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Göteborg, Sweden 2002



EDGE STABILIZATION FOR GALERKIN APPROXIMATIONS OF

CONVECTION–DIFFUSION PROBLEMS

ERIK BURMAN AND PETER HANSBO

Abstract. In this paper we recall a stabilization technique for finite element methods
for convection-diffusion-reaction equations, originally proposed by Douglas and Dupont
[6]. The method uses least square stabilization of the gradient jumps across element
boundaries. We prove that the method is stable in the hyperbolic limit and prove optimal
a priori error estimates. We address the question of monotonicity of discrete solutions and
present some numerical examples illustrating the theoretical results..

1. Introduction

The standard Galerkin for convection-diffusion-reaction problems is not stable if imple-
mented without stabilization. Over the years many different stabilization methods have
been proposed and it is by now a well established discipline with different well explored
methods like the SUPG/SD-method [8], the residual free bubbles [2] and more recent
contributions like subviscosity models for convection diffusion problems [7]. The relation
between the different approaches is also well understood in most cases. However for com-
plex flow problems, like the ones arising in combustion problems, most of these methods
have drawbacks. The SUPG stabilization becomes non-symmetric and the formulation
does not permit lumped mass; the residual free bubbles add additional degrees of freedom;
the projection methods introduce the need of hierarchical meshes for the projection or the
sub viscosity model. In this paper we recall a method due to Douglas and Dupont [6] which
stabilizes convection-diffusion-reaction problems by adding a least-squares term based on
the jump in the gradient over element boundaries. Unlike [6], we also consider the crucial
case of a vanishing diffusion parameter.

The method can be seen as a higher order penalty method, or as a sub viscosity method
where we have eliminated the need for patches. We also add a non-linear term adding dif-
fusion on the element edges in the tangential direction, in order to guarantee monotonicity.
We prove that the shock-capturing parameter can be chosen in such a way that a discrete
maximum principle holds. The method has many of the advantages of the above methods,
but no additional degrees of freedom are added, no hierarchical meshes are needed, the
formulation remains symmetric, and the mass can be lumped for efficient time marching
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2 ERIK BURMAN AND PETER HANSBO

and treatment of stiff source terms. Furthermore the methods allows for the introduction
of crosswind diffusion which is consistent for solutions in H2(Ω). The price to pay is an
increased number of non-zero elements in the stiffness matrix due to the fact that the
gradient jump term couple neighboring elements. However for systems of PDE:s (like the
ones in combustion problems) where a large number of unknowns are associated with each
node, these additional blocks are diagonal, making the increased memory cost reasonable.

2. Convection–diffusion–reaction

As a first model problem, we consider, in Ω ⊂ R
d, d = 2, 3, the problem of solving

(2.1) σ u+ β · ∇u−∇ · (ε∇u) = f in Ω

with, for simplicity, u = 0 on ∂Ω. Here, f is a given source term, β is a given smooth
velocity field, satisfying ∇ · β = 0, and σ and ε are bounded positive functions.

The weak form of this problem is to find u ∈ H1
0 (Ω) such that

(2.2) A(u, v) = (f, v) ∀v ∈ H1
0 (Ω),

where

A(u, v) :=

∫

Ω

(

σ u v + ε∇u · ∇v + β · ∇u v
)

dx and (f, v) :=

∫

Ω

f v dx.

We denote the L2-scalar product by (·, ·) and the corresponding norm by ‖ · ‖. The finite
element method consists of seeking a piecewise polynomial approximation U ∈ Vh ⊂ H1

0 (Ω).
It is well known that the standard Galerkin approximation, in the convection dominated
case, results in a wildly oscillating solution in the presence of sharp layers. To stabilize
the method we propose, following [6], to add a term penalizing the gradient jumps across
element boundaries of the type

(2.3)

J(U, v) =
∑

K

1

2

∫

∂K

γh2
∂K[∇U ] · [∇v] ds

=
∑

K

1

2

∫

∂K

γh2
∂K[n · ∇U ] [n · ∇v] ds.

