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Discontinuous Least-Squares Finite Element
Methods for the Div-Curl Problem *

Rickard Bergstrom' and Mats G. Larson?

Abstract

In this paper, we consider the div-curl problem posed on nonconvex polyhedral
domains. We propose a least-squares method based on discontinuous elements with
normal and tangential continuity across interior faces, as well as boundary conditions,
weakly enforced through a properly designed least-squares functional. Discontinuous
elements make it possible to take advantage of regularity of given data (divergence
and curl of the solution) and obtain convergence also on nonconvex domains. In
general, this is not possible in the least-squares method with standard continuous
elements. We show that our method is stable, derive a priori error estimates, and
present numerical examples illustrating the method.

1 Introduction

The least squares finite element method is a general technique for finding the approximate
solution of first order partial differential equations based on minimization of the L?-norm
of the residual over a suitable finite element space. Second order problems are first written
as first order systems by introducing additional, often physically motivated, variables. The
method manufactures symmetric positive definite algebraic systems which are suitable for
applying iterative techniques to find the solution, for instance multigrid. For an overview
of least-squares finite element methods, we refer to [7] and the references therein.

In this paper, we develop a least-squares method for the div-curl problem posed on
a nonconvex polyhedral domain with discontinuous piecewise constant coefficients and a
right hand side, defined on a partition of the domain into (possibly nonconvex) subdomains,
which is piecewise sufficiently smooth (H*, « > 0). This problem serves as an important
model problem in electromagnetics and also arises when a curl-term is added as stabilization
when solving the second order elliptic problem, see, e.g., [10] and [21].
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Standard least-squares finite element methods typically require rather strong regularity
on the exact solution. For instance, in most works a convex domain is required. This prob-
lem has been studied and at least two different solution approaches have been presented,
both based on weaker measurements of the residual. The first uses a weighted norm with
a radial weight in the vicinity of corners, see Cox and Fix [13] and Manteuffel et al. [19].
The second approach is to replace the L2-norm by a discrete approximation of the H !-
norm, see Bramble et al. [9]. Both these methods are somewhat complicated to implement;
the first requires knowledge of a local weight of suitable strength at each corner or line
singularity and in the second, an implementation of the discrete version of the H~'-norm
is needed.

Instead, we propose using discontinuous approximation spaces where tangential and
normal continuity, as well as boundary conditions, are weakly enforced through a properly
defined least-squares functional. Such spaces make it possible to take advantage of the
regularity of the given right hand side and obtain convergence also in the nonconvex case.
For efficiency reasons we formulate a hybrid scheme, where discontinuous elements only
are employed in the vicinity of corners where it is necessary. Away from the singularities,
the solution is regular and continuous, typically higher order, polynomials may be used.

In the analysis we consider the simplified case when the coefficient equals the identity,
and comment on the extension to space varying data. We prove coercivity with respect to
the H(div,curl)-norm and a priori error estimates of optimal order.

We also present numerical results for model problems in three spatial dimensions. The
problems include a line singularity, a point singularity and a magnetostatic interface prob-
lem, where the coefficient exhibits a large jump across the interface.

The paper is organized as follows. In Section 2, we present the div-curl problem and the
least-squares method; in Section 3, we prove coercivity of the bilinear form with respect
to the H(div, curl)-norm for simplified model problems and a priori error estimates; in
Section 4, we introduce a hybrid formulation suitable for efficient computations together
with the natural mesh refinement indicator; in Section 5, we present numerical results.

2 The least-squares finite element method

2.1 Model problem
We consider the problem: find u : Q — R? such that

VxAu=w in (2.1a)
V-u=p inQ, (2.1b)
nxAu=0 on Iy, (2.1¢)
n-u=0 only, (2.1d)

where Q C R? is a polyhedral domain with boundary I' = I'r U 'y, see Grisvard [16]
for a definition. By subscripts 1" and N we refer to the tangential and normal traces, w
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Figure 1: A polygonal domain with two subdomains.

and p € [L*(Q)]* are given functions, n is the exterior unit normal to ', A is a piecewise
constant function A = A* for z € Qf, with {Q*} a partition of  into polyhedral subdomains
Q.

