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Discontinuous/Continuous Least-Squares
Finite Element Methods for Elliptic
Problems *

Rickard Bergstrom' and Mats G. Larson?

Abstract

Least-squares finite element methods typically suffer from requirements on the
solution to be very regular. This rules out, e.g., applications posed on nonconvex
domains. In this paper we study a least-squares formulation where the discrete
space is enriched by discontinuous elements in the vicinity of singularities, making
computation of less regular problems possible. We apply this technique to the first
order Poisson problem, show coercivity and a priori estimates, and present numerical
results in 3D.

1 Introduction

Despite the fact that the least-squares finite element method (LSFEM) suffers from several
short comings, mainly concerning the regularity of the exact solution, the advantages it
offers, such as yielding symmetric positive definite matrix problems, have made the method
attractive in several areas. Applications include among others the convection-diffusion
equation [22], the Stokes [5] and the Navier-Stokes equations [4], Helmholtz’ equation [21],
Navier’s equation [11], and Maxwell’s equations [19]. For a review of the least-squares
finite element method and more references to the mentioned applications, we refer to the
paper by Bochev and Gunzberger [6].

This paper is concerned with the complication involving nonconvex polyhedral domains,
possibly in the context of an interface problem. The difficulty that arises with the least-
squares finite element method is due to the strong regularity requirement for the method, a
requirement only fulfilled in smooth domains. In [14], weighted L?-norms were used in two
space dimensions to achieve optimal convergence. A similar formulation is studied in [20]
for an interface problem. Also in [13], a weighted norm is used when stabilizing Maxwell’s
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equations with a quadratic divergence term. This approach, however, requires a precise
knowledge of the behaviour of the solution at the geometric singularity, a knowledge which
one may not have.

Another approach is based on a discrete minus one inner product by Bramble et al. [7].
Combined with the Raviart-Thomas elements a formulation which is optimal with respect
to regularity and approximation on general polygonal domains is derived. The construction
of the inner product leads however to dense matrices.

Here we study a least-squares formulation, based on the use of discontinuous elements
to approximate H(div), which allows us to get optimal estimates in the H(div)-norm. The
interface problem has been handled in [12] and we use a similar approach. The introduction
of discontinuous elements in this setting was made by Bramble et al.[8].

We prove optimal convergence results for the method applied to the first order system
formulation of the Poisson problem. Moreover, we present numerical results for model
problems in three spatial dimensions. In order to reduce computational cost, we introduce
an adaptive hybrid scheme based on discontinuous approximation only in the vicinity
of singularities and continuous approximation elsewhere, combined with adaptive mesh
refinement.

The model problems include a line singularity, a point singularity, and an interface
problem including both types of singularities. The proposed hybrid scheme performs well
for all these problems. In some cases, depending on the formulation of the boundary
conditions, we find that also the standard least-squares method performs surprisingly well,
but does not capture the singularity correctly.

The rest of this paper is organized as follows. In Section 2, we present the problem and
formulate the discontinuous/continuous least-squares method; in Section 3, we state and
prove coercivity of the bilinear form and a priori error estimates based on interpolation
on the BDM spaces and introduce variations on the scheme; in Section 4, we introduce
the adaptive hybrid formulation for efficient computations and discuss adaptivity issues;
in Section 5, we present the numerical results.

2 The least-squares finite element method

2.1 Model problem

We consider the problem: find u such that

-V -AVu=f inQ, (1a)
n-AVu =gy on [y, (1b)
U=g¢gp On FD, (1C)



Figure 1: A polygonal domain with two subdomains.

where Q C R? is a polyhedral domain with boundary I' = ', U I'y, see Grisvard [17] for
a definition, f € L?(f2), n is the exterior unit normal, gy € H'/?(I'y) and gp € H*?('p).
A is a symmetric piecewise constant matrix A = A’ for x € 0, with {Q‘} a partition of
2 into polyhedral subdomains €. Further we assume that there are constants ¢4 and Cy
such that ca|z|? < z- Az < Cyulz)?