Here, h∂K is the size of ∂K, [q] denotes the jump of q across ∂K for ∂K ∩ ∂Ω = ∅, [q] = 0
on ∂K ∪ ∂Ω, n is the outward pointing unit normal to K, and γ is a constant. We also
introduce the local mesh size

hK := max
K

h∂K,

and we will assume that hK/h∂K < C where C is a fixed constant. Our finite element
method then reads, find U ∈ Vh such that

(2.4) A(U, v) + J(U, v) = (f, v) ∀v ∈ Vh.

To simplify the analysis we will assume that the exact solution belongs to H2(Ω); it then
follows that the formulation (2.4) is consistent, as put forth in the following Lemma.
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Lemma 1. For u ∈ H2(Ω) there holds

A(u− U, v) + J(u− U, v) = 0

for all v ∈ V h.

Proof This is an immediate consequence of the regularity hypothesis: if u ∈ H2(Ω)
then the trace of ∇u is well defined and hence J(u, v) = 0. �

Remark 1. Another possible choice of J(U, v) is

(2.5)

J(U, v) =
∑

K

1

2

∫

∂K

γβh
2
∂K [β · ∇U ][β · ∇v]ds

+
∑

K

1

2

∫

∂K

γβ⊥h
2
∂K [β⊥ · ∇U ][β⊥ · ∇v]ds,

This way the streamline and the crosswind stabilizations may be tuned independently. Note
that (2.3) corresponds to the case γβ = γβ⊥.

2.1. Stability. The main point of any stabilized method is of course that it enhances
stability. The stability estimate obtained using edge stabilization is less immediate than
that obtained in the case of streamline-diffusion or discontinuous galerkin. However we

will show that we, thanks to the term J(U, v), get the control of ‖h1/2
K β · ∇U‖2 crucial

for the analysis. To prove stability in a discontinuous galerkin method one exploits the
fact that hKβ · ∇U is in the finite element test space and hence can be chosen as test
function. In the case of edge stabilization we proceed in a similar way. Indeed, even if
hKβ ·∇U is not in the finite element space something which is close is, and the difference is
controlled by the edge stabilization term. We denote by πh the Clément quasi interpolant
[5], πh : L2(Ω) → Vh.

We shall frequently use the following inequalities, which we collect in a Lemma.

Lemma 2. For the Clément operator there holds

(2.6) ‖πhu‖Hs(Ω) ≤ C‖u‖Hs(Ω), ∀u ∈ Hs(Ω),

for s = 0, 1. Further,

(2.7) ‖πhhKβ · ∇U‖ ≤ C‖U‖, ∀U ∈ Vh.

Finally, we have the trace inequality

(2.8) ‖v‖2
L2(∂K) ≤ C

(

h−1
K ‖v‖2

L2(K) + hK‖v‖
2
H1(K)

)

, ∀v ∈ H1(K),

Here, C is a generic constant independent of hK.

Proof Inequality (2.6) follows from the interpolation estimate

‖u− πhu‖Hs(Ω) ≤ C‖u‖Hs(Ω), s = 0, 1,

cf. [5], and (2.7) follows from (2.6) and the well known inverse inequality

(2.9) ‖v‖H1(K) ≤ Ch−1
K ‖v‖L2(K), ∀v ∈ Vh.
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Finally, a proof of (2.8) is given in [9]. �

As a model example we choose ε = 0 and we assume that hK < σ−1/2 corresponding
to a convection–reaction problem. Furthermore let us first assume that hK is constant
throughout the domain. The problem takes the form: find U ∈ Vh such that

(2.10) (β · ∇U, v) + (σU, v) + J(U, v) = (f, v), ∀v ∈ Vh.

Taking v = U we obtain the basic stability estimate

(2.11) J(U, U) + ‖σ1/2U‖2 = (f, U)

Clearly we may use the fact that πhhKβ · ∇U ∈ Vh to write

(2.12)
‖h1/2

K β · ∇U‖2 + (β · ∇U, πhhKβ · ∇U − hKβ · ∇U)
= −J(U, πhhKβ · ∇U) + (−σU + f, πhhKβ · ∇U).

