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ON ADAPTIVE STRATEGIES AND ERROR CONTROL IN
FRACTURE MECHANICS

PER HEINTZ AND KLAS SAMUELSSON

Abstract. Finite element approximations in elastic fracture mechanics are traditionally
carried out on a priori constructed meshes with singularity elements that surrounds the
crack tip. In this contribution we discuss an adaptive algorithm based on goal oriented
error measures using ordinary elements and a p-refinement for the linearization of the
secant forms. The numerical experiments show that good results can be obtained without
imposition of hands before the computations starts. Furthermore, we note that it is often
possible, for engineering goal quantities, to linearize the data to the dual problem such
that additional discretization error is avoided, and the error representation formula is in
a sense trivial.

1. Introduction

Specifying a goal quantity a priori makes it possible to formulate a corresponding dual
problem that describes the error transport in the domain, related to the particular quantity
of interest. The dual problem can be approximated numerically and further used in an
adaptive algorithm in order to adapt the mesh to the pre-specified goal, i.e., goal oriented
adaptivity. A posteriori error estimates based on duality was introduced in the 1990:s by
Johnson and co-workers [3, 2, 1] and have also been used in nonlinear solid mechanics by
Rannacher and co-workers in [4, 5]. See also Larsson et al. [6] for further developments.

In this contribution we propose an adaptive algorithm based on a global p-refinement of
the primal problem. The finer approximation is used in the linearization of the secant form
of the error measure. We show that the error representation formula for the error in the
goal quantity turns out to be trivial if the dual problem is then approximated in the same
p-refined function space. We also consider using the results from the finer primal problem.

Prediction of instability of a preexisting macroscopic crack is often based on the assump-
tion that the material in the vicinity of the crack behaves in a linear elastic fashion, so that
the stress field has a singularity at the crack tip. The crack is defined as being unstable
when the stress intensity reaches a critical material dependent level, and is traditionally
obtained from the FE approximation by studying crack boundary movements or using an
integral formulation of the energy release rate at crack growth. Although much research
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has been done in this field there is little attention paid to the analysis of discretization
errors in the FE approximation. For instance, the design of the finite element mesh is
often made a priori instead of using adaptive techniques. In the numerical experiments
we investigate how well the adaptive algorithm resolves approximations encountered in
fracture mechanics. We do not use special singularity elements or other special techniques
since the purpose is to exploit the nature of the algorithm in a fundamental fashion. For
background material on the considered energy release rate methods we refer to [7], [8] and
[9].

The outline of the paper is as follows: In section 2 we recall the Gateaux derivative and
the nonlinear Galerkin orthogonality which are essential to the error analysis on which the
adaptive algorithm is based. In section 3 we derive the error representation formula, based
on duality arguments, for an arbitrary choice of goal functional. Furthermore we discuss
how the continuous dual problem can be linearized in a computational setting. In section
4 we describe the adaptive strategy and mention some different mesh refinement options.
In section 5, a model problem is formulated and we present the considered goal quantities
used in the simulations. In section 6 we present our numerical results and finally, in section
7, we present some concluding remarks.

2. Preliminaries

In the following sections we denote a test function v and a direction of the Gateaux
derivative w. The d-dimensional function space V is defined as

V
def
= {vi :

∫

v2i + |∇vi|2 <∞, i = 1, . . . , d},

with corresponding finite element subspace V h.
The variational and FE formulation of a linear PDE is described in terms of its bilinear

a(u,v) and linear form L(v); find u ∈ V , uh ∈ V h:

a(u,v) = L(v) ∀v ∈ V ,(2.1)

a(uh,v) = L(v) ∀v ∈ V h.(2.2)

The Galerkin orthogonality for linear operators is obtained subtracting (2.2) from (2.1)

a(e,v) = 0 ∀v ∈ V h,(2.3)

where e
def
= u−uh. For nonlinear operators, the corresponding variational and FE formu-

lation reads; find u ∈ V , uh ∈ V h:

a(u;v) = L(v) ∀v ∈ V ,(2.4)

a(uh;v) = L(v) ∀v ∈ V h,(2.5)

where a(·; ·) is the semi linear form (nonlinear in the test and linear in the trial argument).
The Gateaux derivative of the semi linear form with respect to its first argument is

defined as

a′(u;w,v)
def
=

∂

∂ε
a(u+ εw;v)|ε=0.(2.6)
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The secant form of a(u;v) is now obtained as

as(u,uh;w,v)
def
=

∫ 1

0

a′(ū(s);w,v) ds,(2.7)

where ū(s)
def
= uh + se. The choice w = e leads to

as(u,uh; e,v) =

∫ 1

0

a′(ū(s); e,v) ds = a(u;v)− a(uh;v).(2.8)