Introducing the flux

o = AVu, (2)
we may write problem (1) as the first order system: find (u, o) such that
—V-o=f inQQ, (3a)
c—AVu =0 in (), (3b)
n-o=gy only, (3c)
u=gp onlp. (3d)

Under our assumptions on data, the solution (u,o) to (3) resides in at least H'({2) x
H(div; Q), with u uniquely determined if I'p # (. To be more precise, we have for a
nonconvex (2, that the minimal regularity for u is H3/27°(Q), with 0 < § < 1/2 depending
on the geometry, and consequently, for o we have [H/?*9(Q)]?, see e.g. [1], [15], and
[17]. By minimal regularity, we mean that for some f, there are solutions u such that
u ¢ H32(Q), but u € H3/2+0=¢(Q)), for all € > 0 [2]. We denote the space in which the
solution resides by V x W. The space H(div;2) mentioned above is defined as

H(div; Q) = {v € [L’(Q)]*: V-v € L*(Q)}, (4)
and is a Sobolev space with the product norm

[Vl Fray = IV -0l + [lol]”. (5)

2.2 Finite element spaces

Let K be a triangulation of €2 into shape regular tetrahedra K which respects the subdo-
mains, i.e., all K C Q' for some i. Denote the set of all faces F' by F and divide it into
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three disjoint sets
F =FrUFpUFy, (6)

where F; is the set of all faces in the interior of {2, F the faces on the Dirichlet part of the
boundary I'p, and Fy the faces on the Neumann part I'y. We let A : 2 — R denote the
mesh function such that h|x = hx = diam(K) and h|p = hp = diam(F), i.e., a measure of
the size of the element K or the face F'. Finally, we define the piecewise polynomial space

Vi X Wy, = CP, x [DP,]?, (7)
where
CP,=DP,NC(), (8)
DP, = @ Pp(K), (9)
Kek

and P,(K) is the space of all polynomials of degree less than or equal to p defined on K.
The degree of the polynomials, as well as the meshsize, may vary from element to element
so that p|x = pk, and thus we allow h-p adaptivity.

2.3 The discontinuous/continuous least-squares finite
element method

The discontinuous/continuous least-squares finite element method (D/C LSFEM) reads:
find (up,o0p) € Vi X Wy, such that

I = inf I 10
(uha O'h) (v,x)é%hXWh (Ua X)a ( )

where the least-squares functional I(-,-) is defined by

I, x) = Y (IV-x+ [l + 14772 (x = AVo)lI%) (11)
KeK
+> I nexdllF + Dl (= gm)llE + DI~ (v = go) -
FeF; FeFn FeFp

Note that the both Dirichlet (3c¢) and Neumann (3d) boundary conditions as well as nor-
mal continuity of the flux on interior faces, are imposed weakly through the least-squares
functional. Furthermore, we assume that boundary data can be represented by functions
in the finite element space.

Remark 2.1 We have the option of applying a weighting of the different terms in the
least-squares functional by inserting a constant in front of each term, and still get equiva-
lent schemes [12][25]. For a clearer presentation we have not included these weights in the
notation.



The corresponding variational equation takes the form: find (uy,04) € Vi X W, such
that

a(uh,oh;v,x) = Z(IUaX): (12)
for all (v, x) € Vi, x Wj,. Here a(- ;-) is a bilinear form and [(-) a linear functional, defined
by

a(u,o;v,x) = Z(V o,V -X)k + (A o — AVu), (x — AVv))k

Kek
+ Y (b n-oln-xDr (13a)
FeF;
+ Z (n-o,n-x
FeFy
+ Z (h tu,v
FeFp
(v, x) = Z(f,V ‘X)) + Z (gnsm-X)F + Z (h™gp, ). (13b)
Kek FeFy FeFp

3 Error estimates

3.1 Coercivity and continuity

We begin our analysis by introducing the (semi) norm

I, o)1 =D (IV - alli + 14705 + [ A/*Vul %) (14)
KeK
+ > B n-ollm+ Y ln-ollz+ D 11 ull7
FE]'—I FE]'—N FG]'—D

We then have the following basic estimates.

Proposition 3.1 It holds

ml||(u, o)|I” < a(u, o3u, 0) V(u,0) € Vi X W, (15)
a(u, 30, x) < M|[(w, o)[[[[|(v, )l V(u,0) and (v,x) €V x W, (16)

with constants m and M independent of h.

