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A FINITE ELEMENT METHOD ON COMPOSITE GRIDS BASED ON

NITSCHE’S METHOD

ANITA HANSBO, PETER HANSBO, AND MATS G. LARSON

Abstract. In this paper we propose a finite element method for the approximation of
second order elliptic problems on composite grids. The method is based on continuous
piecewise polynomial approximation on each grid and weak enforcement of the proper
continuity at an artificial interface defined by edges (or faces) of one the grids. We prove
optimal order a priori and energy type a posteriori error estimates in 2 and 3 space
dimensions, and present some numerical examples.

1. Introduction

Composite overlapping grids are commonly used with finite difference and difference-related
finite volume methods, e.g., as a tool for local mesh refinement [5]. In finite element and re-
lated finite volume methods, which are inherently unstructured and thus allow for local mesh
refinement, the need for overlapping mesh methods is less obvious. However, a general finite
element/volume methodology for handling overlapping meshes would be a useful tool to deal
with the often complicated mesh generation problem. Examples of specific applications include:
(a) construction of a global mesh for a complex geometry by using overlapping meshes of ele-
mentary parts; (b) coupling of unstructured and structured meshes; and (c) coupling of boundary
fitted meshes to structured or unstructured meshes, see Fig. 1.

The purpose of this paper is to introduce and analyze such a method for a model second order
elliptic problem in 2 and 3 space dimensions. Unlike composite grid methods where interpo-
lation is performed on the boundary of the overlap, cf. [2, 5], our approach is based on weak
enforcement of the proper continuity across an artificial interface defined by edges (faces) of
one of the meshes. The weak enforcement proposed here is constructed in such a way that the
resulting scheme is stable and ‘arbitrary order consistent’ in the sense the exact solution satisfies
the discrete equation. Hence we are able to prove optimal a priori error estimates for arbitrary
order of polynomial approximation under weak mesh conditions; in particular the meshes may
overlap in quite an arbitrary fashion.
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Göteborg, Sweden, email : hansbo@solid.chalmers.se
Mats G. Larson, Department of Mathematics, Chalmers University of Technology, S–412 96 Göteborg,
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Figure 1. Overlapping mesh FEM may be used to couple a boundary fitted
mesh to an unstructured mesh (top), or to construct a global mesh by using
overlapping meshes of elementary parts (bottom).

In composite grid methods, the solution on the overlap is usually computed on both (all)
meshes, either using interpolation on all (artificial) interfaces [5], or by integration of products of
test functions living on both meshes, as in the finite element method proposed by Brezzi, Lions,
and Pironneau [4]. In contrast, in our method one only computes the solution on one of the
meshes on the overlap; in fact, we do not require the meshes to overlap at all even though this is
the situation we have in mind.
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Our method stems from the work of Nitsche [10], where a method for consistent weak enforce-
ment of Dirichlet boundary conditions was introduced, and is related, in particular, to Becker,
Hansbo & Stenberg [1], where the meshes were assumed to be non-matching on the interface
but shape regular on both sides of this interface. Here this last condition is relaxed, which, e.g.,
makes possible to use highly structured meshes in irregularly shaped subdomains. Related work
includes also the mixed penalty approach analyzed in Lazarov & al. [8, 9].

An outline of the paper is as follows: In Section 2 we formulate the second order elliptic
model problem and in Section 3 we state the mesh assumptions and define the numerical method
used for the approximation. In Section 4.1–4.2 we demonstrate the stability of the method and
derive the approximation properties of its (non-standard) finite element spaces. Optimal order a
priori error estimates in a discrete energy norm, as well as in L2-norm, are shown in Section 4.3.
Our a priori analysis is in parts akin to Hansbo & Hansbo [7], where optimal order convergence
was shown for a method where a material discontinuity interface was allowed to cut through
the elements in an arbitrary fashion. Using similar lines of arguments as in [7], a posteriori
error estimates for the control of linear functionals of the error may be derived for the present
method. In this work we instead focus our attention in Section 5 on two variants of residual
based a posteriori energy norm error estimates, where the element indicators of the second one
are designed for ease of implementation, reducing the complications due to the geometry of the
mesh. These estimates do not presuppose the saturation assumption used in [1]. Finally, in
Section 6, we discuss some implementation details and present numerical examples, including a
convergence study using quadratic elements i 2D as well as examples using the a posteriori error
estimates as a basis for the implementation of an adaptive algorithm.

2. Problem Formulation and Preliminaries

As a model problem, we consider Poisson’s equation in a bounded domain � in R
n , n = 2 or

n = 3, with, for simplicity, a convex polygonal boundary ∂�. Find u : � → R such that

−1u = f in �,(2.1)

u = 0 on ∂�,(2.2)

with f ∈ L2(�).
Consider two given triangulations T h

i , i = 1, 2, where h is a mesh size parameter. Assume that
they together cover �, so that � = �

∗

1 ∪ �
∗

2 where �
∗

i = ∪K∈T h
i

K . The meshes may overlap in
an arbitrary fashion; further assumptions are given below. We then choose an (artificial) internal
interface 0 composed of edges from the triangles in T h

