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Object Oriented Implementation of a

General Finite Element Code

Rickard Bergström

Abstract

We present the framework of a finite element code, written with the explicit aim
of being as general and as close to the mathematical viewpoint as possible. Due to the
object oriented programming paradigm, the weak form of the mathematical model is
easily implemented in a style close to the mathematical formula, and element types
and quadrature rules can quickly be changed or easily implemented. This work only
concerns the discretization of the problem, and does not consider mesh generation or
solvers for the linear system.

1 Introduction

The finite element method (FEM) is a general framework for solving several classes of
PDE:s and ODE:s, and there are several program packages that have implemented the
method, both commercial and free. Many of these implementations are however written
for a certain engineering application in, e.g., solid mechanics, and it may be difficult to
adapt the code to a specific need. This paper describes a code which instead tries to stay
close to the mathematical framework of FEM. The benefits include an accessible problem
formulation and easy extension with new element types etc.

This implementation is made in C++, a language gaining popularity in the numerical
society. Advances in compilers and programming techniques have made efficiency compa-
rable to that of simpler structural languages such as Fortran. The possibility of creating
new types, called objects, and specify their properties makes it possible to write programs
which are highly readable and with the same notations as in the literature on the subject.

There are similar object oriented code projects with different generality and level of
abstraction. In solid mechanics, large scale design is described in e.g. [11] and [21] and a
smaller “idea testing” design is presented in [25]. A more general approach can be found in
[13]. Also SIFFEA [15] is close to this projects but is written for 2D calculations. Another
inspiration for this code has been the Norwegian commercial package DiffPack [1], also
described in [18].
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2 Aim of the code

When this coding project started, there was a need for a flexible finite element code for
research purpose. Different research projects imposed the necessity for an easy change of
the weak form in which the problem was posed, as well as the possibility of implementation
of different types of elements. Multiphysics with coupled equations or hybrid methods was
also a possible extension. Moreover, the different applications made it necessary to have a
large range of algebraic solvers to use.

These specifications have to a large extent been met by the implementation presented in
this paper. The weak form is isolated and easily readable. This makes the change of finite
element formulation or the implementation of a new equation straightforward. Several
different types of elements have been incorporated, including standard nodal elements of
various polynomial order and the Nédélec edge elements.

Many different projects have started with the core of this code and later been trans-
formed to more specific, and thus more fine tuned and efficient, codes. The applications
include least-squares FEM for interface problems [8], discontinuous LSFEM [6][9], magne-
tostatic computations with coupled scalar and vector potentials [14], eddy current com-
putations with edge elements [19][20] , hybrid FEM-FDM for the wave equation [5], and
incompressible flow in porous media [23], as well as smaller in-house projects concerning,
e.g., error estimators for higher order polynomial finite elements and eddy current/heat
transfer coupled problems. A parallel version of the code has also been developed.

3 The abstraction of FEM

The strength of object oriented programming is that it is possible to implement abstractions
of the underlying problem, which make the code easy to read, understand, and maintain.
The code can be written in a way that makes the coupling to the underlying problem direct
and apprehendable.

In the case of scientific computing, it is natural to use the objects that are present
in the mathematical or physical formulation of the problem. On the highest level, it is
the equation (or rather the weak form when it concerns finite element methods) together
with boundary conditions, the domain and possibly algebraic or constitutive relations that
further define the computational problem.

In the finite element method the element is the centerpoint. We will adapt to the
definition of Brenner and Scott [12] for this, i.e. a finite element consists of

• a subdomain for the element,

• a function space defined on the domain, the shape functions,

• the degrees of freedom.

This is a general definition that includes all types of elements and methods.
Furthermore the concept of inner products, or integration, is needed to form the weak

form.
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3.1 Implementation issues in object oriented numerical program-

ming

In scientific computing the efficiency of the code is an important issue. A high level of
abstraction in the code may impede performance greatly. It is therefore necessary to
compromise to get a code that is both general and readable as well as efficient. To keep
inner loops free of time consuming function calls or other constructions, some of the abstract
objects mentioned above have been collected into the same class to facilitate numerically
efficient code. The different concepts are however clearly present.

4 Code details

The components described in this section have been used directly in the main function of
a C++ program. To hide details even further and make the usage cleaner, it would of
course be possible to wrap the objects together in problem modules. One might thus see
the program described in Section 5 as one part of a larger code.

The notation used in describing the code is based on that of Rumbaugh et al. [22]. To
represent a class, we use a box divided in three sections. The first contains the class name,
the second shows the class attributes, while the third lists the methods in the class. Object
relationship is shown with lines connecting the class objects. A symbol on the line indicates
the type and number of relationships: no symbol identify only one object, a solid circle
termination means zero to many objects, diamonds indicate aggregation, i.e. the class is
made-up-of the attached classes, and finally, triangles are used to indicate inheritance with
the base of the triangle towards the derived class and the tip towards the parent class.