The nonlinear Galerkin orthogonality is now formulated using (2.4) to substitute the first
term in (2.8)

as(u,uh; e,v) = L(v)− a(uh;v) ∀v ∈ V ,(2.9)

as(u,uh; e,v) = 0 ∀v ∈ V h.(2.10)

3. Error analysis based on duality

3.1. The error representation formula. Let Q(u) be a quantity of physical interest
derived from the solution u. To measure the error in the discretization we introduce
E(u,uh) as

E(u,uh)
def
= Q(u)−Q(uh).(3.1)

To establish the variational format of the dual problem, on which the a posteriori error
estimate is based, we use the Gateaux derivative for E(u,uh) with respect to its first
argument

E ′(u,uh;w)
def
=

∂

∂ε
E(u+ εw,uh) |ε=0= ∇Q(u) ·w.(3.2)

We now define the secant form of E(u,uh) as

ES(u,uh;w)
def
=

∫ 1

0

E ′(ū(s),uh;w)ds =

∫ 1

0

∇Q(ū(s)) ·w ds,(3.3)

The choice w = e leads to

ES(u,uh; e) = E(u,uh)− E(uh,uh) = E(u,uh).(3.4)

For given u and uh we recall the secant form of the primal problem (2.7), and define the
corresponding dual bilinear form a∗S(u,uh;w,v) such that

a∗S(u,uh;w,v)
def
= aS(u,uh;v,w).(3.5)

The variational format of the dual problem is now formulated as; find ϕ ∈ V :

a∗S(u,uh;ϕ,v) = ES(u,uh,v) ∀v ∈ V .(3.6)

Using (3.5), (3.6) and (2.9) the following exact error representation holds where we have
chosen v = e

ES(u,uh; e) = a∗S(u,uh;ϕ, e) = aS(u,uh; e,ϕ)

= aS(u; e,uh,ϕ− πhϕ) = L(ϕ− πhϕ)− a(uh;ϕ− πhϕ).(3.7)
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The third equality is obtained using the Galerkin orthogonality (2.10) to insert an inter-
polant πhϕ that belongs to V h.

Using (3.4) and (3.1) we obtain

E(u,uh) = L(ϕ− πhϕ)− a(uh,ϕ− πhϕ)

=
∑

K∈Th

(L(ϕ− πhϕ)− a(uh,ϕ− πhϕ))K ,(3.8)

|E(u,uh)| = |
∑

K∈Th

(L(ϕ− πhϕ)− a(uh,ϕ− πhϕ))K |,(3.9)

where the summation is carried out over every element K in the mesh Th. Equation (3.9)
is the exact error representation formula that will be used in the adaptive routine.

Remark: For two chosen function spaces, V h and a larger discrete function space V h+ ,
ES(u,uh;v) can be linearized exactly for goal quantities that are at most quadratic in
u (since the gradient is then linear in u ). The error representation formula for bilinear
forms, with ϕ ∈ V h+ , is thus trivial with respect to the considered function spaces.

3.2. Discretizing the dual problem. Solving the dual problem (3.6) first requires a
linearization of the functional ES(u,uh;v). Nonlinear error measures can be linearized
using the rectangle (3.10), trapezoidal (3.11) or midpoint (3.12) rule.

∫ 1

0

∇Q(ū(s)) ·w ds ≈ ∇Q(uh) ·w,(3.10)

∫ 1

0

∇Q(ū(s)) ·w ds ≈ ∇Q(uh) +∇Q(uh+)

2
·w,(3.11)

∫ 1

0

∇Q(ū(s)) ·w ds ≈ ∇Q
(uh

2
+
uh+

2

)

·w,(3.12)

where uh+ is an improved solution closer to u, computed in a larger function space V h+ .
The Galerkin orthogonality (2.10) forces the discrete solution to the dual problem to

belong to a different function space than V h. Using the same enlarged function space as
above we thus consider the following function spaces:

V h ⊂ V h+ ⊂ V .(3.13)

Carrying out the discretization we obtain the discretized dual problem; find ϕ ∈ V h+ :

a∗S(uh+ ,uh;ϕ,v) = ES(uh+ ,uh;v) ∀v ∈ V h+ .(3.14)

Since V h+ ⊂ V , the exact error representation (3.9) must now be replaced by an approxi-
mate one:

|E(u,uh)| ≈ |
∑

K∈Th

(L(ϕh+ − πhϕ)− a(uh,ϕh+ − πhϕ))K |.(3.15)

A straightforward way to choose V h+ is to use one order higher finite elements than was
used when discretizing the primal problem, or a refined triangulation with the same order.
To reduce the overhead cost, simplified methods based on solving the dual problem in V h



ON ADAPTIVE STRATEGIES AND ERROR CONTROL IN FRACTURE MECHANICS 5

followed by post-processing to obtain a ϕ that belongs to an improved space have been
proposed; see for instance [6] for developments in this direction. In this paper we will use
p-refinement. This might seem costly, but on the other hand the computations also yields
the result of the finer primal problem. This is clearly a more accurate solution which can
be used instead of the coarse one. The only drawback is that we do not have as correct
error representation for the fine solution as for the coarse solution.

