(4B, B%) — (s BY, BY) — (4,V - B} (319
= (W 'B°, B°) — (u™'By, By) + (V4, By)

— @ [By-nle = Y (@, [By - nl)rs

1<i<j<n
= Werror = (V- 6, [By - n])r — Z (V- 6,[By - n])ri.
1<i<j<n
We thus get
Werror = Z ((/’L_IBO: BO)Ql - (M_lBga Bg)ﬂ’ - (M_IB}JL_aBlJL_)Ql) (320)

+ Y (V-¢,[By -n])ri + (V- ¢,[By - n])r

1<i<j<n
=> ((V X uV x ¢, i e i — (Vp, p'e)qs + (V- ¢,V - eL)m)

+ 3 (Ve let - nl)es + (V- o, et nlr

1<i<j<n

=Y (VX 6,V x)ai +(V- 6,V )i+ (u7'p, V- ") )
i=1

30 (a9 %6, e s + (™ 'p, el + (76, el

1<i<j<n

+(V-¢,[n-e'))r
:Z((VX¢,Vxe)m+(v-¢,v-e)m)

+Z ((/’LVX¢’ [/’Lilexn])F”’ + (v X¢’ [e'n])FU) + (V nga [eL'n])F

=3 ((V (6= 70), V x e)os + (V- (¢ = 76), V - )

+Z((h1/2ﬂ‘1/N x¢ +h™ [ (p—me) xn, th™' P~ e xn])ry

1<i<j<n
+ (h/2V - ¢+ 17 2((6 = 7) - m], b e - m)r )
+ (WY - ¢+ h™2[(6 — 76) - n], b~ ?[e - m])r.
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The following estimate for the error in the energy is thereby proved.

Theorem 3.4 Let ¢ be the solution to (3.15) with data according to (3.17) and (3.18), B
the solution of (2.11), and By, the LSFEM approximation (2.13), then the error in energy
15 bounded as

W(B) =W (Bh) < Y Ri(Br) - Wk(9), (3.21)

Kek

where the elementwise residual R (By) is defined in (3.13) and the element weight Wy (¢)
18

e
V-(¢—79)|lk
WK(¢) = %”hlﬂﬂfluv % ¢+ h71/2[ufl(¢ _ 7r¢) % n]”aK\F s (3.22)

| Lh 2V - ¢+ h™V2[(6 = 76) - nllox
with « as in (3.13).

Remark 3.3 Assuming ¢ € @, [H*(Q)]* and B € @, [H*2(Q)]?, the most important
consequence of Theorem 3.4 is that for a geometry such that s, + sp > 2, we have con-
vergence in the energy even if convergence in the solution itself can not be proved. The
analysis in [9] and [2] makes it reasonable to believe that s, > 2sg, with s € (1/2,1],
making this true in many cases. A fact further indicated by our numerical experiments.

4 Two magnetostatic problems

4.1 Computational set up

Although not explicitly mentioned in the previous sections, one may also weight the differ-
ent terms in the least-squares functional by constants without changing the analysis. We
have used this possibility to make the enforcement of the interface terms stronger. For the
first problem we weighted the terms containing the normal components by a factor 103,
while the tangential condition was left unweighted. For the second problem considered, we
weighted the tangential condition by a factor 10 and left the normal condition unweighted.
This choice of coefficients has been based on numerical experiments.

Adaptivity was based on the a posteriori result in Theorem 3.4, and an assumed regu-
larity sy = 4/3 of ¢, the solution to the dual problem. We have thus not solved the dual
problem numerically. The element indicator used was then

Ix = KPRk (By), (4.1)
with Rk (By) as in equation (3.13).
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‘ ‘ Linear ‘ Quadratic ‘ Reference ‘

No of elements 505 710 247 800 -

No of nodes 91 510 339 936 -
Wair (J) 8.967 x 10-7(0.013) | 9.081 x 10 7(0.001) | 9.089 x 107
Weu (J) 3.333 x 1078(0.078) | 3.581 x 107%(0.009) | 3.614 x 1078
Wee (J) 4.885 x 10719(0.033) | 4.802 x 107'°(0.015) | 4.731 x 10710

Table 1: The computed magnetic energies for Problem 1, using LSFEM and piecewise
linear and quadratic polynomial elements, compared with reference values; the relative
error is given in parenthesis. The reference values are from two dimensional computations
done at ABB [4].