We use Cauchy-Schwartz inequality followed by the arithmetic-geometric inequality for the
left-hand side to obtain

(2.13)
3
4
‖h1/2

K β · ∇U‖2 − ‖h1/2
K (πhβ · ∇U − β · ∇U)‖2

≤ |J(U, πhhKβ · ∇U)|+ C‖σ1/2U‖2 + C‖f‖2.

Comparing the two expressions (2.11) and (2.13) we find that we need the following two
results.

(1) Proof that there exists some ζ ≥ ζ0 > 0 such that

‖h1/2
K (πhβ · ∇U − β · ∇U)‖2 ≤ ζJ(U, U).

(2) The inverse estimate

(2.14) J(πhhKβ · ∇U, πhhKβ · ∇U) ≤ Ci‖h
1/2
K β · ∇U‖2.

The inverse estimate is immediately proven by noting that

J(πhhKβ · ∇U, πhhKβ · ∇U) =
∑

K

∫

∂K

h3
K [∇πhβ · ∇U ]2ds

≤ C̃‖h3/2
K ∇πhβ · ∇U‖

2 ≤ C‖h1/2
K β · ∇U‖2

by virtue of (2.9) and (2.6).

2.1.1. Bounding the projection error by the stabilization term. The stability of the method
is obtained by the fact that the edge operator controls the projection error of hKβ · ∇U in
the case of convection–diffusion. By {ϕi} we denote the set of finite element basis functions
spanning the space Vh. Let Ni be the set of all triangles K i containing node i and assume
that the cardinality of Ni is bounded uniformly in i. Let FK be the set of all test functions
ϕi such that supp ϕi ∩K 6= ∅ and Ωi =

⋃

Ni
Ki. We will consider a function p ∈ [P0(K)]2,

and its representation in the finite element basis p̃ defined by

(2.15) p̃|K = p|K
∑

i∈FK

ϕi.
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It follows that p̃ = p everywhere except on elements adjacent to Dirichlet boundaries
where the boundary nodes are not included in the finite element space. We note that, with

p := h
1/2
K β · ∇U , we have on the left-hand side of (2.12) the expression ‖p‖2 + (p, πhp− p),

and we wish to bound the second term using the first term and the jumps. This cannot
be done exactly since πhp must obey the boundary conditions, unlike p. However, the left
hand side of (2.12) can equally well be written (p, p̃) + (p, πhp − p̃), and if we can show
that c‖p‖2 ≤ (p, p̃) we have

c‖p‖2 + (p, πhp− p̃) ≤ (p, p̃) + (p, πhp− p̃),

and we can proceed to bound the second term on the left hand side in terms of the first
together with the jumps. Thus, we need:

Lemma 3. Suppose that K is an element with at least one node on a Dirichlet boundary
then

(2.16) ‖p‖2
K =

d+ 1

ni
(p, p̃),

where ni denotes the number of interior nodes of the element.

Proof The proof is immediate noting that

(p, p̃) = p2
K

∫

K

∑

i∈FK

ϕidx =
ni

d+ 1
p2
Km(K).

� We will now proceed to prove that

‖hs/2(p̃− πhp)‖
2 ≤ CJ̃s(p, p)

with

J̃s(p, p) =
∑

K

∫

∂K

hs+1[p]2ds.

The operator πh : [P0(K)]2 → [Vh]
2, which denotes the lowest order Clément operator is

constructed as follows.

(2.17) πhp =
∑

i

piϕi

with

(2.18) pi =
1

m(Ωi)

∑

Ni

p|Kim(Ki).

In the following we will also write p|Ki − p|K =
∑K

Ki
[p], with [p] denoting the jump across

element boundaries and the sum is taken over the shortest “path” from element K i to
element K.
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It is now straightforward to show that the projection error is controlled by the operator
J̃s(p, p)

‖hs/2K (πhp− p̃)‖2 =
∑

K

∫

K

hsK

(

∑

i∈FK

(
1

m(Ωi)

∑

Ki∈Ni

p|Ki m(Ki))ϕi − p̃
)2

dx

=
∑

K

∫

K

hsK

(

∑

i∈FK

1

m(Ωi)

∑

Ki∈Ni

(p|Ki − p|K)m(Ki)ϕi

)2

dx

≤ C
∑

K

∫

K

hsK

(

∑

i∈FK

1

m(Ωi)

∑

Ki∈Ni

{

K
∑

Ki

[p]
}2

m(Ki)dx

≤ C
∑

K

∫

∂K

hs+1
K [p]2ds ≤ CJ̃s(p, p).