4. Refinement strategy

Starting from (3.9) the following estimates of the error holds

|E(u,uh)| = |
∑

K∈Th

(L(ϕ− πhϕ)− a(uh,ϕ− πhϕ))K |,(4.1)

≤
∑

K∈Th

|(L(ϕ− πhϕ)− a(uh,ϕ− πhϕ))|K ,(4.2)

≤
∑

K∈Th

RK(uh) ·WK(ϕ− πhϕ).(4.3)

Equation (4.1) is an identity and in (4.2), the triangle inequality supresses cancellation
between different elements. In (4.3) integration by parts together with the Cauchy-Schwarz
inequality results in two constants RK and WK on the element level, e.g., with a(u,v) =
∫

(Au) · v and L(v) =
∫

f · v,
RK(uh) = ||Rh||L2(K)(4.4)

WK(ϕ− πhϕ) = ||ϕ− πhϕ||L2(K),(4.5)

where Rh
def
= Auh − f . In earlier work [10] there has been proposed the use of (4.1) as a

stop criterion and (4.2) for assigning refinement indicators to the elements in Th. This is
a natural choice since elements with large contributions to (4.1) must be controlled. The
weights used in (4.3) can be used to compute indicators and error bounds, but the obtained
bound could be many times larger than |E(u,uh)| [10].

Furthermore, the set of element errors from (4.2) can be used in different ways when
choosing specific elements to refine. We mention three strategies together with some com-
ments. We define ηK as the error contribution from element K and the corresponding
indicator as IK = |ηK |.

(1) Fixed fraction. In each refinement cycle the elements are sorted according to their
indicator’s magnitude IK and a fixed fraction are chosen to be refined. This strategy
gives good control of the size of the refined mesh, but is insensitive to whether the
problem has a singularity or not. Over refinements when singularities are present
is common in practice.

(2) Relative fraction. In each refinement cycle the elements are sorted according to
their indicator’s magnitude IK and each element, whose indicator value is greater
than or equal to a fraction of the largest value, is chosen to be refined. This strategy
is more adaptive than strategy (1) and in practice, when a singularity is present,
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the elements surrounding the singularity are chosen to be refined. If the threshold
fraction is set to low, this strategy leads to many grid levels with just a few more
elements from one level to the next.

(3) Mixed refinement Using this strategy a refinement flag between 0 and 3 is assigned
to each element in the mesh. The flag indicates how many element sides that is to
be divided to the next grid level. The breakpoint for flag n ∈ {1, 2, 3} is defined
by the parameter r ∈ [0, 1] and the largest indicator value ImaxK∈Th

in the mesh, using
the following formula

ImaxK∈Th
· r3−n ≥ IK ≥ r4−n · ImaxK∈Th

.(4.6)

5. Numerical experiments - a single edge notch

The primal problem is solved numerically on a grid hierarchy using h-refinement between
each grid level. On each grid level we use a uniform p-refinement to obtain an improved
solution uh+ ∈ V h+ closer to u. This improved solution is used in the linearization of
ES(u,uh;v), and the dual problem is then approximated in the same function space V h+ .
The error representation formula is evaluated and the elements that is to be refined are
chosen according to the mixed refinement strategy.

s
0

s
0

2h

a

W

Figure 1. The primal problem. The macroscopic crack length is a, and the
domain width and height are W and 2h respectively. The boundary traction
is denoted by σ0.
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5.1. The primal problem. Referring to Fig. 1 we solve, with a = 0.1m, W = 0.5m
and h = {0.5, 1}m, the equations of linear elasticity with a prescribed boundary traction
σ0 = [0, 1e+06] N. The body is in plane stress, the crack is sharp and the Lamé coefficients
are λ = 121.154e+9 and µ = 80.7692e+9 corresponding to E = 210e+06 Pa and ν = 0.3.

σ = λ(∇ · u)I + 2µε(u) in Ω,(5.1)

−∇ · σT = f in Ω,(5.2)

u = g on ∂ΩD,(5.3)

σ · n = σ0 on ∂ΩN .(5.4)

Equation (5.1) defines the constitutive relation between Cauchy’s stress tensor and the
strain field and (5.2) represents force equilibrium in the domain. Boundary conditions are
imposed by (5.3) and (5.4) as prescribed displacements and tractions respectively. The
weak formulation of (5.1)-(5.4) is; find u ∈ V :

∫

Ω

σ(u) : ε(v) dΩ =

∫

Ω

f · v dΩ +

∫

∂ΩN

σ0 · v ds ∀v ∈ V .(5.5)

In the FE approximation we choose V h as the space of continuous piecewise linear, -
quadratic and -cubic basis functions.