4.1 Extent of the code

In this paper, we are only concerned with finding the discrete finite element solution on a
given geometry and mesh. Thus, no routines to generate meshes or post-processing (except
for adaptive mesh refinement) are included. In practise, we have used either meshes from a
separate program package (such as ProEngineer or Matlab) or written routines to generate
meshes for a specific problem. Post-processing has been handled in the same way. Most of
the classes to handle the meshes have been provided through another code project, related
to DiffPack [1][18] and partly described in [7], while some have been developed for this
project. For self-containment a brief description of the code used for grids, geometry and
adaptivity is provided.

Furthermore, to have a large library of solvers to choose from, we have used the software
package PETSc [4][24]. This package is written in object oriented C, and provides a nice
interface to work with sparse matrices and vectors and the solution process of matrix
problems. For the parallel version we used the METIS-package [2][16][17] to decompose
the problem.
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(a) Matrix class.

getCoord() 
loc2glob()
glob2loc()
update()

coordinates
nodes
testFcn
trialFcn

Element

ElementTetLin

fcnValues()

derivatives()

ElementHexLin

fcnValues()

derivatives()

BasisFcn

value()

dx(), dy(), dz()

(b) Element class

Figure 1: Description of the Matrix and Element classes. Vectors are handled analogously
to Matrix.

4.2 General structure

4.2.1 Basic objects

Some basic mathematical objects are essential when numerically solving PDEs: matrices
and vectors. We have chosen to use the implementation in PETSc. It provides a basic
Matrix type which is the interface to different implementations, i.e. storage formats, of
sparse matrices such as the traditional row oriented MatSeqAIJ or the blocked version
MatSeqBAIJ. Parallel versions are also provided, e.g. MatMPIAIJ and MatMPIBAIJ. The
Vector object is analogous.

4.2.2 Element

An Element object contains all three parts of the definition of a finite element cited above,
following the discussion in Section 3.1. The parts are however separated in the class.
The object includes one part containing the grid information concerning this particular
element, i.e. the nodes and their coordinates. Note that there is not an Element object
for each element in the grid, but the information in Element is continuously updated with
geometrical information.

There is a Basis function object corresponding to the shape functions mentioned above.
However, objects of this type are only used as an interface when communicating with the
Equation class, the actual description of the function space is implemented in different
instances of Element, such as quadratic polynomials on tetrahedrons, ElementTetQuad, or
edge elements on hexahedrons, ElementEdgeHex. The shape functions are implemented
for a reference element and operations on the functions are performed through the Mapper.
Finally, a map for going from local to global degrees of freedom is needed.
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4.2.3 Equation

In objects of this class, we include the weak form and routines to perform the integration
needed to form these functionals. For some applications it would have been advantageous
to isolate the integration, with the possible problem of time consuming function calls
or overloaded operators in the inner loops. We have mainly considered integration by
numerical quadrature and this construction has been flexible enough.

Using information from an element and a quadrature rule, the Equation has function-
ality to compute the element matrices by numerical integration. In order to do this, also
element neighbor information is needed. Furthermore, the mapping from local to global
degrees of freedom, provided by the element, is used to compute global matrix indices for
the element matrix terms.

Different problems have been implemented in instances of Equation, e.g. Equation-

Laplace or EquationHarmonicMaxwell, in a form very similar to the analytical variational
formulation, see the example in Section 5.

4.2.4 Boundary condition

Essentially, there are two methods implemented for boundary conditions. The first is a
direct implementation of Dirichlet conditions, BCStrong. In this case we have chosen to
keep the structure of the system matrix and not eliminate the unknowns corresponding to
degrees of freedom on the Dirichlet boundary. In the case of a scalar Dirichlet condition,
this consists of zeroing rows in the matrix and inserting ones in the diagonal and data
values in the right hand side vector. When the condition involves normal or tangential
traces, a local coordinate transformation has been implemented to be performed before
operating on the matrix.

The second method, BCWeak, includes inhomogeneous natural boundary conditions
and weakly imposed conditions. Then additional integrals are added to the weak form
in a procedure identical to the one in Equation. For interface problems or the discontin-
uous Galerkin method, there are classes corresponding to BCWeak performing the same
integration.

4.2.5 Quadrature rule

This class a straightforward implementation of the quadrature rules used. It isolates the
implementation of the points for the quadrature rule and their corresponding weights.

4.2.6 Mapper

The Mapper takes care of the transformation from the actual element in the grid to a
reference element. For a parametric mapping it uses an Element object to define the
mapping and to update the values of the shape function in the quadrature points.
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(a) Equation class.
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(b) BC class

Figure 2: Description of the classes for the equation and boundary conditions.

d)e�f�g�h3e�i j

k�l�m n)o�p�m q3r�r�s t�u v�wyx
k�l�m z{l�| k�}�m u v%w~x

d)e�f�g�h3e�i j���j�� �)f�e����

o�r�| p�m �
� l�| k�}�m �

d)e�f�g�h3e�i j��%j�� �%� f��

o�r�| p�m �
� l�| k�}�m �

(a) QuadRule class.

