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Göteborg Sweden 2002





CHALMERS FINITE ELEMENT CENTER

Preprint 2002–15

A unified stabilized method for Stokes’ and
Darcy’s equations

Erik Burman and Peter Hansbo

Chalmers Finite Element Center
Chalmers University of Technology
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A UNIFIED STABILIZED METHOD FOR STOKES’ AND DARCY’S

EQUATIONS

ERIK BURMAN AND PETER HANSBO

Abstract. We use the lowest possible approximation order, piecewise linear, continuous

velocities and piecewise constant pressures to compute solutions to Stokes equation and

Darcy’s equation, applying an edge stabilization term to avoid locking. We prove that

the formulation satisfies the discrete inf–sup condition, we prove optimal a priori and

a posteriori error estimates for both problems, the formulation is then extended to the

coupled case using a Nitsche–type weak formulation allowing for different meshes in the

two subdomains. Finally we present some numerical examples verifying the theoretical

predictions and showing the flexibility of the coupled approach.

1. Introduction

In this paper we will consider equations of the following form

(1.1)
A(u) + ∇p = f in Ω,

∇ · u = 0 in Ω

where Ω is an open subset of R
d, A is some selfadjoint positive definite operator, u denotes

the velocity vector, p the pressure and f ∈ [L2(Ω)]d. For the choice of A we focus on two
cases of importance in fluid dynamics

• A(u) := Iu corresponding to Darcy’s equation
• A(u) := −2µ∇ · ε(u), where ε(u) is the symmetric part of the velocity gradient,

corresponding to Stokes equation.

For simplicity we assume Dirichlet conditions on the boundary, that is, u = 0 on ∂Ω for
Stokes and u · n = 0 on ∂Ω for Darcy. Moreover our results immediately carry over to the
Brinkman model, where A(u) := µ

κ
u − 2µ∇ · ε(u).

It is well known that the computation of solutions to such systems require that some
care is taken in the choice of approximating spaces in order to make the discrete problem
well posed. In particular the naive choice of piecewise linear finite elements for both the
velocities and the pressure or piecewise linear finite elements for the velocities and piecewise
constants for the pressure results in ill posed discretizations. The solution is either to enrich
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2 ERIK BURMAN AND PETER HANSBO

the velocity space, using higher order interpolation or local so called, bubble functions, or
to stabilize the method using a Galerkin/least-squares formulation. A vast number of
discretizations and stabilizations for the Stokes equation are proposed in the literature,
see, e.g., [4, 9, 10, 8, 1, 6, 5]. For finite element methods treating the case of Darcy
flow we refer to [13] and references therein. Our aim in this paper is to present a unified
treatment of Stokes’ equation and Darcy’s equation. In infiltration problems, like the ones
encountered in groundwater flow or bioflows, one is interested in solving a problem where
the flow in one part of the domain is governed by Stokes’ equation and in the other by
Darcy’s. It is then convenient to work with a method that may treat both equations in
the same manner and also yield the same convergence orders in both cases.

To remain competitive with the approach where Darcy’s equation is treated as an elliptic
Poisson’s equation we wish to keep down the number of degrees of freedom as much as
possible. The method for the Stokes system which is in some sense minimal would be
to use piecewise constant (discontinuous) approximation for the pressures and piecewise
linear (continuous) approximation for the velocities. This however results in a much too
rich pressure space and the only velocity that can satisfy the incompressibility constraint
is u ≡ 0. Indeed the discrete divergence operator becomes injective instead of surjective, a
phenomenon known as “locking”. The key to “unlock” the problem is to add a consistent
stabilizing term to the formulation. We propose to add a symmetric stabilization term
penalizing the jumps over the element edges of the piecewise constant pressures. This
stabilization was first introduced in the context of Stokes equation in [10] in a global form
and then considered in a local form in [12]. Comparisons with other stabilized methods
for the Stokes equations were carried out in [15]. The main difference between Stokes and
Darcy’s equations, from the point of view of analysis, is that in Stokes the velocities are
[H1(Ω)]d whereas in the case of Darcy they are only in Hdiv(Ω). This loss of regularity
must be accounted for in the analysis, and this is the main reason why the stabilized mixed
P1/P0 is an ideal candidate for the problem: since the incompressibility condition is tested
with constants we obtain Hdiv(Ω) stability without additional least-squares stabilization.