5.2. The dual problems. The stress field near a crack tip can be divided into three basic
types, each associated with a deformation mode, see Fig. 2. Mode I is associated with
tensile opening where the crack faces move directly apart. Mode II is characterized by
displacements in which the crack faces slide over one another perpendicular to the leading
edge of the crack. In Mode III, the crack surfaces slide parallel to the leading edge. The
superposition of these three modes is often sufficient to describe a general deformation in
the vicinity of the crack.

Figure 2. Deformation modes. 1) Mode I - tensile opening, 2) Mode II -
in plane shear, and 3) Mode III - Out of plane shear.
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The parametersKI ,KII andKIII are the corresponding stress intensity factors associated
with each deformation mode. Physically they represent the intensity of the linear-elastic
stress distribution and from a mathematical point of view, the strengths of the 1√

r
singu-

larities at the crack tip. The stress intensity factors can be evaluated numerically from the
displacement field or empirically from handbooks in fracture mechanics.

The relation between the stress intensity factors and the energy release rate at crack
growth for a linear elastic specimen in plane stress is [11]

J =
K2

I

E
+
K2

II

E
+

(1 + ν)K2
III

E
.(5.6)

The corresponding energy release rate for our model problem is thus

J =
K2

I

E
,(5.7)

where the empirical expression for KI is

KI =
√
πa · f(a,W ),(5.8)

with an accuracy better than 0.5% for any a
W

[11]. The term f(a,W ) is a geometry factor
and it is noted that the stress intensity factor is a function of the loading conditions and
geometry of the considered specimen only. The effect of h

W
is practically negligible for

h
b
≥ 1.0 [11]. The considered dimensions give the following expression for J

J = 2.7942± 0.013971⇐⇒ J ∈ [2.7802, 2.808].(5.9)

In comparison with evaluating the stress intensity factors from the displacement field, the
use of energy methods has the advantage that exact modeling of the crack tip behavior is
not necessary.

In the following sections we consider three different goal quantities; crack boundary
movements and two different integral formulations of the energy release rate J at crack
growth. The dual problems are discretized with continuous piecewise polynomials of order
p+1, where p is the order of the primal problem. The dual problems are on the form; find
ϕ ∈ V :

a(ϕ,v) = ES(u,uh;v) ∀v ∈ V .(5.10)

Remark: Since the considered equations are linear and symmetric, the secant of the
semi-linear form is simply a∗S(u,uh;ϕ,v) = a(ϕ,v).

5.2.1. Crack boundary displacements. We choose the mean vertical displacement along the
upper crack boundary Γa as the goal quantity

Q(u) =
1

|a|

∫

Γa

u · n2 ds,(5.11)

where n2 is the x2 component of the unit normal on Γa and a is the crack length. The
secant form is

ES(u,uh;v) =
1

a

∫

Γa

v · n2 ds.(5.12)
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5.2.2. Contour integral format. The contour integral format of the energy release rate has
been widely used as a fracture characterizing parameter. In 1968, Rice [7] showed that
the value of this integral could be written as a path independent line integral for elastic
materials, and thus could be evaluated at a remote contour avoiding singularity zones

Q(u) =

∫

Γ

(

W e dx2 − Ti

∂ui

∂x1
ds

)

.(5.13)

W e is the elastic energy and T
def
= σ ·n is the traction on the contour with normal n. The

corresponding secant form of the error measure is

ES(u,uh;v) =

∫

Ω

∫ 1

0

∇Q(ū) · v dS dΩ,(5.14)

where

[∇Q(ū)]1 =
(

∂ū2

∂x2
n1λ− n2

(

∂ū1

∂x2
µ+

∂ū2

∂x1
(λ+ µ)

))

∂(·)
∂x1

+

((

2
∂ū1

∂x2
n1 +

∂ū2

∂x1
n1 −

∂ū1

∂x1
n2

))

µ
∂(·)
∂x2

(5.15)

[∇Q(ū)]2 =
(

∂ū1

∂x2
n1µ−

∂ū1

∂x1
n2(λ+ µ)− ∂ū2

∂x2
n2(λ+ 2µ)

)

∂(·)
∂x1

+

(

∂ū1

∂x1
n1λ+

(

2
∂ū2

∂x2
n1 −

∂ū2

∂x1
n2

)

(λ+ 2µ)

)

∂(·)
∂x2

(5.16)

Remark: The secant form of the error measurer is linear both in ū and the test argument.
It is thus possible to linearize ES(u,uh;v) exactly between the function spaces V h and
V h+ using the two primal solutions uh and uh+ .