Remark 3.1 In our analysis, we do not consider m and M’s dependence on A. Following
[20] it is reasonable to believe that these constant do not depend on the size of the discon-
tinuities of A, only its variations in each subdomain.

In order to prove Proposition 3.1, we need the following version of Poincare’s inequality.
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Lemma 3.2 Forv € H'(Q), we have
lvllg < C (IVoll§ + lIvlIE,) - (17)

Proof of Proposition 3.1. To prove (15) we start from the definition (13a) of the bilinear
form

a(u,o5u,0) = Y (IV-olfi + [[A7/*(0 — AVu)|%) (18)
Kek
+ ) P nollE+ > ol + > I Pulf3
FeFr FeFn FeFp
We have
Ao — APVu|? = || A Po|? = (Vu,0) + [|A* V| (19)
> [|A0|]? — |(Vu,0)| + [|AV*Vu]%. (20)

We thus only need to estimate |(Vu,o0)|. Using Green’s formula we get
(Vu,a):—ZuV o) +Z Jn-o))r+ Z (u,n-0)p. (21)
KeK FeF; FeFNUFp
The first term on the right hand side in (21) may be estimated using the Cauchy-Schwarz
and e-inequalities followed by an application of Lemma 3.2,

Y (@, V-0)x < Ocllul® + C ||V - o] ? (22)

KeKk

Ce (IIAI/QVUI|2+ > ||h1/2UII%> +Ce V-l

FeFp

for any € > 0 and h < 1. Next, for the second term, we again invoke the Cauchy-Schwarz
and e-inequalities to get

Z (u,[n-0])p <C Z el|h'?ul|% + € 2 [n - o]||% (23)
FeFr FeF;
o (z AT+ 3 uh—wun%) o)
KeK FeFp
+ Qe ! Z 1h~2n - o]||%. (25)
FeF;

Here we estimated the first term on the right hand side in (23) using elementwise trace
inequalities followed by Lemma 3.2,

S IRl < C Y llullie + 12 Vully (26)
FeFr Kek
e (Z 1A Vullfe + ||h—1/2u||%) . (27)
KeK FeFp



Finally, the third term on the right hand side in (21) can with the same technique be
estimated as follows:

> (o) <C 30 (IR uly + elpon ol (28)
FeEFpUFnN FeFp
+C Y (ellullz + € in- o)
FeFn
<Ce (142ull} + |4 20l %) (29)
Kek
+Ce ZHn o2+ Cle+e ZHh 242,
FeFn FeFp

for all € > 0. In (29) we used the inverse inequality
In?n - ollax < CllA™20]|x, (30)

for 0 € P,(K). Note that the constant C' depends on the order of polynomials p. Collecting
these estimates, we get

(Vu,0) < Cre Y (IA2ull} + 1A 203 ) + Coe P 3 |IV - o

KeK KeK

+Coe” (Z ln-ollf+ ||h‘1/2[n-0]||%> (31)

FeFn FeFr

+ (Cre+ Cae™) Y [|h72ulf3

FeFp

Inserting (31) into (18) and (19), we get

a(u,03u,0) > (1= Coe™) Y IV -0l (32)
KekK
+(1-Cre) Y (A7 0% + 1A Vull)
KekK

+ (1= Cye) ( Do dln-oli+ Y 10 0]||%>

FeFn FeF;
+ (1= Cre=Coe ) Y [|n 23

FeFp

Choosing € such that Cie < 1/2 and increasing the weights «; on the remaining terms so
that o; — Cee ' > 0, we have

a(u, o5u,0) > ml||(u, 0)|?, (33)
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where a(-,-) denotes the weighted least-squares functional, see Remark 2.3. Finally, we
note that all forms with positive weights are equivalent and thus the proof of (15) follows.

The continuity (16) is a direct consequence of the Cauchy-Schwarz and triangle inequal-
ities. 0

3.2 A priori error estimates

We begin by introducing the interpolation operator, II : (u,0) — (m,u, 7,0), with m, the
standard Scott-Zhang interpolation operator, see [23], and 7, an interpolation operator
onto the Brezzi-Douglas-Marini (BDM) spaces, see [10]. These elements have the degrees
of freedom associated with the moments of the field in the interior of the element and the
normal trace on the faces. The BDM-interpolant ensures normal continuity across element
faces and can be defined for functions satisfying o € [Lf]* and V-0 € L?, with s > 2. This
restriction is necessary to define the normal traces of the definition and we remark that
solutions to (1) satisfy this condition. The most important property of 7, is that on an
affine element,

V- 7,0 =PFP,_1kV -0, (34)

where P, | i denotes the L?(K)-projection onto P, ;(K). This identity can be seen by
elementwise integration by parts and using the definition of the interpolant, see [9].
We then have the following interpolation error estimate.