In this paper we apply this mixed stabilized method to Stokes’ equations and Darcy’s
equations in a unified manner and prove optimal a priori estimates applying to both sys-
tems. The addition of the incompressibility constraint in the mesh-dependent norm allows
us to prove optimal L2 convergence for the velocities. We also propose a Nitsche type weak
coupling for Stokes and Darcy which can handle non-matching meshes on the separating
interface. Finally, we give basic a posteriori error estimates and show some numerical ex-
amples. Only the case of global stabilization is accounted for, but our results generalize
to the local form analyzed in [12] and extend it to include Darcy flow. For some recent
results on the theoretical and numerical aspects on the coupling of the Stokes and the
Darcy equation we refer to [7].
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2. Finite element formulation

In order to formulate our finite element method we first introduce the weak formulation
of problem (1.1). We introduce the Hilbert spaces

W D = {v ∈ Hdiv(Ω) : v · n = 0 on ∂Ω},

W S = {v ∈ [H1

0
(Ω)]d},

and

L2

0
= {q ∈ L2(Ω) :

∫
Ω

q dx = 0},

with Ω some open subset of Rd. We denote the product space W X × L2

0
by WX where X

is chosen to D or S depending on the choice of equation and define the following norm on
WX ,

‖(u, p)‖2

WX = ‖u‖2

l,Ω + ‖∇ · u‖2

0,Ω + ‖p‖2

0,Ω

with l = 0 for Darcy and l = 1 for Stokes. Let a(u, v) be the bilinear form corresponding
to the weak formulation of A(u) and consider the bilinear form

(2.1) B[(u, p), (v, q)] = a(u, v) − (p,∇ · v)0,Ω + (q,∇ · u)0,Ω.

The weak formulation of (1.1) now takes the form, find (u, p) ∈ WX such that

(2.2) B[(u, p), (v, q)] = (f, v)0,Ω ∀(v, q) ∈ WX

Let Th be a conforming, shape regular triangulation of Ω. We introduce the two classical
finite element spaces of piecewise linears and piecewise constants

V 0

h = {v : v|K ∈ P1(K); v ∈ C0(Ω); v|∂Ω ≡ 0},

Vh = {v : v|K ∈ P1(K); v ∈ C0(Ω)},

Qh = {q : q|K ∈ P0(K);

∫
Ω

q dx = 0}.

The velocity field will be sought in W S
h = [V 0

h ]d for Stokes and in W D
h = {v ∈ [Vh]

d : v ·n =
0 on ∂Ω} for Darcy’s equation and the pressure field in Qh. In analogy with the notation
above we denote the discrete counterpart of WX , W X

h × Qh, by WX
h . We introduce the

following bilinear form on which we will base our finite element method

(2.3) Bh[(u, p), (v, q)] = a(u, v) − (p,∇ · v)0,Ω + (q,∇ · u)0,Ω + J(p, q)

where

J(p, q) = δ

∑
K

∫
∂K\∂Ω

h∂K [p][q]ds,

with [·] denoting the jump over the element edge (taken on interior edges only). We propose
the following finite element formulation: find (uh, ph) ∈ WX

h such that

(2.4) Bh[(uh, ph), (vh, qh)] = (f, vh)0,Ω, ∀(vh, qh) ∈ WX
h .

This finite element formulation is simply the standard Galerkin formulation with the pe-
nalizing term J(p, q) added. In the following we will assume that the pressure is in H1(Ω):
then the penalizing term is consistent and we have the following
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Lemma 1. If (u, p) is a weak solution to (1.1) with (u, p) ∈ W X × H1(Ω) ∩ L2
0 then

Bh[(u − uh, p − ph), (vh, qh)] = 0 ∀(vh, qh) ∈ WX
h .

Proof. Immediate by noting that if p ∈ H1(Ω) then the trace of p is well defined and hence
J(p, qh) = 0 for all qh ∈ Qh. !

3. Stability

Since it is a well known fact that the above choice of finite element spaces results in
an ill posed discrete problem if used in a standard Galerkin method, the crucial point is
to show that our stabilization operator J(p, q) introduces sufficient coupling between the
degrees of freedom in the pressure field such that an inf–sup condition is satisfied. In the
analysis, we will use the following norm:

|||(u, p)|||2 := ‖(u, p)‖2
WX + J(p, p).