5.2.3. Domain Integral format. More recent formulations of the energy release rate apply
an area integration (volume in 3D) for the energy release rate. Using Gauss’ theorem and
a scalar weight function q it is possible to rewrite the contour integral to an area integral
[8]

Q(u) =

∫

A

([

σij

∂uj

∂x1
−W eδ1i

]

∂q

∂xi

)

dA.(5.17)

The scalar function q equals one at the crack tip and zero at the contour Γ and A is the
integration domain i.e. the area within the contour. The secant form of E is

ES(u,uh;v) =

∫

Ω

∫ 1

0

∇Q(ū) · v dS dΩ,(5.18)
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where

(∇Q(ū))1 =
(

∂q

∂x2

(

µ
∂ū1

∂x2
+ (µ+ λ)

∂ū2

∂x1

)

− λ
∂ū2

∂x2

∂q

∂x1

)

∂(·)
∂x1

+

+

(

µ
∂ū1

∂x1

∂q

∂x2
− µ

∂q

∂x1

(

∂ū2

∂x1
+ 2

∂ū1

∂x2

))

∂(·)
∂x2

(5.19)

(∇Q(ū))2 =
(

∂q

∂x2

(

∂ū1

∂x1
(λ+ µ) +

∂ū2

∂x2
(λ+ 2µ)

)

− ∂q

∂x1

∂ū1

∂x2
µ

)

∂(·)
∂x1

+

+

(

∂q

∂x2

∂ū2

∂x1
(λ+ 2µ)− ∂q

∂x1

(

∂ū1

∂x1
λ+ 2

∂ū2

∂x2
(λ+ 2µ)

))

∂(·)
∂x2

(5.20)

Remark: The secant form of the error measurer is linear both in ū and the test argument.
It is thus possible to linearize ES(u,uh;v) exact between the function spaces V h and V h+

using the two primal solutions u and uh+ .

6. Numerical results

In this section we present computational results and convergence plots for each goal
quantity and approximation order. In Fig. 3 we show the initial grids and in Fig. 4 the
corresponding adapted grids for the considered goal quantities.

We use two effectivity indexes η1 and η2 defined as

η1 =
|
∑

K∈Th
(L(ϕh+ − πhϕ)− a(uh,ϕh+ − πhϕ))K |

Q(uh+)−Q(uh)
,(6.1)

η2 =
|∑K∈Th

(L(ϕh+ − πhϕ)− a(uh,ϕh+ − πhϕ))K |
Q(u)−Q(uh)

,(6.2)

i.e. the fraction between the error representation formula and the two primal problems is
η1 and the fraction between the error representation formula and the difference between
the converged solution and the current FE solution is η2. In order to present graphs of
convergence rates, we also define the average size of the elements in the grid as

ha =
m(Ω)√
Nel

,(6.3)

where Nel is the number of elements in the current mesh and m(Ω) is the area of the
considered domain.
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Figure 3. The initial grids. From left to right: 1) boundary movement and
2) contour and domain integrals.
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Figure 4. Example of adapted grids for the three goal-quantities satisfying
erel ≤ 1% for p = 1. From left to right: 1) boundary movement, 2) contour
integral and 3) domain integral.
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6.1. Boundary movements. The exact goal quantity, Q(u), was approximated by a
reference solution (an adaptive computation), which was considered accurate when eight
decimal points did not change from one grid level to the next.

Q(u) = 3.87362666e-07.(6.4)

The convergence plots can be found in Fig. 5-6 and the computational results from each
grid level are found in Table 1-3. Note that the convergence rate for p = 2 was highest for
the primal problem of order p + 1 although the error representation formula is evaluated
for the primal problem of order p. In the tables it is shown that η1 ≈ 1 in each iteration
and η2 → 1 when h→ 0.

1

1.8

4.2

5.3

1

1

Figure 5. Convergence rates for boundary movement. The plot shows the
convergence rate for the primal problem of order p.
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1

2.8

5.5

5.5

1

1

Figure 6. Convergence rates for boundary movement. The plot shows the
convergence rate for the primal problem of order p+ 1.

Table 1. Computational results from crack boundary movement, grid order 1.