Lemma 3.3 Let K be an affine element and w, the BDM-interpolation operator. Then
there is a constant C depending only on the polynomial order and the shape of K, such that

(o —m,0)||k < Ch% ||k, 1/2<a<p+1, (35a)
IV - (0 —7m0)||xk < Ch%|V - 0ok, 0 <a <p. (35b)

An estimate in the energy norm can now be formulated.

Lemma 3.4 For (u,0) € H*Y(Q) x H*(div; ), with s > 0, it holds

(1, 0) = (meu, meo)[[P < € Y E(IV - ollax + llo]

Kek

i,K + ||u||§+1,K)7 (36)

with o = min(p, s).

Proof. Note that the BDM-interpolant of ¢ has continuous normal component, so all
interior face terms cancel. The boundary conditions may be exactly represented in the
approximating space and are thus also zero. The result then follows by applying Lemma
3.3 and the corresponding estimate for the Scott-Zhang interpolator [23]. O

Now, we are ready to state the following main result:
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Theorem 3.5 Let (u,0) € H*T(Q) x H*(div; Q) with s > 0 be the ezact solution to (8)
and (up, or) € Vi X Wy, the approzimate solution defined by (12). Then it holds

ll(u—wn,0 = an)llI* < € Y i (IIV -0

KeK

o T lolle ke + lullarn i) (37)

with o = min(p, s) and the constant C independent of the meshsize h.

Proof. We first add and subtract an interpolant and then use the triangle inequality to
get
1w = vn, 0 = on)lll < |li(w = myu, 0 — mo0) ||| + [[|(Tut — tn, Too —an)ll|.  (38)

For the second term, invoking coercivity (15), we obtain

ml||(myu — up,me0 — an)|? (39)
< a((myu — Up, Teo — Op), (Tyth — Up, Te0 — O))
= a((ﬂ-uu — U, M0 — 0), (Wuu — Up, TgO0 — Uh)) (40)
< |[[(muu = u, oo — o) ||| [[[(Tuts — up, 70 — o) ||, (41)

where we used the Galerkin orthogonality (12) in (40) and continuity of the bilinear form
(16) in (41). Dividing by |||(myu — up, 7,0 — o4)||| and inserting this estimate in (38), we
arrive at

(= un, 0 = ow) lI* < (1 + 1/m)*|[[(u — muu, 0 — mo0)|||* (42)
<C Y g (IV-oliak + lollax + lullbi k),
Kek
where Lemma 3.4 was used in the last inequality. 0

3.3 Variations on the same theme

Up to now, we have presented the method using nodal finite elements and only made the
flux discontinuous. There are of course other ways to implement this formulation, which
only leads to small variations in the analysis.

3.3.1 Discontinuous least-squares finite element method

For practical reasons, one may choose to have also u discontinuous. This will lead to easier
implementation since we may group the unknowns into small blocks, one for each node.
We would then add the term

Dbl (43)

FeFr

to the least-squares functional (11) in order to impose continuity of w.
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3.3.2 BDM/continuous least-squares finite element method

Instead of making the flux discontinuous and imposing the normal continuity weakly, one
may instead use a conforming approximation of H(div), such as the BDM or RT-elements
[10]. As discussed in Section 3.2, this ensures continuity of n - o at the interfaces and thus
these terms will be zero in the least-squares functional.

4 An adaptive hybrid method

Since the solution to problem (3) is of low regularity only close to corners and edges
and standard continuous finite elements work well to approximate the regular part of the
solution, it is natural to combine completely continuous and discontinuous/continuous
approximations. It is thus sufficient to use the discontinuous approximation in the vicinity
of a geometric singularity, where the extra degrees of freedom inflicted by the discontinuous
method pay off.