Note that the triple norm contains the L2–norm of ∇ ·u; this term is superfluous for Stokes
since we already control the H1–norm of the velocities, but of vital importance for Darcy.
In fact, the control of the divergence is what allows us to prove optimal error estimates
for sufficiently regular solutions. The main result of this section is the following theorem,
assuring the wellposedness of our discretization.

Theorem 1. The finite element formulation (2.4) satisfies the following inf–sup condition

γ|||(uh, ph)||| ≤ sup
(v,q)∈WX

h

Bh[(uh, ph), (vh, qh)]

|||vh, qh|||
, ∀(uh, ph) ∈ WX

h

Proof. Taking first (vh, qh) = (uh, ph) we obtain

(3.1) Bh[(uh, ph), (uh, ph)] ≥ Ca‖uh‖
2
l,Ω + J(ph, ph),

where, using Korn’s inequality,

2µ‖ε(v)‖2
L2(Ω) ≥ CK‖v‖

2
1,Ω ∀v ∈ [H1

0 ]d,

we have set

Ca =

{

1 for l = 0,
CK for l = 1.

As a consequence of the surjectivity of the divergence operator there exists a function
vp ∈ [H1

0 (Ω)]d such that ∇ · vp = ph and

(3.2) ‖vp‖1,Ω ≤ c‖ph‖0,Ω

Let πhvp denote the L2–projection of vp onto [V 0
h ]d. By the stability of the projection we

have ‖πhvp‖1,Ω ≤ c̃‖ph‖0,Ω. We now take (vh, qh) = (πhvp, 0) and add 0 = ‖ph‖
2 − (ph,∇ ·

vp)0,Ω to obtain

Bh[(uh, ph), (πhvp, 0)] = a(uh, πhvp) + ‖ph‖
2 + (ph,∇ · (πhvp − vp))0,Ω.
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We integrate the third term by parts on each triangle K

Bh[(uh, ph), (πhvp, 0)] = a(uh, πhvp) + ‖ph‖
2

0,Ω

+
∑

K

1

2

∫

∂K

[ph](πhvp − vp) · n ds.

Applying now Cauchy-Schwarz inequality followed by the arithmetic–geometric inequality
in the first and last term and using the stability estimate on πhvp we obtain

Bh[(uh, ph), (πhvp, 0)] ≥ −
Cb

α
‖uh‖

2

l,Ω − (1 − c̃α)‖ph‖
2

0,Ω −
1

α
J(ph, ph)

−α
∑

K

∫

∂K

h−1‖(πhvp − vp) · n‖
2

0,∂K ,

where

Cb =

{

1 for l = 0,
2µ for l = 1.

To conclude we need the following trace inequality, cf. [16],

(3.3) ‖u · n‖2

0,∂K ≤ C‖u‖0,K(h−1‖u‖0,K + ‖u‖1,K), ∀u ∈ [H1(K)]d

from which we deduce
‖(πhvp − vp) · n‖

2

0,∂K ≤ Ch‖vp‖
2

1,K

Taking into account (3.2) we may write
∑

K

∫

∂K

h−1‖πhvp − vp‖
2

0,K ≤ ct‖p‖
2

0,Ω

which leads to

(3.4)
Bh[(uh, ph), (πhvp, 0)] ≥ −

Cb

α
‖uh‖

2

l,Ω + (1 − (c̃ + ct)α)‖ph‖
2

0,Ω

−
1

α
J(ph, ph).

The control of ‖∇ · uh‖
2

0,Ω is obtained by choosing (vh, qh) = (0,∇ · uh).

(3.5)
Bh[(uh, ph), (0,∇ · uh)] = ‖∇ · uh‖

2

0,Ω + J(ph,∇ · uh)
≥ (1 − Cα)‖∇ · uh‖

2

0,Ω − 1

α
J(ph, ph).