Elements Q(uh) Q(uh+) |E(u,uh)| η1 η2

110 3.2470737e-07 3.6897228e-07 4.4264914e-08 0.9999999999 0.7065

222 3.5041770e-07 3.7932268e-07 2.8904977e-08 1.0000000000 0.7824

557 3.6656617e-07 3.8347561e-07 1.6909443e-08 0.9999999999 0.8131

1342 3.7976045e-07 3.8633874e-07 6.5782904e-09 0.9999999999 0.8653

3339 3.8407979e-07 3.8709362e-07 3.0138285e-09 0.9999999997 0.9180

5155 3.8529673e-07 3.8722576e-07 1.9290278e-09 0.9999999997 0.9337

8198 3.8601221e-07 3.8729237e-07 1.2801606e-09 1.0000000000 0.9480

13052 3.8649024e-07 3.8732652e-07 8.3627845e-10 0.9999999995 0.9586

20467 3.8680692e-07 3.8734543e-07 5.3850860e-10 0.9999999998 0.9690

51340 3.8713365e-07 3.8735833e-07 2.2468676e-10 1.0000000044 0.9811

79581 3.8721281e-07 3.8736049e-07 1.4767762e-10 1.0000000126 0.9855

126163 3.8726668e-07 3.8736157e-07 9.4894016e-11 1.0000000142 0.9886
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Table 2. Computational results from crack boundary movement, grid order 2.

Elements Q(uh) Q(uh+) |E(u,uh)| η1 η2

110 3.6897228e-07 3.7797897e-07 9.0066939e-09 1.0000000000 0.4898

186 3.8272093e-07 3.8549255e-07 2.7716175e-09 0.9999999999 0.5971

228 3.8466615e-07 3.8641076e-07 1.7446112e-09 1.0000000000 0.6470

375 3.8646710e-07 3.8711867e-07 6.5157643e-10 0.9999999997 0.7276

628 3.8706068e-07 3.8730052e-07 2.3984673e-10 0.9999999988 0.7942

1092 3.8725854e-07 3.8734687e-07 8.8328184e-11 1.0000000006 0.8484

1846 3.8732690e-07 3.8735866e-07 3.1757245e-11 0.9999999975 0.8881

3129 3.8735026e-07 3.8736165e-07 1.1390499e-11 0.9999999878 0.9188

5301 3.8735828e-07 3.8736241e-07 4.1318194e-12 0.9999997652 0.9437

9057 3.8736115e-07 3.8736260e-07 1.4505046e-12 1.0000000727 0.9619

11880 3.8736178e-07 3.8736263e-07 8.5942046e-13 0.9999992709 0.9706

15716 3.8736214e-07 3.8736265e-07 5.1071099e-13 0.9999984477 0.9804

Table 3. Computational results from crack boundary movement, grid order 3.

Elements Q(uh) Q(uh+) |E(u,uh)| η1 η2

110 3.7797897e-07 3.8149049e-07 3.5115211e-09 0.9999999999 0.3742

178 3.8548032e-07 3.8625209e-07 7.7177142e-10 0.9999999997 0.4100

284 3.8687293e-07 3.8708351e-07 2.1058209e-10 1.0000000015 0.4300

496 3.8723489e-07 3.8729265e-07 5.7758694e-11 1.0000000066 0.4521

874 3.8732943e-07 3.8734507e-07 1.5636286e-11 1.0000000509 0.4706

1487 3.8735421e-07 3.8735827e-07 4.0610846e-12 1.0000001066 0.4807

2547 3.8736049e-07 3.8736157e-07 1.0814523e-12 0.9999999896 0.4972

4382 3.8736212e-07 3.8736239e-07 2.7370127e-13 1.0000026648 0.5045

5756 3.8736238e-07 3.8736253e-07 1.4574396e-13 1.0000064598 0.5250

7549 3.8736253e-07 3.8736260e-07 6.9567750e-14 1.0000100432 0.5252

9886 3.8736260e-07 3.8736263e-07 3.5216445e-14 1.0000320363 0.5519

12967 3.8736263e-07 3.8736265e-07 1.8299579e-14 1.0000961506 0.6151
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6.2. Contour integral. ES(u,uh,v) was linearized using the midpoint rule (3.12) and
two FEM solutions uh and uh+ obtained from the primal problem. This linearization is
exact when uh+ → u since the gradient of the goal quantity is linear in u. The exact goal
quantity was approximated by a reference solution (an adaptive computation), which was
considered accurate if more than 245, 000 degrees of freedom were used.

Q(u) = 2.7933302.(6.5)

The convergence plots can be found in Fig. 7-8 and the computational results from each
grid level are found in Table 4-6. Note that the highest convergence rate was obtained
with p = 2 for the primal problem of order p+ 1. In the tables it is shown that η1 ≈ 1 in
each iteration and η2 → 1 when h→ 0.

1

3.7

2.8

1.1

1

1

Figure 7. Convergence rates for the contour integral formulation of J . The
plot shows the convergence rate for the primal problem of order p.
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Figure 8. Convergence rates for the contour integral formulation of J . The
plot shows the convergence rate for the primal problem of order p+ 1.

Table 4. Computational results from contour integral formulation for J ,
grid order 1.