4.2 Problem 1
4.2.1 Description of the problem

The geometry of this problem is described in Figure 4(a). The problem is axisymmetric
in order to make two dimensional computations possible as reference. A three dimensional
view can be seen in Figure 5. The model consists of an iron cylinder core encircled by
a copper winding. The configuration is enclosed in air and surrounded by a box with
perfectly conducting surfaces. The winding is modelled as a homogeneous copper coil.

Data for this problem are relative magnetic permeabilities y, g, = 10* and Mr.Cu =
Mrair = 1 and po = 4w X 1077 H/m and the current density J is constant over the cross
section of the coil and the total current is 1 A.

Reference computations in two dimensions done by ABB and reported in [4], gave the
values of the magnetic energies in the different materials as listed in Table 1, where the
magnetic energy is defined by

1
Wm:—/ B-Hdx. (4.2)
2 (913

4.2.2 Computational results

This problem was solved successfully to good accuracy, see Table 1. A field line plot is
shown in Figure 5. In Figure 3(a) we plot the relative error in the magnetic energy as a
function of the degrees of freedom, N, for quadratic and linear polynomial basis functions,
and in Figure 3(b) the error indicator (4.1) and the least-squares functional are plotted.
We can note that the rate of convergence is the same for both linear and quadratic poly-
nomials due to the low regularity of the problem, only the accuracy is different. Another
indicator of the low regularity is that the least-squares functional does not decrease with re-
finement, in fact it increases. However, the increase is smaller with quadratic polynomials.
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Figure 3: Computations for Problem 1 with quadratic (solid lines) and linear (dashed lines)

basis functions.
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Figure 4: Geometry of the two axisymmetric problems. The dimensions are given in meters.
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Figure 5: The magnetic field lines in a slice through the three dimensional solution of the
axisymmetric Problem 1.

Figure 6: Detail of the mesh after adaptive refinement. The part shown is the top of the
iron core of Problem 1.
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‘ ‘ Linear ‘ Quadratic ‘ Reference ‘

No of elements 1267028 198863 -

No of nodes 258537 261362 -
Wair (J) 8.199 x 10 7(0.200) | 7.573 x 10 7(0.261) | 1.025 x 106
Weu (J) 3.274 x 1078(0.086) | 3.345 x 1078(0.066) | 3.596 x 1078
Wiee (J) 2.113 x 107%(0.407) | 1.516 x 107%(0.575) | 3.564 x 10~°

Table 2: The computed magnetic energies for Problem 2, using LSFEM and piecewise
linear and quadratic polynomial elements, compared with reference values. The reference
values are from two dimensional computations done at ABB [4].

4.3 Problem 2
4.3.1 Description of the problem

The second problem is also an axisymmetric magnetostatic problem, but the geometry is
more complicated than in Problem 1. It is given in Figure 4(b). The copper winding is
the same, but the iron part has been extended and almost encloses the coil. The problem
has been tested with ji, pe = 10* as well as with My Fe = 102, the other data are the same
as in Problem 1.

4.3.2 Results

This problem has not been satisfactorily solved with LSFEM. For the case with p, g, =
10?2 we still have convergence, but with poor accuracy, see Figure 7 and Table 2. The
computations with p, p, = 10* is not successful and not reported further.

We can also see that the use of quadratic polynomials does not give better results, the
singularities are too dominant in this geometry.

5 Extension to the time-harmonic case

5.1 Description of the problem

As a third problem the “asymmetrical conductor with a hole problem” [15], as illustrated
in Figure 10, has been used. It consists of an aluminium plate with a hole, placed under a
copper winding, modeled as a homogeneous coil. There are no symmetries in this problem.
The aluminium plate has a conductivity of o = 3.526 x 10" S/m and the magnetic per-
meability is p, 4, = 1, as in the air and the copper. Since no magnetic material is present
there are no singularities as in the previous two problems. Instead, we will get induced
eddy currents in the conducting aluminium plate.

The coil is carrying a sinusoidal total current of 2742 A. The frequency is 50 Hz and
the current density is constant over the cross section.

15
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Figure 7: Computations for Problem 2 with quadratic (solid lines) and linear (dashed lines)
basis functions.