Where we used that ‖h1/2∇ · uh‖
2

∂K ≤ C‖∇ · uh‖
2

K by a scaling argument if ∇ · uh is
elementwise constant. Finally we take (vh, qh) = (βuh + πhvp, βph + ∇ · uh), with

β ≥ (1 − (c̃ + ct)α) + α−1

(

Cb

Ca
+ 2

)

,

which yields by (3.1), (3.4), (3.5)

Bh[(uh, ph), (vh, qh)] ≥ (1 − (c̃ + ct)α)|||(uh, ph)|||
2.

The claim now follows by taking α sufficiently small and noting that ∃C such that |||(uh, ph)||| ≥
C|||(vh, qh)|||. !
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4. Error analysis

4.1. A priori estimates. First of all we note that applying the trace inequality (3.3)
we easily derive the following approximation property for couples of functions (u, p) ∈
[H2(Ω)]d × H1(Ω),

(4.1) |||(u − πhu, p − πhp)||| ≤ ch(‖u‖2,Ω + ‖p‖1,Ω)

Proposition 1. Assume that the solution (u, p) to problem (1.1) resides in [H 2(Ω)]d ×
H1(Ω) ∩ L2

0(Ω); then the finite element solution (2.4) satisfies the error estimate

|||(u − uh, p − ph)||| ≤ ch(‖u‖2,Ω + ‖p‖1,Ω)

Proof. In view of (4.1) we only need to show the inequality for |||(uh−πhu, ph−πhp)|||. By
Theorem 1 and using Galerkin orthogonality we obtain, with the notation ηh = uh − πhu

and ζh = ph − πhp,

|||(ηh, ζh)||| ≤
1

γ
sup

(vh,qh)∈WX

h

Bh[(ηh, ζh), (vh, qh)]

|||(vh, qh)|||

≤
1

γ
sup

(vh,qh)∈WX

h

Bh[(u − πhu, p − πhp), (vh, qh)]

|||(vh, qh)|||
.

It remains to use interpolation estimates to bound the terms on the right hand side. The
result follows from standard interpolation theory and (3.3). We have

a(u − πhu, vh) ≤ ch‖u‖2,Ω|||(vh, qh)|||,
−(p − πhp,∇ · vh)0,K = 0,
(qh,∇ · (u − πhu))0,K ≤ ch‖u‖2,K|||(vh, qh)|||,
J(p − πhp, qh) ≤ ch‖p‖1,Ω|||(vh, qh)|||.

!

Using the Aubin-Nitsche duality argument we prove the following L2(Ω)–estimate for
the velocities

Proposition 2.

‖u − uh‖0,Ω ≤ ch2(‖u‖2,Ω + ‖p‖1,Ω)

Proof. Let (ϕ, r) ∈ WX be the solution of the dual equation

(4.2) B[(v, q), (ϕ, r)] = (ψ, v)0,Ω ∀(v, q) ∈ WX ,

and we assume that this dual solution enjoys the additional regularity

(4.3) ‖ϕ‖2,Ω + ‖r‖1,Ω ≤ c‖ψ‖0,Ω.

Choosing v = u − uh, q = 0 and ψ = u − uh, we may write

‖u − uh‖
2
0,Ω = a(u − uh, ϕ) + (∇ · (u − uh), r)0,Ω
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and proceed using Galerkin orthogonality to obtain

‖u − uh‖
2
0,Ω = a(u − uh, ϕ − πhϕ) + (∇ · (u − uh), (r − πhr))0,Ω

+(∇ · πhϕ, p − ph)0,Ω + J(p − ph, πhr)
≤ ‖u − uh‖l,Ω‖ϕ − πhϕ‖l,Ω + ‖∇ · (u − uh)‖0,Ω‖r − πhr‖0,Ω

+|πhϕ − ϕ|1,Ω‖p − ph‖0,Ω

+J(p − ph, p − ph)
1/2J(r − πhr, r − πhr)

1/2.

As a consequence of proposition 1 and the regularity hypothesis (4.3) we may conclude,
keeping in mind that

‖∇ · (u − uh)‖0,Ω ≤ |||(u − uh, 0)|||

and using the interpolation result

J(r − πhr, r − πhr)
1/2 ≤ h‖r‖1,Ω,

that
‖u − uh‖

2
0,Ω ≤ ch2‖ϕ‖2,Ω + ch2‖r‖1,Ω + ch2‖r‖1,Ω

≤ ch2‖u − uh‖0,Ω.