1 and dividing � into two open disjoint
sets �i , i = 1, 2, such that �i ⊂ �∗

i and � = �1 ∪ �2 ∪ 0. We assume that the interface 0

does not depend on h, by, i.e., assuming that the mesh family T h
1 is obtained by refinement from

a single coarse mesh, or by remeshing of a region �1 defined from a selected mesh.
For any sufficiently regular function u in �1 ∪ �2 we define the jump of u on 0 by [u] :=

u1|0 − u2|0 , where ui = u|�i is the restriction of u to �i . Conversely, for ui defined in �i we
identify the pair {u1, u2} with the function u which equals ui on �i .
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Our model problem may now, due to the (artificial) interface, be written as:

−1u = f in �1 ∪ �2,(2.3)

u = 0 on ∂�,(2.4)

[u] = 0 on ∂�,(2.5)

[∇nu] = 0 on ∂�.(2.6)

Here n denotes the exterior unit normal to �1 and ∇nv = n · ∇v is the normal flux.
For a bounded open connected domain D we shall use standard Sobolev spaces H r (D) with

norm || · ||r,D and spaces Hr
0 (D) with zero trace on ∂ D. The inner products in H 0(D) = L2(D)

is denoted (·, ·)D. For a bounded open set G = ∪2
i=1 Di , where Di are open disjoint components

of G, we let H k(D1 ∪ D2) denote the Sobolev space of functions in G such that u|Di ∈ H k(Di )

with norm

‖ · ‖k,D1∪D2 =

(

2
∑

i=1

‖ · ‖2
k,Di

)1/2

.

3. Finite Element Spaces and Method

3.1. The Finite Element Spaces. We will use the following notation for mesh related
quantities. Let hK be the diameter of an element K ∈ T h

i and h = maxK∈T h
i ,i=1,2 hK . To

distinguish elements from the two meshes, we will sometimes use indexed element notation
Ki ∈ T h

i for clarity.
The nodes on 0 of the elements in T h

1 , together with the points of intersection between

elements in T h
2 and 0, define a partition of 0, 0 = ∪ j∈Jh0

j . Note that each part 0 j belongs to

two elements, one from each mesh. We denote these elements by K j
1 and K j

2 , respectively. A
local meshsize on 0 is defined by

(3.1) h(x) = h
K j

1
, x ∈ 0 j .

For any element K ∈ T h
i , let PK = K ∩ �i denote the part of K in �i .

We make the following assumptions regarding the meshes:

A1: The triangulations are non-degenerate, i.e.,

hK /ρK ≤ C ∀K ∈ T h
i , i = 1, 2,

where hK is the diameter of K and ρK is the diameter of the largest ball contained in K .
A2: The meshes have locally compatible meshsize over 0. More precisely, let K j

1 ∈ T h
1 and

K j
2 ∈ T h

2 be the elements which contain a specific part 0 j of 0. We assume that

ch
K j

1
≤ h

K j
2

≤ Ch
K j

1
∀ j ∈ Jh.

Here and below, C and c denote generic constants.
We shall seek a discrete solution U = (U1, U2) in the space V h = V h

1 × V h
2 , where

V h
i = {φ ∈ H1(�i ) : φ|K∩�i is a polynomial of degree p ∀K ∈ T h

i , φ|∂� = 0}.
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Note that functions in V h are, in general, discontinuous across 0. As for the nodal representation
of polynomials on the parts in �2, see Figure 2.

Figure 2. The interface 0 consists of element edges from elements in T h
1 .

Each part 0 j belongs to two triangles, K j
1 ∈ T h

1 and K j
2 ∈ T h

2 . Nodes for

representing a quadratic polynomial on the element K j
2 are indicated. The

same nodes are used in the implementation to represent a polynomial on the

part PK j
2

= K j
2 ∩ �2.

3.2. The Finite Element Method. The method is defined by the variational problem: find
U ∈ V h such that

(3.2) ah(U, φ) = l(φ), ∀φ ∈ V h,

where

ah(U, φ) = (∇U, ∇φ)�1∪�2 − (〈∇nU〉, [φ])0 − ([U ], 〈∇nφ〉)0 + (λh−1[U ], [φ])0,

l(φ) = ( f, φ)�,

with
〈∇nv〉 = ∇nv1 on 0,

and where h is the local meshsize (3.1). The continuity conditions of u and ∇nu at 0 are satisfied
weakly by means of a variant of Nitsche’s method [10] for consistent weak enforcement of
Dirichlet boundary conditions. To ensure stability, the parameter λ has to be taken sufficiently
large and we return to this issue in Lemma 4.4 below.

Here we use a one sided approximation of the normal flux on the interface instead of the usual
symmetric average

〈∇nv〉 = (∇nv1 + ∇nv2)/2 on 0,
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commonly used in the discontinuous Galerkin method and in the context of interfaces between
meshes that are shape regular on both sides of the interface by Becker, Hansbo & Stenberg [1].
The latter situation rules out the possibility of arbitrary small elements in �2 close to the inter-
face. As has been noted by Stenberg [12], any convex combination of the fluxes yields consistent
methods. In Hansbo & Hansbo [7], this fact was exploited to allow for internal discontinuities
along an interface in shape regular elements, chosing convex combinations that take into account
the size of the parts of the cut element to ensure stability. In fact, a one-sided flux approxima-
tion could have been used there too, however with negligible gain in implementation complexity.
Likewise, in the case of the present work a stable two-sided variant may be defined. However,
in this case such a method but becomes more complicated to construct and implement since the
element parts on each side of the interface now stems from two different meshes. This is an
important practical point, and the main reason why we use one-sided fluxes here.

With these definitions, we have the following consistency relation.