Natural spaces for this problem are

H(div; Q) = {v € [L*(Q)] : V-v e L*(Q)}, (2.2a)
H(curl4; Q) = {v € [L*(Q)]* : V x Av € [L*(Q)]*}, (2.2b)
H(div, curl4; Q) = H(div; Q) N H(curlA; Q), (2.2¢)

which are Sobolev spaces with their respective product norms,

vl ai) = 11V - 0ll* + o]l (2.3a)
101l eurty = IV % 0l|* + [lo]l%, (2.3b)
10l Zr @iy cumty = IV - 0l + 1V x 0f* + [Jv]*. (2.3¢)

Under our assumptions on data, the solution u to (2.1) resides in at least [H'/2(Q)]?,
since the subspace of H(div,curl; ) restricted to functions with traces that fulfil (2.1c)-
(2.1d), are embedded in [H*(Q2)]?, with s > 1/2, see [1] and [12]. For convex domains, we

have s = 1.

2.2 Finite element spaces

Let IC be a triangulation of €2 into shape regular tetrahedra K which respects the subdo-
mains, i.e., all K C Q¢ for some i. Denote the set of all faces F' by F and divide F into
three disjoint sets,

F=FUFrUFy, (2.4)

where F7 is the set of all faces in the interior of €2, Fr the faces on I'y, and Fy the faces
on I'y. We let h : Q@ — R denote the mesh function such that h|x = hx = diam(K)
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and h|p = hp = diam(F), i.e., a measure of the size of the face F. Finally, we define the
discontinuous piecewise polynomial space

Vi = [DP,)?, (2.5)
where
DP, = P P,(K), (2.6)

and P,(K) is the space of all polynomials of degree less than or equal to p defined on K.
The degree of the polynomials, as well as the meshsize, may vary from element to element
so that p|x = pk, thus allowing h-p adaptivity.

2.3 The discontinuous least-squares finite element method

DLSFEM, the discontinuous least-squares finite element method, reads: find u;, € V), such
that
I(up) = inf I(v), (2.7)

VEV

where the least-squares functional I(-) is defined by

1) = > (1429 x 4v = W)l + 4727 -0 = p)lI%) (2.8)
Kek
+ > (247 Qoln x AullE + W2 AL Poln x o]l )

FeFUFr

bY (In Aol ol + A2 AY R o]

FeFrUFn

Here we used the following notation: P, is the L2-projection on constant functions on each
face F' and Q9 = I — Py with I the identity operator; n is a fixed unit normal to F' € F;
and the exterior unit normal for F' € Fr U Fy; [v] = vt — v~ for F' € F; and [v] = v for
F € FrUFy, where v¥(z) = limy_, 5o v(zFsn) forz € F; Ay =2ATA /(AT + A7) and
Ap = (A" + A7)/2. Note that both differential equations (2.1a) and (2.1b) and boundary
conditions (2.1c) and (2.1d), as well as tangential and normal continuity on interior faces,
are imposed weakly through the least-squares functional.

Remark 2.1 We may use weighting of the different terms in the least-squares functional by
inserting a positive constant in front of each term, see [11]. Weighting leads to a different,
but equivalent, discrete approximation. To simplify the notation, we have not included
these weights.

The corresponding variational equation takes the form: find u; € V), such that
a(up, v) = l(v), (2.9)
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for all v € V,,. Here a(-,-) is a bilinear form and I(-) a linear functional, defined by

a(u,v) = Z(A*IV X Au,V x Av)k + (AV -4, V - v) g (2.10a)
Kek
+ ) ((hA7Qoln x Au], Qoln x Av])p
FeFrUFr

+ (W TAZ' Py[n x Aul, Po[n x Av])p)
+ Z ((hANQo[n ul, Qoln - v]))

+ (" Ay Po[n - u], Py[n - v])r),
()= (A w,V x Av)k + (4p, V - v)x. (2.10b)

KeK

3 Error estimates

Throughout this section, we assume that A = I, with I the identity matrix, €2 is a noncon-
vex polyhedral domain, and I' = I'y. Based on the decompositions by Bonnet-Ben Dhia
et al.[8], our analysis can directly be extended to the case I' = I'r and, with sufficiently
smooth interface boundaries, A # I. These assumptions are necessary to prove the coer-
civity of Theorem 3.1, while the error estimate in the least-squares norm in Theorem 3.5
holds for the general problem (2.1).