!

4.2. A posteriori estimates. In this section we derive the a posteriori equivalents of
proposition 1 and 2. The approaches are standard and therefore we do not detail the
proofs, for details on a posteriori error estimation in this context we refer to [11] and [3].
Below we let EK denotes the set of edges {E} on element K and Eh the set of edges in the
mesh Th.

Proposition 3. Suppose that (u, p) ∈ WX is the solution of (2.2) and (uh, ph) ∈ WX
h is

the solution of (2.4) then the following a posteriori error estimate holds

‖(u − uh, p − ph)‖WX ≤ c
∑

K

eK(uh, ph, f)

where the error indicator eK(uh, ph, f) is given by

eK(uh, ph, f) = hK‖f − A(uh) −∇ph‖0,K + ‖∇ · uh‖0,K

+
1

2

∑

E∈EK

h
1/2
E

(

‖[l2µε(u) · n + phn]‖0,E + ‖[ph]‖0,E

)

.

Proof. Using the fact that the bilinear form B[(uh, ph), (vh, qh)] corresponding to the con-
tinuous problem satisfies the inf–sup condition with respect to ‖ · ‖X

W
we write, using the

notation η = u − uh, ζ = p − ph

γ‖(η, ζ)‖WX ≤ sup
(v,q)∈WX

B[(η, ζ), (v, q)]

‖(v, q)‖WX

.

As a consequence of this relation and Galerkin orthogonality we obtain

γ‖(η, ζ)‖WX ≤ sup
(v,q)∈WX

(B[(η, ζ), (v − vh, q − qh)]

‖(v, q)‖WX

+
J(ph, qh)

‖(v, q)‖WX

)
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where vh denotes the Clément interpolant and qh the L2–projection on the piecewise con-
stants. It then follows by integration by parts and the fact that v − vh, or (v − vh) · n, is
zero on ∂Ω and ∇ · u = 0 that

B[(η, ζ), (v − vh, q − qh)] =
∑

K∈Th

(f − A(uh) −∇ph, v − vh)0,K

−
∑

K∈Th

(q,∇ · uh)0,K −
∑

E∈Eh

∫

E

[l2µε(u) · n − pn] · (v − vh) ds

+J(ph, qh) = i + ii + iii + iv

and we conclude by deriving the following upper bounds on the terms i – iv !

i ≤ c
∑

K∈Th

hk‖f − A(uh) −∇ph‖‖v‖1,Ω

ii ≤ c
∑

K∈Th

‖∇ · uh‖0,K‖q‖0,K

iii ≤ c
∑

E∈Eh

h
1/2

K ‖[l2µε(u) · n − pn]‖0,E‖v‖1,Ω

iv ≤
1

2

∑

E∈Eh

∫

E

hK [ph][qh] ds ≤ c
∑

E∈Eh

h
1/2

K ‖[ph]‖0,E‖qh‖0,Ω

Recalling the dual problem, find (ϕ, r) ∈ WX such that

(4.4) B[(v, q), (ϕ, r)] = (ψ, v)0,Ω ∀(v, q) ∈ WX ,

and assuming the following additional regularity on the solution

(4.5) |ϕ|2,Ω + |r|1,Ω ≤ cS‖ψ‖0,Ω ∀ψ ∈ [L2(Ω)]d,

we now derive an a posteriori error estimate using duality

Proposition 4. Under the above hypothesis the following a posteriori estimate holds for
the solution uh of (2.4).

|

∫

Ω

(u − uh)ψ dx| ≤
∑

K∈Th

ρKηK

with the local residuals ρK given by

ρK = hK‖f − A(uh) −∇ph‖0,K + ‖∇ · uh‖0,K

+
1

2
h

1/2

K (‖[l2µε(u) · n − phn]‖0,∂K + ‖[ph]‖0,∂K),

and the dual weights ηK by

ηK = cihK max(|ϕ|2,K, |r|1,K).