Proposition 3.1. The discrete problem (3.2) is consistent in the sense that, for u solving
(2.1)–(2.2) there holds

ah(u, φ) = l(φ), ∀φ ∈ V h,

or, equivalently,

(3.3) ah(u − U, φ) = 0, ∀φ ∈ V h .

Proof. Let u be the solution of the Poisson problem (2.1)–(2.2). Then 〈∇nu〉 = n1∇ · u1 =

−n2∇ · u2 = ∇nu and [u] = 0. By Green’s formula it follows that

ah(u, φ) = (∇u, ∇φ)�1∪�2 − (〈∇nu〉, [φ])0

= (−1u, φ)�1∪�2 + (∇nu − 〈∇nu〉, [φ])0 = ( f, φ)�1∪�2,

which proves the result. �

4. A Priori Analysis

4.1. Interpolation Error Estimates. In the error analysis, we shall use the following mesh
dependent norms:

‖v‖2
1/2,h,0 := ‖h(x)−1/2v‖2

0,0 =
∑

j∈Jh

h−1
K j

1

‖v‖2
0,0 j ,

‖v‖2
−1/2,h,0 := ‖h(x)1/2v‖2

0,0 =
∑

j∈Jh

h
K j

1
‖v‖2

0,0 j ,

and

(4.1) |‖v‖|2 := ‖∇v‖2
0,�1∪�2

+ ‖〈∇nv〉‖2
−1/2,h,0 + ‖[v]‖2

1/2,h,0.

Note for future reference that

(4.2) (u, v)0 ≤ ‖v‖1/2,h,0‖v‖−1/2,h,0.

To show that functions in V h approximates functions v ∈ H 1
0 (�) ∩ H p+1(�) to the order

h p in the norm |‖ · ‖|, we define an interpolant I hv ∈ V h of v by I hv = I h
i v on �i , i = 1, 2.
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Here I h
i is the standard Lagrange nodal interpolant on the mesh T h

i of �∗
i . The following local

interpolation error estimates holds, see, e.g., [3].

(4.3) ‖v − I h
i v‖m,K ≤ Ch p+1−m

K |v|p+1,K , m = 0, 1, p ≥ 1, K ∈ T i
h , i = 1, 2.

One may note that a node of interpolation used to define I h
2 v lies in �∗

2 = ∪K∈T h
2

K but not

necessarily in �2.
The following interpolation error estimate holds.

Lemma 4.1. Let I hv = I h
i v on �i , i = 1, 2, where I h

i is the Lagrange nodal interpolant

on the mesh T h
i of �∗

i . Then, for p ≥ 1,

(4.4) |‖v − I hv‖| ≤ Ch p|v|p+1,�, ∀v ∈ H1
0 (�) ∩ H p+1(�).

In the proof of this result, we need to estimate the interpolation error at the interface. We recall
the well known trace inequality

(4.5) ‖w‖2
0,∂ K̃

≤ C‖w‖0,K̃ ‖w‖1,K̃ , ∀w ∈ H1(K̃ ).

on a reference element K̃ . The following Lemma provides a scaled version of (4.5) which can
be used to estimate traces not only on the boundary but on arbitrary lines (planes) intersecting
the element.

Lemma 4.2. Let L be the intersection between a line (plane) and an element K . Then

(4.6) ‖w‖2
0,L ≤ Ch−1

K ‖w‖2
0,K + hK ‖w‖2

1,K , ∀w ∈ H1(K ),

where the constant C is independent of L.

Proof. Map the element by an affine map to a reference element K̃ and denote by L̃ the
image of L. For the plane case, let (ξ, η) denote local coordinates on K̃ such that η = 0 on
L̃. If L̃ divides K̃ into two subsets let K̃1 denote one of these sets, and else set K̃1 = K̃ .
Let n denote the outward pointing unit normal of K̃1 and note that we may assume that
nη = 1 on 0̃. By the divergence theorem,

2
∫

K̃1

w
∂w

∂ζ
dV =

∫

K̃1

div (0, w2) dV =

∫

∂ K̃1

n · (0, w2) d A

=

∫

L̃
w2 d A +

∫

∂ K̃1\L̃
nηw

2 d A.

We thus find, using Cauchy-Schwarz’ inequality and (4.5), that

‖w‖2
0,L̃

≤ 2‖w‖0,K̃1
‖w‖1,K̃1

+ ‖w‖2
0,∂ K̃1\L̃

≤ 2‖w‖0,K̃1
‖w‖1,K̃1

+ ‖w‖2
0,∂ K̃

≤ C‖w‖0,K̃ ‖w‖1,K̃ .

The result of the lemma now follows by scaling. The proof in three dimensions is similar.
�
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Proof of Lemma 4.1. Starting from the definition of the norm (4.1) we have three terms
to estimate. Beginning with the interior contributions we find that

(4.7) ‖∇(v − I hv)‖0,�i ≤ ‖∇(v − I h
i v)‖0,�∗

i
≤ Ch p|v|p+1,�∗

i
≤ Ch p|v|p+1,�,

for i = 1, 2. Here we have used the fact that �i ⊂ �∗
i ⊂ � and the interpolation error

estimate (4.3).
Next, for the contribution from the jump at the interface, we note that

(4.8) ‖[v − I hv]‖1/2,h,0 ≤ ‖v − I h
1 v‖1/2,h,0 + ‖v − I h

2 v‖1/2,h,0.

and consider first the second term on the right. Let L(0 j) be the line segment (plane

domain) obtained by extending 0 j to the boundary of K j
2 ∈ T h

2 .
By the definition of the discrete 1/2-norm,

(4.9) ‖v − I h
2 v‖1/2,h,0 ≤

∑

K∈T 2
h

∑

0 j⊂K

h−1/2

K j
1

‖v − I h
2 v‖0,L(0 j).