3.1 The least-squares norm

We define the natural least-squares norm, or energy norm,
lol[* = a(v,v), (3.1)

for all v € V), + H(div, curl; Q) N H/2(Q2). We then have the following result which shows
that ||| - ||| is indeed a norm on this space.

Theorem 3.1 There is a constant C, independent of h, such that
Joll < Cllfv]]], (3-2)
for all v € Vy, + H(div, curl; Q) N HY2(K2).

In order to prove this estimate we first establish a suitable Helmholtz decomposition of

(L)),

Lemma 3.2 For each v € [L*(Q)]® there is x € [H']*(Q) and ¢ € H' () such that
v=V X x+ V. (3.3)
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Furthermore, the stability estimates

Ixlly < Clll], (3.4a)
16]l1 < Clvl], (3.4b)

hold.

Proof. Let ¢ be the solution of the Neumann problem: find ¢ € H'(2) such that
(Vo,Vw) = —(V-v,w) + (n-v,w)r, (3.5)

for all w € H'(Q). Then V- (v —V¢)=0and n- (v — V¢) =0 on I'. Thus there exists
Xo € H(curl; Q) such that V x xo = v — V¢ and n X xo = 0 on I' [15]. Note that the
boundary condition n X xo = 0 impliesn-V X xo =n- (v — V¢) = 0.

Using Lemma 2.1 in Pasciak and Zhao [20] there exists x € [H'(Q)]® with n x x = 0
on ['and V X x =V X xp. Furthermore, the stability estimate

Ixll < ClIV < xoll, (3:6)
holds.
The decomposition (3.3) is thus established. Finally, we note that
loll* = IV x xol* + I VoI*. (3.7)
Then (3.4b) follows immediately and (3.4a) follows by using (3.6). O

Proof of Theorem 3.1. Using Lemma 3.2, we write

v=V xx+ V. (3.8)
Multiplying with v, integrating, and using integration by parts, gives
> =Y (0,V x )k + (v, V)& (3.9)
Kek
= (Vxv,X)k —(V-v,0)k (3.10)
Kek
+ Z ([n X U]7X)F + Z([n ’ /U]vd))F‘
FeF; FeF
Using the Cauchy-Schwarz inequality, definition of the ||| - |||-norm , and stability estimates
(3.4), we get
D (Vxo )k < Y IV xolllxlx < Sl o, (3.11)
Kek Kek
Y (Vou,d)k < DIV -vlkllglx < Cllloll o]l (3.12)
Kek Kek



Next we turn to the edge terms. Writing v = Qv + Pyv, we have

([ x 0], ) r| < [[B12[n x Qov]|lrhic || Qx| r (3.13)
+ B2 x Pyl phil?|IX|l e
We recall the trace inequality ||w||r < C(h}1/2||w||K + h}{/2||Vw||K), with F' a face on 0K.
To estimate ||Qox|| 7, we first write Qox = (I — Py)x on F and then use the trace inequality
e 1Qoxllr < Chi” (i *lIx — Poxcxllx (3.14)
+ h2 IV (x = PoeX)llx)
< OVl (3.15)

where P, i is the L?(K) projection on Py(K) and we applied the standard estimate ||y —
Poxxllx < Chi|[Vx]|-
Next we have

hiIxlle < Ch? (b P lIxl e + RV x1%) (3.16)
< Clixlh,x- (3.17)

Collecting these estimates and using stability estimate (3.4a), we arrive at
[([n > o], x)r| < Cllof|] o] (3.18)

The remaining boundary term is estimated in the same way. Finally, dividing by ||v||, the
desired estimate follows. 0