Denote by €1y a region, conforming with the triangulation X, surrounding the geometric
singularities, where we have to use D/C LSFEM, and let Q¢ = Q\Qp. In Q¢ we have
the solution (u,0) € H*¢*t! x [H*¢]?, with s¢ > 1, and may use continuous LSFEM with
polynomials of degree pc. If the decomposition 2 = Q¢ U p is chosen such that s is
considerably larger than s, we can also benefit from this by using high order polynomials
in Q¢. Further, let Kp = {K € K: K C Qp or KNQp # 0} be the elements covering Qp
and the neighboring elements, and define ¢ analogously.

We then have the following extension of our earlier a priori error estimate:

Theorem 4.1 Let (u,0) € H*™ () x H*(div; ) with s > 0 be the ezact solution to (8)
and (up,o0n) € Vi X Wy, the approzimate solution of the hybrid method proposed in this
section. Using the notation introduced above, it holds

ll(u—un,0 =an)llI> < C Y hE(IV-oliax+llo|

KeKp

+C Y B (ol i + lulligsnx),
KeKce

ac T+ 1ullG i k) (44)

with oo = min(p, 8) and ac = min(pe, s¢) and the constant C' independent of the meshsize.

The natural mesh refinement indicator in a least-squares method is the the functional
we try to minimize, i.e.,

ik = |V -0+ flix + A7 (0 — AVu)|% (45)
+ 12 oll3xnz, + 17 (0 = gn)l3xnry
+ 1h2(u — 9p) 3k
where ni denotes the element indicator. We use isotropic mesh refinement, splitting each

element marked for refinement into two to eight new elements by successively dividing the
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Figure 2: The L-shaped domain with a line singularity.

longest edge, see [3] for more details. However, for problems with singularities like we treat
in this paper, it would be desirable to use anisotropic or graded mesh refinement [16][24].
This seem to be an unexploited area in the least-squares society.

5 Numerical examples

In order to illustrate the theoretical results, we present numerical results for three examples,
all computed in three spatial dimensions and using the adaptive method described in
section 4: an L-shaped domain representing a line singularity, a sphere where a cone has
been removed representing a point singularity, and finally a cube, where one octant has a
different material parameter. For the first two examples analytic solutions are known.

5.1 Line singularity

We consider the problem

—V.0=0 in (46a)
c—Vu=0 in €, (46b)
u=g(p,0,2z) onp, (46¢)
n-oc=0 on [y, (46d)

where € is the domain showed in Figure 2 with z € (0,0.2), Ty = {z € Q;2=0.0 or z =
0.2} and I'p = ONQ\I'y. The function g is chosen so that the exact solution of u is

u(p, 0, z) = p*/*sin(20/3 + 7/3). (47)

We remark that the solution is independent of the z-coordinate and is thus two dimensional.

The error for the discontinuous/continuous least-squares finite element method com-
pared with standard LSFEM is presented in Figure 3. We clearly see that D/C LSFEM
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Figure 3: Error for standard LSFEM and D/C LSFEM in the line singularity example.
Circles denote the error for standard LSFEM and triangles the error for D/C LSFEM
measured in the H'(Q) x H(div;)-norm; stars denote the D/C LSFEM residual.

shows better performance. The continuous method can not represent the solution correctly
in the vicinity of the corner. It seems as if the geometry is rounded off and the singularity
is absent. In Figure 4(a) we see that the computed flux is incorrect for standard LSFEM
while, with discontinuous elements we can represent the solution correctly at the corner as
in Figure 4(b). The error is however local and does not pollute the solution far from the
singularity. We remark that the reason the standard LSFEM gives a solution that is only
locally erroneous, is that on a Dirichlet boundary, and specifically in the corner, we have
no condition on the flux ¢ . Thus the least-squares method is able to adapt in the way
shown in Figure 4(a).

5.2 Point singularity

In this section we solve the following problem, described in spherical coordinates,

—V.0=0 in €, (48a)
c—Vu=0 in €, (48Db)
u = P,(cos(d)) onI'p, (48¢)

where Q = {(r,0,¢) : r € [0,1),0 € (5,7],¢ € [0,27)} with 8 = 7/16, P, is the first class
Legendre function of order v, and I'p = 0f). The exact solution of u to this problem is

12



(a) Standard LSFEM

(b) D/C LSFEM

Figure 4: The flux in the vicinity of the corner of the L-shaped domain. Note that for
standard LSFEM, the flux is not correctly represented.