By Lemma 4.2, we have that

(4.10) h−1
K j

1

‖v − I h
2 v‖2

0,L(0 j)
≤ ChK j

2
h−1

K j
1

(

h−2
K j

2

‖v − I h
2 v‖2

0,K j
2

+ ‖v − I h
2 v‖2

1,K j
2

)

.

It follows from assumption A2 that h K j
2
h−1

K j
1

≤ C . Hence by (4.10) and the interpolation

estimate (4.4) we obtain

(4.11) h−1
K j

1

‖v − I h
2 v‖2

0,L(0 j)
≤ Ch2p|v|2

p+1,K j
2
.

Combining (4.9) and (4.11) we arrive at the desired estimate

(4.12) ‖v − I h
2 v‖1/2,h,0 ≤ Ch p|v|p+1,�∗

2
≤ Ch p|v|p+1,�.

Here we have used that by assumption A2, the number of terms in the inner sum in (4.9)
is bounded, uniformly with respect to the mesh size. The estimate for the first term on
the right hand side in (4.8) is readily found by similar arguments.

Finally, by Lemma 4.2 with w = 〈∇n(v − I hv)〉 = ∇n(v − I h
1 v), we have that

hK j
1
‖〈∇n(v − I hv)〉‖2

0,L(0 j)
≤ C

(

‖∇(v − I h
1 v)‖2

1,K j
1
+ h2

K j
1
‖∇(v − I h

1 v)‖2
2,K j

1

)

.

We find in the same way as above, using the interpolation error estimate (4.4) and summing
the contributions over the interface, that

(4.13) ‖〈∇n(v − I hv)〉‖−1/2,h,0 ≤ Ch p|v|p+1,�.

The lemma now follows from (4.7), (4.12) and (4.13). �
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4.2. Coercivity. To prove coercivity of the bilinear form we need the following known inverse
inequality. We include its proof for completeness.

Lemma 4.3. For φ ∈ V h , the following inverse inequality holds:

‖〈∇nφ〉‖2
−1/2,h,0 ≤ C I ‖∇φ‖2

0,�1
.

Proof. Recall the definition of 〈∇nφ〉 = ∇nφ1. Note that on a reference triangle (tetrahe-

dron) K̃ which is the image of K ∈ T h
1 under an affine map, we have

‖〈∇nφ〉‖2
0̃

≤ C‖∇φ‖2
0,K̃

.

since if the the right hand side is zero so is the left hand side, and since the space of
polynomials of degree p − 1 is finite dimensional. The result then follows by scaling, using
the invers of the affine map, and summation over all elements with an edge on the interface
0. �

Lemma 4.4. The discrete form ah(·, ·) is coercive on V h , i.e.,

ah(v, v) ≥ C |‖v‖|2 ∀v ∈ V h,

provided λ is chosen sufficiently large. It is also continuous, i.e.,

ah(u, v) ≤ C |‖u‖| |‖v‖| ∀u, v ∈ V .

Proof. Continuity of the discrete form follows directly from the definitions. To prove coer-
civity, we use (4.2) to estimate the form from above:

ah(v, v) = ‖∇v‖2
0,�1

+ ‖∇v‖2
0,�2

− 2([v], 〈∇nv〉)0 + ‖λ1/2 [v]‖2
1/2,h,0

≥ ‖∇v‖2
0,�1

+ ‖∇v‖2
0,�2

− 2‖〈∇nv〉‖−1/2,h,0‖[v]‖1/2,h,0 + λ‖[v]‖2
1/2,h,0.

It follows from the inverse inequality in Lemma 4.3 that

−2‖〈∇nv〉‖−1/2,h,0‖[v]‖1/2,h,0 ≥ −ε‖{∇nv}‖2
−1/2,h,0 − ε−1‖[v]‖2

1/2,h,0

≥ −εC I ‖∇v‖2
0,�1

− ε−1‖[v]‖2
1/2,h,0.

Combining these estimates we obtain

ah(v, v) ≥ (1 − εC I )‖∇v‖2
0,�1

+ ‖∇v‖2
0,�2

+ (λ − ε−1)‖[v]‖2
1/2,h,0.

Taking ε = 1/(2C I ), coercivity follows if λ ≥ 1/2 + 1/ε. �

4.3. A Priori Error Estimates.

Theorem 4.1. For U solving (3.2) and u solving (2.1–2.2), the following a priori error
estimates hold

(4.14) |‖u − U‖| ≤ Ch p|u|p+1,�,

and

(4.15) ‖u − U‖0,� ≤ Ch p+1|u|p+1,�.
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Proof. For any v ∈ V h, |‖u − U‖| ≤ |‖u − v‖| + |‖v − U‖|. Further, by Lemma 4.4 and
orthogonality, we have that

|‖U − v‖|2 ≤ Cah(U − v, U − v)

= Cah(u − v, U − v)

≤ C |‖u − v‖| |‖U − v‖|,

and it follows that

|‖u − U‖| ≤ C |‖u − v‖| ∀v ∈ V h .