Elements Q(uh) Q(uh+) |E(u,uh)| η1 η2

92 2.2307057 2.4210364 0.1903306 1.0000000042 0.3726

141 2.4632842 2.5792784 0.1159941 1.0000000011 0.3757

235 2.4805871 2.6667239 0.1861367 0.9999999998 0.5951

422 2.5667342 2.7054665 0.1387322 0.9999999994 0.6122

728 2.6013540 2.7356237 0.1342697 1.0000000002 0.6994

1335 2.6426613 2.7581183 0.1154569 1.0000000015 0.7662

2508 2.6828502 2.7742395 0.0913892 0.9999999982 0.8272

4747 2.7159805 2.7836601 0.0676795 0.9999999990 0.8749

9110 2.7379917 2.7885265 0.0505347 0.9999999984 0.9131

17431 2.7564915 2.7909162 0.0344246 1.0000000093 0.9344

33292 2.7673576 2.7920464 0.0246887 0.9999999967 0.9505

64437 2.7768378 2.7926880 0.0158502 0.9999999954 0.9610



ON ADAPTIVE STRATEGIES AND ERROR CONTROL IN FRACTURE MECHANICS 17

Table 5. Computational results from contour integral formulation for J ,
grid order 2.

Elements Q(uh) Q(uh+) |E(u,uh)| η1 η2

92 2.4210364 2.4853275 0.0642910 0.9999999993 0.1726

214 2.6834643 2.7385756 0.0551112 0.9999999990 0.5016

691 2.7552744 2.7772829 0.0220085 1.0000000050 0.5783

1478 2.7812707 2.7892570 0.0079863 1.0000000068 0.6622

2057 2.7864612 2.7912900 0.0048288 1.0000000041 0.7029

2830 2.7894359 2.7923135 0.0028775 0.9999999997 0.7389

4005 2.7910057 2.7928170 0.0018113 0.9999999664 0.7792

5699 2.7920445 2.7930799 0.0010354 1.0000000855 0.8053

8101 2.7925676 2.7932100 0.0006423 1.0000003725 0.8424

11223 2.7928889 2.7932757 0.0003867 1.0000004530 0.8765

15736 2.7930608 2.7933092 0.0002483 0.9999991754 0.9220

22072 2.7931782 2.7933262 0.0001479 0.9999992591 0.9736

Table 6. Computational results from contour integral formulation for J ,
grid order 3.

Elements Q(uh) Q(uh+) |E(u,uh)| η1 η2

92 2.4853275 2.5935380 0.1082105 1.0000000099 0.3513

163 2.7386567 2.7595958 0.0209391 1.0000000021 0.3829

289 2.7639836 2.7737680 0.0097844 1.0000000102 0.3334

504 2.7765150 2.7821144 0.0055993 1.0000000048 0.3329

650 2.7843022 2.7873241 0.0030218 0.9999999913 0.3347

1146 2.7888066 2.7903305 0.0015238 1.0000000198 0.3368

1666 2.7910520 2.7918340 0.0007820 1.0000000691 0.3432

2362 2.7921750 2.7925857 0.0004107 1.0000001502 0.3555

3246 2.7927383 2.7929618 0.0002235 0.9999998789 0.3776

4671 2.7930295 2.7931511 0.0001216 0.9999995979 0.4044

6320 2.7931839 2.7932470 0.0000630 0.9999995878 0.4311

8904 2.7932617 2.7932949 0.0000331 0.9999991291 0.4846
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6.3. Domain Integral. ES(u,uh,v) was linearized using the midpoint rule (3.12) and
two FEM solutions uh and uh+ obtained from the primal problem. This linearization is
exact when uh+ → u since the gradient of the goal quantity is linear in u. The exact goal
quantity was approximated by a reference solution, which was considered accurate if more
than 245, 000 degrees of freedom were used.

Q(u) = 2.7953116.(6.6)

The convergence plots can be found in Fig. 9-10 and the computational results from each
grid level are found in Table 7-9. In the tables it is shown that η1 ≈ 1 in each iteration
and η2 → 1 when h→ 0.

1
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4.1

4.8

1

1

Figure 9. Convergence rates for the domain integral formulation for J .
The plot shows the convergence rate for the primal problem of order p.
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1
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Figure 10. Convergence rates for the domain integral formulation for J .
The plot shows the convergence rate for the primal problem of order p+ 1.

Table 7. Computational results from domain integral formulation for J ,
grid order 1.