Moreover we have

‖u − uh‖0,Ω ≤ cicS

(

∑

K∈Th

h2

Kρ2

K

)

1/2
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Proof. We only give the outlines of the proof since it is a standard duality argument.
Keeping the notation from the previous proof we may write (under the regularity hypothesis
(4.5))

|

∫
Ω

ηψ dx| = |B[(η, ζ), (ϕ, r)]| = |Bh[(η, ζ), (ϕ− ϕh, r − rh)]|

= |a(u − uh, ϕ − ϕh) − (p − ph,∇ · (ϕ − ϕh))0,Ω

+(r − rh,∇ · uh)0,Ω +
1

2

∑
K

∫
∂K

hK [ph][rh − r] ds|

and the first claim follows proceeding in the same spirit as the previous proof by integrating
by parts, applying the Cauchy-Schwarz inequality and interpolation inequalities. The last
term is handled using the regularity of r and the trace inequality (3.3)∫

∂K

hK [ph][rh − r] ds ≤ 2h
1/2

K ‖[ph]‖0,∂Kh
1/2

K ‖rh − r‖0,∂K

≤ 2h
1/2

K ‖[ph]‖0,∂KcihK |r|1,K

The second claim follows by an application of the Cauchy-Schwarz inequality and the
regularity estimate (4.5) applied with ψ = u − uh. !

5. Higher order elements

In some cases it might be desirable to be able to use higher order elements, primarily
equal order interpolation for u and p or second order polynomial approximation for u and
first order for p. The second case can be proved to be stable in our stabilized setting using
standard techniques. However the inequality in (3.5) does no longer hold true when ∇ · u
is not constant, we therefore propose to add another consistent, symmetric term of edge
stabilization type, namely

J̃(∇ · u,∇ · v) = δ̃
∑
K

∫
∂K\∂Ω

h∂K [∇ · u][∇ · v]ds,

to the formulation, giving the following modifications

(5.1) Bh[(uh, ph), (uh, ph)] ≥ Ca‖uh‖
2

l,Ω + J(ph, ph) + J̃(∇ · uh,∇ · uh),

instead of ineqality (3.1) and

(5.2)
Bh[(uh, ph), (0,∇ · uh)] = ‖∇ · uh‖

2

0,Ω + J(ph,∇ · uh)

≥ ‖∇ · uh‖
2

0,Ω − 1

α
J(ph, ph) − αJ̃(∇ · uh,∇ · uh).

instead of (3.5) leading to the desired ∇ · u stability (still taking the projection of vp onto
the piecewise linears). The modification of the error analysis is straightforward.

This additional stabilization of the incompressibility condition can also be used in the
first case where a discontinuous pressure would make the degrees of freedom skyrocket
(relative to the velocity space). Instead we propose to use piecewise linear continuous
approximation for both the velocities and the pressure. We stabilize the pressure as before
using an edge stabilization term, this time acting on the jump of the pressure gradient, since
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the pressures are continuous. The resulting method takes the form, find (uh, ph) ∈ [V 0

h ]d×Ṽh

such that

(5.3) B[(uh, ph), (vh, qh)] + J̃(∇ · uh,∇ · vh) + J(ph, qh) = (f, v)0,Ω

for all (vh, qh) ∈ [V 0

h ]3 × Ṽh, where now the stabilizing term J(ph, qh) takes the form

J(ph, qh) = δ

∑

K

∫

∂K

h3

∂K [∇ph · n][∇qh · n]ds,

and the pressure space is given by Ṽh = {q : q ∈ Vh;
∫

Ω
q dx = 0}. This discretization can

be shown to be stable and to have optimal convergence in L2. For the complete analysis
of this method we refer to [5].

6. The coupled problem

The aim of this paper is to propose a unified approach to Stokes and Darcy’s equation in
order to solve problems where the flow in one part of the domain Ω1 := ΩS is approximated
by the former system of equations and in another part Ω2 := ΩD by the latter. To be able to
handle completely independent triangulations of the different domains, we apply a Nitsche-
type method of weak coupling between the domains. We will also split the viscous stress
vector 2µ ε · n into a scalar normal stress σn = 2µ n · (ε · n) and a tangential stress vector
σt = 2µ ε · n − σn n on the interface Γ = Ω1 ∩ Ω2, where n := n1 is the outer unit normal
to Ω1. We note in particular that

(6.1)
(2µε · n) · v = (σt + σnn) · v

= σnv · n + σt · v.