3.2 Interpolation error estimates

We begin by introducing the interpolation operator 7 : H(div, curl; Q) N [HY/2(Q)]> — W,
such that mu|x = mxu where 7 : H(div, curl; K) N [HY?(K)]® — [P1(K)]? is defined by

/u-v dSZ/ﬂ'K’U,'UdS, (3.19)
F P

for each face F C 0K and all v € [Py(F)]®. From this definition we derive the following
two identities

V X% TKU = P()’Kv X u, (320&)
V- TRU = PO,KV - Uu, (320b)

where Py  is the L?(K)-projection on [Py(K)]?. For instance, we have

/Vx(u—m(u)-vd:vz/ n X (u—mgu)-vdS=0, (3.21)
K oK

7



for all v € [Py(K)]?. Using (3.20), we arrive at
Vxu—Vxrgu=(I—PFPyg)V xu. (3.22)
Applying standard estimates for the L2-projection, we can deduce the following lemma.

Lemma 3.3 Let K be an affine element. Then there is a constant C depending only on
the shape of K, such that

IV x (u—7u)||x < ChE|V X ulgk, (3.23)
IV - (u— 7u)||x < ChE|V - ulg x, (3.24)

with 0 < 5 < 1.

We then have the following interpolation error estimate.

Lemma 3.4 For u € [H*(Q)]?, a > 1/2, with V x u € [H?(Q)]? and V - u € HP(R),
B >0, it holds

= mullP < C 37 Wl + BE IV % ullc + 1V - ul3s),  (3.25)
KeK

with the constant C independent of h.

Proof. Using the interpolation error estimates in Lemma 3.3, we get

IV % (v — 7u)||x < Che ||V x ul|k, (3.26)
IV« (u— 7u)||x < CRE|IV - ullk - (3.27)

We now turn to the face contributions. Using the triangle inequality we have

1Qoln x (u = 7u)]llr < [[Qon % (u = mu™)|[F + [|Qon X (u—mu”)|F, (3.28)

where face F' = K+ N K~ is shared by elements K+ and K~, and 7mu* = 7u|x+. Each
term on the right hand side of (3.28) can now be estimated as

hel|Qon x (u — wu) |7 + hrl|Qon - (u — mu)l[F = hrl|Qo(u — mu)||7
< Chpllu = mulli,p < Chilullicq, (3-29)

with o > 1/2, K = K*, and mu = wu®. For the second face contribution we have the
identity

he'llPon x (u = mu)l[f + hp'[[Pon - (w = 7u)|[f = hyp' | Po(u — 7u) [ = 0, (3-30)

where we used the definition of the interpolant in the last equality. n



3.3 A priori error estimate

Now, we are ready to state the following main result:

Theorem 3.5 Let u € [H*(Q)]?, o > 1/2, with V x u € [H?(Q)]* and V - u € HP(R),
B >0, be the exact solution to (2.1) and uy, € Vy, the approzimate solution defined by (2.9).
Then it holds

Il = unll> < C 37 W2l + IV x ullic + 1V - ullZ),  (3:31)
KeKk

with constant C' independent of the meshsize h.

Proof. By the definition of the least squares method we have
[l = unll < lllu = wul], (3.32)

and thus estimate (3.31) follows immediately from the interpolation error estimate.
Combining Theorems 3.1 and 3.5 we get the following corollary.

Corollary 3.1 Under the same assumptions as itn Theorem 3.5 it holds

Z ||U, - uh”%I(K,div,curl) < C Z h%(a”u'

KeK KeK

ot F R (IV X ullf e + [V -ullf ). (3:33)

4 A hybrid formulation

Since the solution is of low regularity only close to the singularities, it is natural to use the
computationally expensive discontinuous elements only in this region and use continuous
elements in the smooth region. Denote by 2p a region, conforming with the triangulation
K, surrounding the geometric singularities, where we have to use DLSFEM, and let Q)¢ =
O\Qp. In Q¢ we have the solution u € [H*¢]?, with s¢ > 1, and may use continuous
LSFEM, with polynomials of degree pc. If the decomposition Q2 = Q¢ U2p is chosen such
that s¢ is considerably larger than s, we can also benefit from this by using high order
polynomials in Q¢. Further, let Xp = {K € K : K C Qp} be the elements covering 2p,
and define K¢ analogously. An interpolation operator of Scott-Zhang type [22] is used for
the continuous approximation.
We then have the following extension of our earlier a priori error estimate:

Corollary 4.1 Under the same assumptions as in Theorem 3.5 it holds

S = unll s < C DBl e + B (19 xull i + 1V -0
Kek KG’CD

+C Y hlulag (4.1)

KeKe

with ac = min(pc + 1, s¢).



5 Numerical examples

We present in this section examples in domains in three spatial dimensions having corners,
or subdomains with corners. We use the least-squares functional as mesh refinement indi-
cator, since it exactly represents the error measured in energy norm |||-||| [18]. Moreover, we
use an isotropic mesh refinement algorithm, splitting each element marked for refinement
into two to eight new elements by successively dividing the longest edge, see [6] for more
details. For these singular problem, it is however clear that we would gain from using an
anisotropic error estimator and mesh refinement, see for instance [2], [14], and [23].

5.1 First order Poisson system

Here we consider the Poisson system: find p such that

—-Ap=f inQ, (5.1a)
n-Vp=gny only, (5.1b)
p=gp oOn FD. (51C)
Introducing the flux
u = Vp, (5.2)

we may write problem (5.1) as a first order system: find (p, u) such that

—V-u=f in Q, (5.3a)
u—Vp=0 in Q, (5.3b)
Vxu=0 in Q, (5.3¢)
n-u=gn on I'y, (5.3d)
nxu=mnxVgp onlp, (5.3e)
P=4¢p on I'p. (5.3f)

The curl-constraint (5.3c) is added since we then, on a convex domain, achieve H'-
coercivity for the system [10]. It arises from equation (5.2) and the fact that the curl
of a gradient is identically zero.

We note that (5.3a), (5.3¢), (5.3d), and (5.3e) completely define u, which thus can be
solved independently of p in a first step. The latter is computed in a second step, by solving
(5.3b) and (5.3f) with u as data.

We have applied the method described in this paper to solve the div-curl system of the

first step on two problems posed on nonconvex domains, and then computed p by standard
LSFEM [19].

5.1.1 Line singularity

We solve problem (5.3) and 2 the L-shaped domain displayed in Figure 2 with z € (0,0.2),
'y ={z€Q2z=000rz=02}and I'p = 0Q\'y, f = 0, and gp chosen so that the
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(a) The z-y plane (b) The domain (c) Initial mesh

Figure 2: The L-shaped domain with a line singularity.

exact solution p is
p(p,0,2) = p*/*sin(20/3 + 7/3). (5.4)

The error, measured in H'(Q) x H(div, curl; )-norm, is plotted in Figure 3. In this
figure, also the least-squares functional is plotted. We note that the behaviour of our
modified method is the same as reported in [5] when the stabilizing curl-term was not
included. The convergence of the algebraic solver is however much better when consid-
ering this compatibility constraint. In Figure 4(b) we can see the solution in the corner,
displaying correctly the singularity and with the flux orthogonal to the boundary. On the
contrary, standard LSFEM does not work in this setting. Instead we note that, in order to
satisfy the conflicting constraints, the flux tends to zero in the corner, see Figure 4(a).

5.1.2 Point singularity

In this section, the domain where we solve (5.3) is Q = {(r,0,¢) : r € [0,1),0 € (B, 7],¢ €
[0,27)} with 8 = 7/16, described in spherical coordinates.

Also here f =0, and we choose gp = P,, where P, is the first class Legendre function
of order v, and I'p = 0€). The exact solution p to this problem is

p(r,0) = r"P,(cos(0)), (5.5)

with v depending on 3; in our case we have v ~ 0.215 for § = 7/16, see [17]. A plot of
the error is shown in Figure 6. The behaviour is similar as for the previous case, and also
here the use of continuous elements fails.