Taking v = I hu and invoking the interpolation result of Theorem 4.1, (4.14) follows.
For (4.15) we use a duality argument. Let z be defined by

−1z = e in �,(4.16)

z = 0 on ∂�,

with e = u − U . Multiplying (4.16) with e and using Green’s formula gives

‖e‖2
0,� = −(1z, e)�

= (∇z, ∇e)�1 + (∇z, ∇e)�2 − (∇nz, [e])0

= ah(z, e),

since [z] = 0 and ∇nz = 〈∇nz〉. Now, using the symmetry of ah(·, ·), the orthogonality
relation (3.3), and Theorem 4.1, we find that

(4.17) ‖e‖2
0,� = ah(z − I h z, e) ≤ C |‖z − I h z‖| |‖e‖| ≤ Ch‖z‖2,�|‖e‖|.

Finally, by elliptic regularity, we have

‖z‖2,� ≤ C‖e‖0,�,

and thus the estimate (4.15) follows from (4.14) and (4.17). �

5. A Posteriori Error Estimates

We first introduce an interpolation operator suitable for the a posteriori error analysis. From
Scott and Zhang [11] we deduce the existence of Clement type interpolation operators rh,i , i =

1, 2, defined on H 1(�∗
i ), which preserve Dirichlet boundary conditions on ∂� ∩ �∗

i and satisfy
the following local interpolation error estimates.

(5.1) hm−1
K ‖rh,iv − v‖m,K ≤ C‖∇v‖0,1K , m = 0, 1, K ∈ Th,i .

Here 1K denotes a patch of elements which are neighbors of K . We then define

(5.2) πv := (rh,1v1, (rh,2E2v2)|�2) for v ∈ H1(�1 ∪ �2).

Here we have used an extension operator E2 : H1(�2) → H1(�) such that (E2w)|�2 = w and

(5.3) |E2w|m,� ≤ C |w|m,�i ∀w ∈ Hm(�2), m = 0, 1.

In the following lemma we collect some useful estimates for the interpolation operator π .
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Lemma 5.1. Let π be the interpolation operator defined in (5.2). Under assumptions A1
and A2 the following estimates hold for v ∈ H 1(�1 ∪ �2):

∑

K∈T h
i

h−2
K ‖vi − (πv)i‖

2
K∩�i

≤ C‖∇vi‖
2
0,�i

, i = 1, 2,(5.4)

‖vi − (πv)i‖1/2,h,0 ≤ C‖∇vi‖0,�i , i = 1, 2,(5.5)
∑

K∈T h
i

h−1
K ‖v − πv‖2

0,∂(K∩�i)\0
≤ C‖∇vi‖

2
0,�i

, i = 1, 2,(5.6)

‖∇(πv)‖0,�i ≤ C‖∇v‖0,�i , i = 1, 2.(5.7)

Proof. We consider the case i = 2 as the proof for i = 1 is similar. Let v∗
2 = E2v2 denote

the extension of v2 to � and recall that v2 − (πv)2 = v∗
2 − rh,2v

∗
2 on �2. Using (5.1) with

m = 0 we obtain, for K ∈ T h
2 , that

h−1
K ‖v2 − (πv)2‖0,K∩�2 ≤ ‖v∗

2 − rh,2v
∗
2‖0,K ≤ C‖∇v∗

2‖0,1K ,

As the number of elements in the patches 1K is uniformly bounded with respect to the
mesh size by assumption A1, it follows that

∑

K∈T h
i

h−2
K ‖vi − (πv)i‖

2
K∩�2

≤ C‖∇v∗
2‖

2
0,�∗

2
,

whence (5.4) follows by the bound for the extentions operator (5.3). Turning to the sec-
ond inequality (5.5) of the lemma, it follows from trace inequality (4.6) and interpolation
estimate (5.4) that

h−1
K j

1

‖v2 − (πv)2‖
2
0,0 j ≤ Ch−2

K j
2

‖v2 − (πv)2‖
2
0,K2

+ ‖v2 − (πv)2‖
2
1,K2

≤ C‖∇v2‖
2
0,1K2

,

where we also have used that h
K j

2
h−1

K j
1

≤ C by assumption A2. Summing over the elements

and using (5.3) gives

‖v2 − (πv)2‖1/2,h,0 ≤ C‖∇v∗
2‖0,�∗

2
≤ C‖∇v‖0,�2.

The third estimate (5.6) is readily shown by similar arguments. Finally, for the fourth
inequality of the lemma, it follows from (5.1) and (5.3) that

‖∇(πv)‖0,�2 ≤ ‖∇(v∗
2 − rh,2v

∗
2)‖0,�∗

2
+ ‖∇v‖0,�2 ≤ C‖∇v‖0,�2,

and the proof is complete. �

We shall also need the following trace inequality.

Lemma 5.2. Under our mesh assumptions there holds, for all K ∈ T h
1 and 0 j ⊂ ∂K ,

(5.8) ‖∇nv1‖−1/2,0 j ≤ C
(

‖∇v1‖0,K + hK ‖1v1‖0,K

)

, v ∈ H2(K ).
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Proof. On a reference element K̃ there holds (cf. [6], Theorem 2.2)

‖n · w‖−1/2,∂ K̃ ≤ C
(

‖w‖0,K̃ + ‖∇ · w‖0,K̃

)

, w ∈ L2(K̃ )n : ∇ · w ∈ L2(K̃ ).