Denoting by (u|Ωi
, p|Ωi

) = (ui, pi), i = 1, 2, we consider the following conditions on Γ:

(6.2)
σn(u1) + p1 = p2, σt(u1) = 0 (force balance),

n · u1 = n · u2 (continuity of normal velocity).

We remark that the “no slip” condition in the tangential direction is not physically realistic.
Robin-like conditions like

σt · t = −k(u1 − u2) · t,

with k a stiffness parameter and t a tangential vector in the direction 2µ ε(u1)·n−σn(u1) n,
can easily be incorporated into the bilinear form in the standard way, but for ease of
presentation we choose the simpler form in (6.2).

In the following we will write ũ = (u1, u2) ∈ V1 × V2 with the continuous spaces

V1 =
{

v ∈ [H1(Ωi)]
d : v|∂Ω∩∂Ωi

= 0
}

,

V2 = {v ∈ Hdiv(Ωi) : v · n|∂Ω∩∂Ωi
= 0} .

To formulate our method, we suppose that we have regular finite element partitionings T i
h

of the subdomains Ωi into shape regular simplexes. We shall consider one-sided mortaring
using the trace mesh

(6.3) Gh = { E : E = K ∩ Γ, K ∈ T 2

h }.
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We seek the approximation ũh = (u1,h, u2,h) ∈ V h = V h
1
× V h

2
and p̃h = (p1,h, p2,h) ∈

Qh = Qh
1
× Qh

2
, where

V h
i =

{

vi ∈ Vi : vi|K is linear for all K ∈ T i
h

}

,

Qh
i =

{

qi ∈ Qi : qi|K is constant for all K ∈ T i
h

}

.

On the interface we will use the notation [ṽ] = v1−v2 and we denote the diameter of E ∈ Gh

by hE . A variant of the method of Nitsche [14, 2] can now be formulated as follows: Find
ũh ∈ V h such that

(6.4) ah(ũh, ṽ) + bh(p̃h, ṽ) + bh(q̃, ũh) + J(p̃h, q̃) = fh(ṽ)

for all ṽ ∈ V h and q̃ ∈ Qh, with

ah(w̃, ṽ) := a(w1, v1) + a(w2, v2)(6.5)

+γ0

∑

E∈Gh

h−1

E

∫

E

[w̃ · n] [ṽ · n] ds,

(6.6) bh(p̃, ṽ) := −

∑

i

(pi,∇ · vi)Ωi
+

∫

Γ

p2 [ṽ · n] ds,

J(p̃, q̃) =
∑

i

δi

∑

K∈T i

h

∫

∂K\Γ

h∂K [pi][qi]ds,

and

(6.7) fh(ṽ) :=

2
∑

i=1

(f, vi)Ωi
,

with γ0 sufficiently large (see below). The method is clearly consistent in the sense that it
holds for the exact solution, and we also have stability by the following proposition.

Proposition 5. The coupled formulation (6.4) satisfies the inf-sup condition of theorem 1
with the triple norm given by

|||(ũ, p̃)|||2C =

2
∑

i=1

|||(ui, pi)|||
2

Ωi
+

∑

E∈Gh

h−1

E

∫

E

[ũ · n]2 ds.

Proof. We will only point out how to modify theorem 1 to account for the coupled case.

(1) Note that when testing with (ũh, p̃h) we obtain the additional stabilizing term

γ0

∑

E∈Gh
h−1

E

∫

E
[ũh · n]2 ds.

(2) To control the pressure we choose vi,p ∈ H1

0
(Ωi) such that ∇ · vi,p = pi,h in the two

domains separately. This way the coupling terms do not interfere, since [πhṽp ·n] =
(v1,p − v2,p) · n = 0.
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(3) When choosing (ṽh, q̃h) = (0,∇ · ũh) the one-sided mortaring produces a term

∫
Γ

∇ · u2,h [ũh · n] ds.

to control this term we use Cauchy-Schwarz inequality, the arithmetic–geometric
inequality followed by a scaling argument to obtain

〈∇ · u2,h, [ũh · n]〉
Γ

≤
C c

2
‖∇ · u2,h‖

2

ΩΓ

2

+
1

2c

∑
E∈Gh

h−1

E

∫
E

[ũh · n]2 ds,

where Ω
Γ

2
denotes the union of the triangles in Ω2 neighbouring to the boundary Γ.