Figure 8: The magnetic field lines in a slice through the three dimensional solution of the
axisymmetric Problem 2.
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Figure 9: Detail of the mesh after adaptive refinement. The part shown is a top view of
the interior of the iron core of Problem 2.

5.2 The equations

Since the current is sinusoidal and the frequency is low, we use the quasistatic time-
harmonic equations

V x E=—jwB in ), (5.1a)
VxH=1J] in Q) (5.1b)
V-B=0 in O, (5.1c)
where
B = uH, (5.2a)
J=Jy+0E. (5.2b)

Note that equation (5.1b) implies that V-J = 0. The interface conditions for this problem
then becomes

[Exn]=0 onl¥

[Hxn]=0 onl%

[J-n]=0 onI¥, (5.3c

[B-n]=0 onT%, (5.3d

where n is a unit normal to the interface and [-] denotes the jump across the surface as
before. Since p, = 1 in the whole region, the magnetic field is continuous over surfaces.
The same is true for the tangential component of the electric field, E;, while (5.3¢) implies

that E}, - n = 0, where E}, denotes the field inside the aluminium plate, since J = 0 in
the air. No further restrictions apply on the electric field.

17



The boundary conditions applied are

Exn=0 onl, (5.4a)
B-n=0 onl. (5.4b)

The placement of the outer boundary is not specified in description of the test case. We
have enclosed the coil and the aluminium plate in a cube of approximately three times the
size of a side in the plate.

5.3 The least-squares formulation

Even though the magnetic field is continuous in the whole region, we still have to introduce
the discontinuous elements along the surfaces, due to the jump in the normal component
of E. Setting up the least-squares functional for this system of equations then leads to the
following expression,

3
I(B,H) =Y (||v x E + jupH| % (5.5)

=1

IV X H = 0B = Tl + 9 - (uH) )

£ (I B ol + 8 B )
1<i<j<3

+ 30 (U2 [H <l + 12 [uH - ]2
1<i<j<3

1A B x nllff + 112 [uH - ]I,

where the second of the interface terms signify that the normal component of the E field
inside the aluminium should be zero on the interface.

The conditions for a minimum of I(E, H) give the following variational formulation for
U= (E,H): find U such that

aq(U,U) + ay(U,U) + ax(U, U) + as(U, U) = 1(U), (5.6)
for all U, where
~ 3 ~ ~
ao(U,U) =Y (V x E+ juwH,V x E + jwpH)g (5.7a)
1=1

+(VxH=-—0E VxH—0E)q

+ (V- (uH),V - (uH))q,
I(U) =) (Ji; V x H—0E)q. (5.7b)

i=1
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and for the interface terms,

a (U, U) = Z (hYE x n],[E x n])ri (5.8a)
- + (R 'ET - n, E*. )T s
a(U.0)= ((h’l[H x ], [H % n])ps (5.8b)
(b [ - ), [uH ] ),
a3(U,U) = (b [E x n],[E x n])r (5.8¢)

+ (' [uH - n], [uH - n))r.

Note that in these expressions we are dealing with complex vector fields. In practise,
one separates the real and imaginary parts and thus has to work with 12 unknown variables.

5.4 Computational results

As expected, in the absence of singularities, this problem could be solved successfully
with LSFEM. Comparison with experimental data is shown in Figure 11(a). The currents
induced in the aluminium plate are shown in Figure 12. However, due to the size of the
problem, we have only been able to compute using linear polynomial basis functions and not
reaching the desired accuracy. The convergence though is good as shown in Figure 11(b),
since the L? norm of the residual is equivalent to the error in energy norm.

Caoil
294 |
Aluminium
Caoil
- 294
100 i
187 <1708
NI
Al Bl143 108
,,,,,,,,,,,,,,,,,,, { 30 '
[] [ [ Y
Hole Aluminium * * Hole
19 18

Figure 10: The geometry of Problem 3, a) front view, b) top view. The dimensions are
given in millimeters.

In this example we do not have an increasing residual, see Figure 11(b), which caused
problems in the previous examples. Hence, it has been possible to use the least-squares
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Figure 11: Computations for Problem 3 with linear basis functions.

Figure 12: Vector plot of the induced current in the aluminium plate of Problem 3.
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residual as refinement criterion:

Ix = ||V x E + jwpH|)%
+ ||V X H—oF — JSCH%(
+ |V - (uH)||%,

21

(5.9)
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