5.2 The magnetostatic equations

The equations that define static magnetic fields are

V x H=J, (5.6a)
V-B=0, (5.6b)
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Figure 3: Error for DLSFEM in the line singularity problem. Triangles denote the error
measured in the H'(Q) x H (div, curl; )-norm and squares denote the least-squares residual.

(a) Standard LSFEM (b) Discontinuous LSFEM

Figure 4: The computed flux in the vicinity of the corner of the L-shaped domain. Note
that for standard LSFEM, the flux incorrectly tends to zero in the corner.
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(a) Geometry (b) Initial mesh

Figure 5: The cone problem with a point singularity.

10° ‘
U IR — 2. 12 ]]
Vo Uu=Ul gy, cuney PPyl 1
o ey
. NS5
10 — — : o
10 " 5
10 10 10

Figure 6: Error for DLSFEM in the point singularity problem. Triangles denote the
error measured in the H'(Q) x H(div, curl; Q)-norm and squares denote the least-squares
residual.
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(a) Solution (b) Refined mesh

Figure 7: The solution and the refined mesh for the point singularity problem.

where H is the magnetic field intensity, B is the magnetic flux density, and J the imposed
current density. The two fields H and B are related through the constitutive relation

B = uH, (5.7)

where p = p,1o is the magnetic permeability with o = 47 x 1077 H/m and p, > 0. At
the interface between two materials, equations (5.6) imply the continuity conditions

[H] x n =0, (5.8a)
[B]-n =0, (5.8b)

stating that the tangential components of H are continuous, as well as the normal com-
ponent of B. In view of equation (5.7), the normal component H - n and the tangential
components B x n will thus be discontinuous across an interface of discontinuity of u.
At the boundary, we have either a prescribed field, a symmetry condition or a perfectly
conducting wall, B -n = 0.

5.2.1 Model problem

We have previously reported problems in applying LSFEM to magnetostatic problems
with realistic data [5]. Applying the discontinuous least-squares method to system (5.6),
we have however successfully solved a model problems of this kind. Never the less, the
mesh refinement indicator does not seem to yield optimal convergence. The problem is
axisymmetric in order to make two dimensional reference computations possible, and is
also reported in [3] and [4].

The geometry of this problem is described in Figure 10(a). A three dimensional view
can be seen in Figure 10(b). The model consists of an iron cylinder core encircled by
a copper winding. The configuration is enclosed in air and surrounded by a box with
perfectly magnetic surfaces. The winding is modeled as a homogeneous copper coil.

14



‘ ‘ DLSFEM ‘ Reference ‘
No of elements 348 373 -
No of nodes 59 970 -
Wair (J) 8.322 x 10~7(0.08) | 9.089 x 10~
Weu (J) 3.434 x 1078(0.05) | 3.614 x 1078
Wse (J) 5.358 x 10719(0.13) | 4.731 x 1070

Table 1: The computed magnetic energies compared with reference values using DLSFEM;
the relative error is given in parenthesis. The reference values are from two dimensional
computations done at ABB [4].

10°

v air
o cu
O fe

10 o . v : : o

1072 4 ! 5
10 10 10°

Figure 8: Relative error in the energy for DLSFEM in the magnetostatic problem. Triangles

denote the error in the air region, squares represent the copper region, and diamonds the
iron core.

Data for this problem are relative magnetic permeabilities p, . = 10* and p,cy =
Hrair = 1, and the current density J is constant over the cross section of the coil with a
total current of 1 A.

Reference computations in two dimensions done by ABB and reported in [4], gave the
values of the magnetic energies in the different materials as listed in Table 1, where the
magnetic energy is defined by

1
Wm:—/ B- Hdz. (5.9)
2 [oX3
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10°

10° = 5
10 10 10

Figure 9: The least-squares residual for the magnetostatic example.

1.00
o Air
9.95
1.00 03p ”Io_zo 2.00
N Copper
[~~lron_
(a) Geometry of the mag- (b) Field lines of the solution

netostatic example

Figure 10: Geometry and the solution for the magnetostatic example.

16



Figure 11: Detail of the mesh.
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