The second term on the right-hand side is controlled by the additional stabilizing
term from 1., choosing γ0 sufficiently large, and the proof is complete.

!

We thus have stability and consistency, and optimal convergence follows using the same
techniques of proof as previously noting that

γ0

∑
E∈Gh

h−1

E

∫
E

[(ũ − πhũ) · n]2 ds ≤ Ch2

2∑
i=1

‖ui‖
2

2,Ωi

by the trace inequality (3.3).

7. Numerical results

7.1. Convergence study for Darcy flow. The first numerical example, taken from [13],
is a study of convergence rates for Darcy flow. The domain under consideration is the unit
square with a given exact pressure solution p = sin 2π x sin 2π y. The exact velocity field
is then computed from Darcy’s law to give boundary conditions and a source term for the
divergence. In order to create a unique pressure field we also impose zero mean pressure.
We set δ = 10.

In Figure 1, we show the approximate velocities and pressures on the final mesh in a
sequence. In Figure 2, we show the convergence of the method in the L2−norm, which
confirms second order accuracy for the velocities and first order for the pressure.

7.2. Convergence study for Stokes flow. Again, we consider the unit square with exact
flow solution (from [15]) given by u = (20 x y3, 5 x4 − 5 y4) and p = 60 x2y − 20 y3 + C.
Choosing δ = 1/10 and imposing zero mean pressure (C = −5), we obtain the optimal
convergence shown in Figure 3.
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7.3. Coupling of Stokes and Darcy. We consider an artificial example: in a domain
(0, 3)×(0, 1) the flow is governed by Darcy on (0, 1)×(0, 1) and by Stokes on (1, 3)×(0, 1).
The velocity solution for Darcy is given by the exact pressure solution

p = (1 − x) y (1 − y) − x + x2
− x3/3 + C1,

i.e.,

u = (1 − 2 x + x2 + y − y2,−1 + x + 2 y − 2 x y),

which is divergence free and has a parabolic profile at x = 1. We prescribe u · n at y = ±1
and x = 0. For Stokes, we prescribe u = 0 at y = ±1 and u = (y (1 − y), 0) at x = 2,
corresponding to Poiseuille flow. Here we have used A = −µ∆u instead of A = −2µ∇·ε(u)
in the Stokes domain to obtain the usual Poiseuille linear pressure increase also at in- and
outflow. Note that this does not affect the coupling terms at x = 1.

In Figure 5, we show the effect of a coarse triangulation on one side; note that the
solution on the interface is not parabolic due to the poor resolution on the Stokes domain.
In Figure 6, we give the corresponding solution using a finer resolution for the Stokes part.
Note that the meshes still do not match across the interface.

For the convergence check we use the same example and note that the pressure from the
Darcy problem is constant at x = 1. Thus, we have p = −2 x + C2 in the Poiseuille flow
and continuity of the pressure across the interface. Imposing mean pressure zero, these
conditions yield C1 = 29/18, C2 = 59/18. The convergence of the pressure and the velocity
in L2, on a sequence of unfitted meshes (one of which is shown in in Figure 6) is given in
Figure 4, showing first order and second order convergence, respectively.

8. Conclusion

We have applied the mixed P1/P0 stabilized finite element method allowing the use of
piecewise linear approximation for the velocities and piecewise constant approximation for
the pressures to Stokes and Darcy’s equation. This formulation is a natural generalization
of the Brezzi-Pitkäranta penalization [4], but remains consistent for sufficiently smooth
exact solutions. We have proved optimal a priori estimates for both problems indicating
that this method might be a suitable candidate for problems where one wishes to compute
flows where (Navier-) Stokes and Darcy’s equations are coupled. Moreover we discussed
the possible extension to higher order finite elements and the coupling of the two systems
using a Nitsche–type method. Some numerical results were reported showing good agree-
ment with the theoretical predictions. Future extensions include different aspects of the
coupling between Navier-Stokes equations and Darcy’s equation from a theoretical and
numerical viewpoint.
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Figure 3. L2-norm convergence of the velocity and of the pressure for Stokes.
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Figure 5. Velocity and pressure solutions for the coupled problem.
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Figure 6. Velocity and pressure solutions for the coupled problem.
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