The result follows from this estimate, scaled by the map from the reference element, with
w = ∇v. �

We are now ready to show an a posteriori error estimate in a discrete energy norm, using the
following notation. At an edge of an element K that is common with a neighbouring element L
we let [w] = w|K − w|L denote the jump of w over the edge. Further, nP denotes the outward
pointing unit normal of the boundary of a domain P .

Theorem 5.1. Assume A1, A2, and λ ≥ 1. For U solving (3.2) and u solving (2.3), the
following a posteriori error estimate holds :

(5.9) ‖∇e‖2
0,�1∪�2

+ ‖[e]‖2
1/2,h,0 ≤ C

2
∑

i=1

∑

K∈T h
i

ρ2
K ,i .

Here the element error indicators ρK ,i are defined by

ρ2
K ,i = h2

K ‖ f + 1U‖2
0,PK

+ hK ‖[nPK · ∇U ]‖2
0,∂ PK

+ h−1
K ‖[U ]‖2

0,∂ PK ∩0 +
∑

0 j ⊂K

‖[U ]‖2
1/2,0 j

,

where PK = K ∩ �i for K ∈ T h
i .

Proof. Using the definition of the method (3.2) we have the identity
(5.10)

I = (∇e, ∇e)�1∪�2 = (∇e, ∇(e−πe))�1∪�2+(〈∇ne〉, [πe])0+([e], 〈∇nπe〉)0−(λh−1[e], [πe])0.

Integration by parts gives

(5.11)

I =

2
∑

i=1

∑

K∈T h
i

(

(−1e, (e − πe))PK +
1

2
([nK · ∇e], e − πe)∂ PK \0

)

+(〈∇ne〉, [e − πe])0 + ([∇ne], e2 − πe2)0

+(〈∇ne〉, [πe])0 + ([e], 〈∇nπe〉)0 − (λh−1[e], [πe])0.

Note that we may write

−(λh−1[e], [πe])0 = (λh−1[e], [e − πe])0 − ‖[e]‖2
1/2,h,0 − ((λ − 1)h−1[e], [e])0.

Using that u and its derivatives have zero jumps over the element edges and the inter-
face, and also that −1e = f + 1U in the interior of the elements, we obtain the error
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representation formula

‖∇e‖2
0,�1∪�2

+ ‖[e]‖2
1/2,h,0 =

2
∑

i=1

∑

K∈T h
i

(

( f + 1U, (e − πe))PK +
1

2
([nK · ∇U ], e − πe)∂ PK \0

)

+([∇nU ], e2 − πe2)0 + ([U ], 〈∇ne〉)0 + ([U ], 〈∇nπe〉)0

+(λh−1[U ], [e − πe])0 − ((λ − 1)h−1[e], [e])0.

Here the last term is non-positive under our assumptions. We now proceed to estimate the
other terms on the right hand side. For ε > 0 to be chosen below we have that

( f + 1U, (e − πe))PK ≤ ‖( f + 1U‖0,PK ‖e − πe‖0,PK

≤
1

2ε
h2

K ‖ f + 1U‖2
0,PK

+
ε

2
h−2

K ‖e − πe‖2
0,PK

.

Treating the other term in the sum over the elements in the same way, we find by Lemma
5.1 that the first term in (5.12) may be estimated as follows.

∑

K∈T h
i

(

( f + 1U, (e − πe))PK +
1

2
([nK · ∇U ], e − πe)∂ PK \0

)

≤
C

ε

∑

K∈T h
i

(

h2
K ‖ f + 1U‖2

0,PK
+ hK ‖[nK · ∇U ]‖2

0,∂ PK \0

)

+Cε
∑

K∈T h
i

(

h−2
K ‖e − πe‖2

0,PK
+ h−1

K ‖e − πe‖2
0,∂ PK \0

)

≤
C

ε

∑

K∈T h
i

(

h2
K ‖ f + 1U‖2

0,PK
+ hK ‖[nK · ∇U ]‖2

0,∂ PK \0

)

+Cε‖∇e‖2
0,�i

.(5.12)

Using again Lemma 5.1, we obtain for the second term ([∇nU ], e2 − πe2)0 that

([∇nU ], e2 − πe2)0 ≤ C‖[∇nU ]‖−1/2,h,0‖e2 − πe2‖1/2,h,0

≤ C‖[∇nU ]‖−1/2,h,0‖∇e‖0,�2

≤
C

ε
‖[∇nU ]‖2

−1/2,h,0 + Cε‖∇e‖2
0,�2

≤
C

2ε

2
∑

i=1

∑

K∈T h
i

hK ‖[∇nU ]‖2
∂ PK ∩0 + Cε‖∇e‖2

0,�2
.(5.13)

In the last step above, we have merely distributed the error indicator at 0 over the elements
intersected by 0, using that the element sizes are compatible by assumption A2. For the
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third term ([U ], 〈∇ne〉)0, we begin to note that

([U ], 〈∇ne〉)0 ≤
∑

j

‖[U ]‖1/2,0 j ‖∇ne1‖−1/2,0 j

≤
∑

j

1

2ε
‖[U ]‖2

1/2,0 j
+

ε

2
‖∇ne1‖

2
−1/2,0 j

.