�^�7�H���7�

�)�7��� �����

�)�7�H� �����H�7� �7���7� � � �

����� �
�7�7  � � �^¡ ¢7�7¢  

£¤�7�7� �7¥���¦

§ ��¨ © � � �
�7ª � � « �7¬ � � « ��­ � �

(b) Mapper class

Figure 3: Description of the Quadrature rules and Mapper classes.
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Figure 4: The relation between the Discretiser and other classes.

4.2.7 Discretiser

This is where the different parts are put together to assemble the system matrix. The
Element is updated for each element in the grid, new function values are computed by the
Mapper, element matrices are integrated in Equation and assembled into the Matrix. In
the case of the parallel version of the code, this is also where partitioning of the problem
is handled.

4.2.8 Solver

The Solver class we use is picked from the PETSc package. It contains a large range of
Krylov subspace methods, together with different preconditioners. They are also imple-
mented for parallel computations. We refer to the manual of PETSc [3] for more details.

Apart from the PETSc solvers, a multigrid solver has been implemented and tested,
see [10].

4.2.9 Grid and geometry

A Grid object contains the elements, nodes, and coordinates of the nodes of the com-
putational mesh. Elements and nodes are not implemented as separate classes but are
represented as arrays in Grid. Derived from the base class is, e.g., objects to handle nested
adaptively refined meshes, GridFEHier, and meshes for discontinuous/interface problems,
GridDiscont. There is also a class for surface meshes to handle boundary conditions,
GridSurface.

The geometry description is handled by NURB curves and surfaces, and collected into
GridGeometry. The GridGeometry is used to compute correct normals on boundary and
interface surfaces, and to make sure that a refined mesh respects the geometry by projecting
new nodes onto the geometrical surface.
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GridSurfaceGrid

GridGeometry
GridDiscont GridFEHier

Figure 5: The relation between the classes that handle geometry and meshes.

5 An example: the Poisson problem

To get a better conception of how these classes interact in a code, we will present a
computation of the Poisson problem, written in pseudo C++ language.

The starting point is to model the problem,

−∇ · A∇u = f in Ω, (5.1a)

n · A∇u = gN on ΓN , (5.1b)

u = gD on ΓD. (5.1c)

For simplicity we choose f(x) = A(x) = 1, ΓD = ∂Ω, and gD(x) = 0. The variational
formulation of the problem is then: find u ∈ V0 such that

(∇u,∇v) = (f, v), ∀v ∈ V0, (5.2)

or, writing out the functionals explicitly,
∫

Ω

∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y
+

∂u

∂z

∂v

∂z
dx =

∫

Ω

fv dx (5.3)

This is implemented in the class EquationPoisson as

real f(){

return 1.;

}

EquationPoisson:: biLin() {

BasisFcn v = *testFcn

BasisFcn u = *trialFcn

biLin = u.x()*v.x()+u.y()*v.y()+u.z()*v.z()

}
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EquationPoisson:: load() {

BasisFcn v = *testFcn

load = f()*v()

}

In the main function, the domain is loaded into the Grid and GridGeometry classes.
Then equation, element, and quadrature rule are chosen before the Discretiser is called
to create the linear system of equations. Finally the Solver generates the approximate
solution by solving the matrix problem. This will look like

main(){

// Set up the problem

int quadOrder = 4;

int noSpaceDim = 3;

Grid grid;

GridGeometry geom;

QuadRuleTetGauss quad(quadOrder);

ElementTetLin element;

EquationPoisson equation(noSpaceDim);

BCStrongDirichlet bc;

MapIsoparametric mapper(noSpaceDim);

Discretiser discrete;

SolverGMRES solver(discrete);

Vector U;

// Read mesh and geometry

geom.scan(’geom.file’);

grid.getSurface().attachGeom( geom );

grid.scan(’grid.file’);

// Create and assemble the system matrix and rhs vector

discrete.createSeqProblem( grid, equation );

discrete.discretise( equation, bc, mapper, element, quad, grid );

// Solve the matrix problem

U=solver.solve();

}
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As we can see, the Discretiser is the kernel of this program. The member function
discretise performs the actual assembling of the problem and looks like

Discretiser:: discretise( Equation eq,

BC bc,

Mapper map,

Element elm,

QuadRule quad,

Grid grid){

for( el=0; el < grid.getNoElms(); el++ ){

elm.update( el, grid );

map.map( quad, elm );

eq.integrateBiLin( quad, elm, elmMat );

MatSetValues( elmMat, A );

eq.integrateLoad( quad, elm, elmVec );

VecSetValues( elVec, b );

}

bc.setBC( A, b )

}
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