Vv, |

| S
‘}Vk"i\@{‘\%‘\ﬁﬁﬁgh B
uﬁ"‘é‘ﬁx‘\w“ Ol
ﬂﬂﬁl‘mAVAV““ﬂi"X‘ii 5

4 :
DL A
ARG

=

e

Vo

U AVAE

Wi
T
Ay
T
7\

VY,

&
P ALY,
s
SNEF

VAT
s
TAVAY)

AN
i

l

N

)
AN,
N N A

Yg&

Ml

MgA
!
‘%’ﬁm? i

vﬂ
% :

KA

L
i
ol

Figure 5: The mesh achieved after 20 refinement steps.
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(a) Geometry (b) Initial mesh

Figure 6: The cone problem with a point singularity.

u(r,0) = r”P,(cos(8)), (49)

with v depending on §; in our case v ~ 0.215 for 5 = 7/16, see [18].
Also in this problem, the Discontinuous/Continuous LSFEM is superior to the standard
LSFEM, cf. Figure 7. The behaviour of the standard LSFEM is similar to the previous

case and also here the singularity is absent.

5.3 Interface problem

In the previous examples, the material parameter is constant in the whole domain. We
will now demonstrate an example where A has a jump across an interior interface. The
domain is Q = Q; U Qy where Q; = {z € (0,0.5)3} and Qy = {z € (0,1)3}\Q;.

The problem we solve is

—V.o=1 inQ, (50a)
c—AVu=0 inQ, (50b)
u=0 onTIp. (50c)

We choose A; = 1.0 and let A; = {10,100,1000} for three different cases respectively.
Figure 9(a) shows the domain and the initial mesh.

For this problem we do not have an exact solution to compare with. However, based
on the experience of previous two examples, we rely on the least-squares functional as an
error indicator.

Two methods were tested: first with continuous elements in each of the subdomains,
but with weakly enforced interface conditions, and secondly with a layer of discontinuous
elements around the interface.

The method with continuous elements in each subdomain shows a performance similar
to the first example. Since the normal continuity is enforced only weakly, the standard

14
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Figure 7: Error for standard LSFEM and D/C LSFEM in the cone singularity example.
Circles denote the error for standard LSFEM and triangles the error for D/C LSFEM
measured in the H'(Q) x H(div)(2)-norm; stars denote the D/C LSFEM residual.
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Figure 8: The mesh achieved after 8 refinement steps.
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(b) Initial mesh

(a) Geometry

Figure 9: The cube domain in the interface problem.

(b) Detail of the cor-

ner

(a) A slice through the mesh

Figure 10: The mesh achieved after 14 refinement steps.
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Figure 11: The least-squares functional for A;/A; = 10 (diamonds), A;/As = 100 (trian-
gles), and A;/A; = 1000 (squares).

method is able to adapt by rounding off the corner as discussed in Section 5.1. We have
therefore chosen not the present the convergence results for this setting.

The least-squares residual for the discontinuous/continuous solution in the three cases
with different material parameters is shown in Figure 11. As we clearly see from the plot,
the convergence is not affected by the ratio of the size of the parameters. However, with
increasing ratio, the algebraic system of equations becomes more difficult to solve.

6 Conclusions

We have formulated and analysed the discontinuous/continuous least-squares finite element
method. To obtain an efficient scheme, we propose an adaptive hybrid method based
on discontinuous/continuous approximation only in the vicinity of singularities and fully
continuous approximation elsewhere, combined with adaptive mesh refinement.

Furthermore, we present numerical results for the Poisson problem posed on nonconvex
domains in three spatial dimensions, which lead to geometrical singularities in the solution,
as well as an interface problem.

From the numerics, we see that the standard least-squares finite element method man-
ages to produce a solution only as long as the conflicting conditions on the flux that causes
the singularities, are not explicit in the problem. However, the computed solution does
not capture the singularities and it appears the corners have been rounded off. This defect
does not seem to pollute the solution.
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In contrast, the proposed hybrid method performs well in all these cases, and the
approximate solution displays a correct normal flux at the corner.
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