By the trace inequality of Lemma 5.2 we have that

‖∇ne1‖
2
−1/2,0 j

≤ C(‖∇e‖2
0,K j

1

+ h2
K j

1

‖∇ · ∇e‖2
0,K j

1

)

= C(‖∇e‖2
0,K j

1
+ h2

K j
1
‖ f + 1U‖2

0,K j
1
),

and hence, since the number of parts 0 j in each element is uniformly bounded,
(5.14)

([U ], 〈∇ne〉)0 ≤
C

ε

∑

j

(

h2
K j

1
‖ f + 1U‖2

0,K j
1

+ ‖[U ]‖2
1/2,0 j

)

+ Cε‖∇e‖2
0,�1

≤
C

ε

2
∑

i=1

∑

K∈T h
i



h2
K ‖ f + 1U‖2

0,K j
1

+
∑

0 j ⊂K

‖[U ]‖2
1/2,0 j



+ Cε‖∇e‖2
0,�1

.

The fourth term ([U ], 〈∇nπe〉)0 is bounded as follows

([U ], 〈∇nπe〉)0 ≤ ‖[U ]‖1/2,h,0‖〈∇nπe〉‖−1/2,h,0.

Further using the inverse inequality of Lemma 4.3 and (5.7) we obtain

‖〈∇nπe〉‖−1/2,h,0 ≤ C‖∇πe‖2
0,�1

≤ C‖∇e‖2
0,�1

.

Likewise, for the fifth and last term we find by Lemma 5.1 that

(h−1[U ], [e − πe])0 ≤ ‖[U ]‖1/2,h,0‖[e − πe]‖1/2,h,0 ≤ C‖[U ]‖1/2,h,0‖∇e‖0,�1∪�2 .

Thus we get for the fourth and fifth terms that
(5.15)

([U ], 〈∇nπe〉)0 + (h−1[U ], [e − πe])0 ≤ C‖[U ]‖1/2,h,0‖∇e‖0,�1∪�2

≤
C

ε

2
∑

i=1

∑

K∈T h
i

h−1
K ‖[U ]‖2

0,∂ PK ∩0 + Cε‖∇e‖2
0,�1∪�2

.

Choosing ε small enough, the theorem now follows from (5.12), (5.12), (5.13), (5.14), and
(5.15). �

The error indicator of Theorem 5.1 contains a term DK := h−1
K ‖[U ]‖2

0,∂ PK ∩0 corresponding
to a discrete 1/2-norm over 0, as well as a term

SK :=
∑

0 j⊂K

‖[U ]‖2
1/2,0 j
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with continuous 1/2-norms over the parts 0 j . We shall consider the computation of SK in the
special case of linear elements in two dimensions in Section 5 below, using that for a one-
dimensional interface (see, e.g., [3])

(5.16) ‖[U ]‖2
1/2,0 j

:= ‖[U ]‖2
0,0 j

+

∫

0 j

∫

0 j

|[U ](ξ) − [U ](η)|2

|ξ − η|2
dξ dη.

In a general case, however, SK is somewhat complicated to compute and one would like to sim-
plify the error indicators. Indeed, SK is bounded by (but not equal to) ‖[U ]‖2

1/2,∂ PK ∩0, and
it is therefore natural to ask if an inverse inequality can be found which would make possi-
ble to remove SK from the error indicator. We note that even though we have the inverse in-
equality ‖[U ]‖2

1/2,0 j
≤ C |0 j |

−1‖[U ]‖2
0,0 j

, the corresponding elementwise inverse inequality

‖[U ]‖2
1/2,∂ PK ∩0 ≤ Ch−1

K ‖[U ]‖2
0,∂ PK ∩0 does not follow since the parts 0 j may become arbi-

trarily small even when the meshsize is bounded away from zero. Nevertheless, SK and DK
may, as we shall show, both be bounded by a third quantity of the same order of magnitude. In
Theorem 5.2 below we use this and some further simplifications to obtain a less sharp but more
implementation-friendly a posterori error estimate. Integration over the parts PK is not required
to compute these error indicators, nor is integration over the parts 0 j ; all terms are integrals of
single polynomials over the original elements or its edges.

Theorem 5.2. For any piecewise polynomial w on the partition {0 j} of 0, let w j denote

the polynomal which defines w on 0 j . Theorem 5.1 holds with ρ2
K ,i replaced by

θ2
K ,i = h2

K ‖ f + 1U‖2
0,K + hK ‖[nK · ∇U ]‖2

0,∂ K∩�∗
i

+
∑

j :0 j⊂K

(

hK ‖[∇nU ] j‖
2
0,∂ K j

1 ∩0
+ h−1

K ‖[U ] j ‖
2
0,∂ K j

1 ∩0

)

.

Proof. We shall show that ρK ,i ≤ CθK ,i . Obviously,

(5.17) ‖ f + 1U‖2
0,PK

≤ ‖ f + 1U‖2
0,K .