Elements Q(uh) Q(uh+) |E(u,uh)| η1 η2

92 1.2603528 2.1181038 0.8577509 1.0000000859 0.5588

214 2.0081166 2.5585300 0.5504134 0.9999999639 0.6992

422 2.4204708 2.7171223 0.2966515 1.0000000900 0.7914

848 2.6288955 2.7761531 0.1472576 0.9999999534 0.8848

1288 2.6835723 2.7860932 0.1025209 1.0000000261 0.9175

2017 2.7235815 2.7893676 0.0657861 0.9999999818 0.9171

2707 2.7419812 2.7911595 0.0491783 1.0000000567 0.9221

4048 2.7607484 2.7932546 0.0325061 1.0000000186 0.9404

6269 2.7723227 2.7941232 0.0218004 0.9999999266 0.9483

9420 2.7799192 2.7945339 0.0146146 0.9999999265 0.9494

11955 2.7833939 2.7948796 0.0114856 1.0000000257 0.9637

24551 2.7888859 2.7951095 0.0062235 1.0000000571 0.9685
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Table 8. Computational results from domain integral formulation for J ,
grid order 2.

Elements Q(uh) Q(uh+) |E(u,uh)| η1 η2

92 2.1181038 2.3984536 0.2803498 0.9999999825 0.4139

143 2.5399996 2.6687119 0.1287123 0.9999999358 0.5041

215 2.7105665 2.7620830 0.0515164 1.0000000643 0.6078

344 2.7698200 2.7879205 0.0181004 0.9999999745 0.7100

475 2.7824413 2.7923274 0.0098860 1.0000000643 0.7681

604 2.7882123 2.7938641 0.0056517 1.0000000363 0.7961

791 2.7911423 2.7947540 0.0036116 1.0000000312 0.8662

1066 2.7929266 2.7950048 0.0020781 1.0000000012 0.8713

1349 2.7939043 2.7951188 0.0012144 1.0000000732 0.8630

1626 2.7941123 2.7951039 0.0009915 1.0000000143 0.8268

2438 2.7945822 2.7952415 0.0006593 0.9999999454 0.9040

3345 2.7948822 2.7952615 0.0003793 0.9999999778 0.8835

Table 9. Computational results from domain integral formulation for J ,
grid order 3.

Elements Q(uh) Q(uh+) |E(u,uh)| η1 η2

92 2.3984536 2.6200230 0.2215694 0.9999999809 0.5583

198 2.6818958 2.7429445 0.0610486 1.0000000173 0.5382

259 2.7367694 2.7696508 0.0328814 0.9999999829 0.5616

315 2.7663056 2.7899287 0.0236230 1.0000000994 0.8144

372 2.7802803 2.7910154 0.0107351 1.0000000439 0.7141

474 2.7881684 2.7917051 0.0035367 1.0000000340 0.4951

609 2.7891561 2.7939933 0.0048371 0.9999999685 0.7858

773 2.7922262 2.7943989 0.0021726 0.9999999634 0.7041

1054 2.7941382 2.7949109 0.0007727 1.0000000393 0.6585

1520 2.7948973 2.7952293 0.0003320 1.0000000591 0.8015

2204 2.7950967 2.7952893 0.0001926 0.9999999880 0.8964

3234 2.7952288 2.7953075 0.0000787 1.0000000381 0.9517
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7. Concluding remarks

In the plots we have seen that the convergence rates for elements with higher approx-
imation order (p = 3, 4) are influenced by the regularity of the solution (singularity at
the crack tip), and does not always realize the theoretical predictions. Higher convergence
rates might be obtained with the development of anisotropic mesh refinement algorithms
that are more adaptive.

We have also shown that the ratio between the error representation formula and the
difference between the two primal problems (η1) is close to one in each iteration. Therefore,
we can say that the error estimate is in a sense trivial and that the error representation
formula is more a tool to put high quality indicators on the elements for the refinement
to the next grid level. This is the case for many engineering quantities such as stresses,
strains and strain energy, which are at most quadratic in the solution. This can be used
during the implementation to test the code. Solve two primal problems in V h and V h+

and solve the dual problem in V h+ , then

|∑K∈Th
(L(ϕh+ − πhϕ)− a(uh,ϕh+ − πhϕ))K |

Q(uh+)−Q(uh)
≈ 1.0.(7.1)

If this does not hold (and the code is free from bugs), underlying reasons can be

• Wrong linearization of ES(u,uh;v).
• Wrong quadrature—raise the quadrature order.
• Decrease the tolerance on the residual in the iterative solver.
• Floating point representation in the computer.

The overhead cost of the evaluation of two primal problems is high, but on the other
hand one can use the result of the finer primal problem. This solution is clearly more
accurate, but on the other hand the error representation is less correct than for the coarse
solution. In the numerical examples we have seen that the best overall results have been
obtained with p = 2 for the primal and p = 3 for the dual problem.

In a complex time dependent simulation, involving propagating cracks, it is difficult, or
indeed impossible, to design a mesh that is appropriate for the whole simulation. By using
an adaptive scheme we might alleviate this difficulty since the mesh is adapted in an ‘
automatic’ fashion during the simulation. Reliable numerical results can be obtained and
an effective use of the degrees of freedom in the problem is ensured.
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