Further, for K ∈ T h
i we have that

hK ‖[nPK · ∇U ]‖2
0,∂ PK

= hK ‖[nK · ∇U ]‖2
0,∂ PK \0 +

∑

0 j ⊂K

hK ‖[nPK · ∇U ]‖2
0,0 j

≤ hK ‖[nK · ∇U ]‖2
0,∂ K∩�∗

i
+ hK

∑

j :0 j⊂K

‖[n · ∇U ] j‖
2
0,∂ K j

1 ∩0
.(5.18)

We now turn to the estimate of SK =
∑

0 j ⊂K ‖[U ]‖2
1/2,0 j

. For K ∈ T h
i and 0 j ⊂ K we

also have 0 j ⊂ K
j
1. Consider a reference element K̃ for K j

1 with 0 j mapped onto 0̃ j in

the edge (side) Ẽ. By equivalence of norms there holds for all polynomials q of degree p

‖q‖2
1/2,0̃ j

≤ ‖q‖2
1/2,Ẽ

≤ C‖q||2
0,Ẽ

.
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Mapping back to K j
1 and taking q = [U ] j we find that

‖[U ] j‖
2
1/2,0 j

≤ Ch−1
K j

1

‖[U ] j ||
2
0,∂ K j

1 ∩0
,

where the constant is independent of j . Hence, using assumption A2 to replace h K j
1

by hK

if i = 2,

SK =
∑

0 j ⊂K

‖[U ]‖2
1/2,0 j

≤ Ch−1
K

∑

j :0 j⊂K

‖[U ] j‖
2
0,∂ K j

1 ∩0
.(5.19)

Since DK = h−1
K ‖[U ]‖2

0,∂ PK ∩0 is indeed bounded by the right hand side above, the theorem

now follows from (5.17), (5.18), and (5.19). �

6. Numerical examples

6.1. Implementation. For the numerical examples to be presented, we chose to make the
following simplifying assumption: the interface is assumed to be made up of straight lines that
are so long that each element on the cut grid is intersected by just one corner of the interface. We
further assumed that the area enclosed by the interface lay completely within the cut mesh. We
then needed to consider only seven cases, depicted in Figures 3-5.

Figure 3. Elements containing one corner of the interface: zero nodes, one
node, and two nodes on the opposite side of the interface.

Figure 4. Elements cut by a straight segment: one node and two nodes on
the opposite side of the interface.
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Figure 5. Overlapped elements: two sides and three sides cut.

For the numerical integration, we divided any non-triangular cut part of an element into trian-
gles, using sufficiently high integration for the stiffness matrix to be exactly evaluated. On the
interface we performed exact (numerical) integration of all terms using the union of the intersec-
tion points on the cut side and the nodes on the uncut side to define the intervals of integration.

6.2. Convergence study. The example was solved on the domain (−4, 4) × (−4, 4) with
an overlapping domain according to Figure 6. The locations of the corners of the overlapping
domain were determined by

[

x
y

]

=

[

cos φ − sin φ

sin φ cos φ

] [

−2.5 0.5 0.5 −2.5
−2.5 −2.5 0.5 0.5

]

+

[

0.75
1

]

,

with φ = 1.
We imposed zero Dirichlet boundary conditions and applied a forcing term

f = 64 − 2 x2 − 2 y2,

corresponding to the exact solution

u = (x − 4) (x + 4) (y − 4) (y + 4).

We solved this problem numerically using finite elements with both a linear and a quadratic
polynomial ansatz. Elevations of the different solutions on the same mesh can be seen in Figure
7. In Figure 8, we show the convergence in L2–norm of on a sequence of refined meshes. As
expected, we obtain second and third order convergence for the linear and quadratic approxima-
tions, respectively.

6.3. Adaptive refinement. In order to evaluate the a posteriori estimate (5.9) we need to
compute the continuous half-norm (5.16) of the jump. We have implemented the error estimator
for linear elements, whence we compute the half-norm as follows: since [U ] is linear on each
0 j , [U ](ξ) = aξ + b, say, we can write

|[U ](ξ) − [U ](η)|2

|ξ − η|2
=

|a (ξ − η)|2

|ξ − η|2
= a2

and thus
‖[U ]‖2

1/2,0 j
= ‖[U ]‖2

0,0 j
+ a2|0 j |

2.
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Figure 6. Coarse triangulation of the domains.
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Figure 7. Elevation of the linear and the quadratic solutions on the coarse mesh.

We considered an example with exact solution

u =
1

256
e−(x2+y2) (4 − x) (4 + x) (4 − y) (4 + y),

on the same domain as in the previous example, and used the two a posteriori estimates of The-
orem 5.1, called estimate 1, and Theorem 5.2, called estimate 2. These estimates were used to
control the local meshsize by a fixed fraction refinement strategy (refining the elements contain-
ing the largest contributions). No attempt was made to calibrate the unknown constants appearing
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Figure 8. Convergence of the different approximations.

in the estimates; instead we computed the effectivity index, defined as

effectivity index =
estimated error

exact error
,

in order to numerically verify that it remained constant as the mesh was refined. In Figure 9, we
show the mesh obtained when using estimate 1, and in Figure 10 the corresponding result when
using estimate 2. The solution on this mesh is shown as an elevation in Figure 11. Note that the
meshes in both cases has a tendency to refine more at the interface. This is because the local error
is the largest there, as has been noted previously, cf. [1, 7]. This phenomenon is more noticeable
using estimate 2, as expected since this estimate is more conservative at the interface. Finally,
in Figure 12, we show the effectivity index on the sequence of meshes for both estimators. As
can be seen, the effectivity index is almost constant for both estimates, which indicates that the
refinement on the interface does not much affect the global norm. We also show the ratio of the
errors on the sequence of meshes obtained with estimate 2 to that obtained with estimate 1. We
note that this ratio is slightly above 1, indicating that the degrees of freedom are put to slightly
better use using estimate 1, as expected.
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Figure 9. Final adapted mesh in a sequence using Estimate 1.

 

Figure 10. Final adapted mesh in a sequence using Estimate 2.
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Figure 11. Elevation of the approximate solution.
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Figure 12. Effectivity index obtained on a sequence of adaptively refined meshes.
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