Where we used the upper bound on the number of triangles neighboring to a node and a
scaling argument. We have proved the following:

Lemma 4. If p is some piecewise constant function, p̃ is defined by (2.15) and πh is the
Clément interpolant on Vh, then the edge stabilization term satisfies

(2.19) ‖hs/2K (πhp− p̃)‖2 ≤ ζJ̃s(p, p)

for some ζ ≥ ζ0 > 0

From this the stability of our method now follows noting that by Lemma 3 we have
c‖p‖ ≤ (p, p̃).

Remark 2. Note that by the construction of p̃ we get less stabilization in elements adjacent
to Dirichlet boundaries than in the interior of the domain, hence we expect to get poorer
stabilizing properties close to sharp out flow layers (when diffusion is present), something
which is confirmed by the numerical experiments.

Remark 3. When the mesh parameter h and or the velocity β varies in the domain we
get using Lemma 4, and assuming for simplicity that β is constant on each element.

‖h−1/2
K (πhhβ · ∇U − hβ · ∇U)‖2 ≤

∑

K

∫

∂K

[h|β|∇U ]2ds.

Noting that
[h|β|∇U ] = hK′|βK′|∇U |K′ − hK|βK|∇U |K

= {h|β|}[∇U ] + [h|β|]{∇U}

, where {x} = (xK′ + xK)/2 we see that the right hand side may be rewritten as

∑

K

∫

∂K

[h|β| · ∇U ]2ds ≤ C0

∑

K

∫

∂K

{h2|β|}[∇U ]2ds

+C1

∑

K

∫

∂K

[h|β|]2{∇U}2ds.
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From this we may conclude, assuming a condition on the variation of the mesh and the
velocities of the following type [h|β|] ≤ cmax(hK|βK|, hK′|βK′|), with c << 1 and applying
a scaling argument in the second term on the right hand side

(β · ∇U, πhhKβ · ∇U − hKβ · ∇U) ≤ αζC0J(U, U)

+(
1

α
+ αζcC)‖h1/2β · ∇U‖2,

where the constant C depends essentially on the shape regularity of the mesh. This shows
that stability does not deteriorate with variations in the meshsize.

2.1.2. The inf–sup condition. We may now combine the above results to prove a discrete
inf–sup condition for our method. We consider the following mesh dependent norm

|‖u‖|2 = ‖h1/2
K β · ∇u‖2 + ‖ε1/2∇u‖2 + ‖σ1/2u‖2 + J(u, u).

Theorem 1. With the triple norm defined above we have for some α

α|‖U‖| ≤ sup
wh∈Vh

A(U,wh) + J(U,wh)

|‖wh‖|
, ∀U ∈ Vh.

Proof The proof is straightforward using the inverse inequalities and Lemma 4 of
the previous section. We start by proving that

α|‖U‖|2 ≤ A(U, U + CπhhKβ · ∇U) + J(U, U + CπhhKβ · ∇U).

Writing out the right hand side with the term ‖C1/2h
1/2
K β · ∇U‖2 added and subtracted

and using that (β · ∇U, U) = 0 leads to.

A(U, U + CπhhKβ · ∇U) + J(U, U + CπhhKβ · ∇U)

≥
3

4

(

‖C1/2h
1/2
K β · ∇U‖2 + ‖ε1/2∇U‖2 + ‖σ1/2U‖2 + J(U, U)

)

−‖C1/2πhh
1/2
K β · ∇U − C1/2h

1/2
K β · ∇U‖2 − ‖ε1/2∇CπhhKβ · ∇U‖

2

−‖σ1/2CπhhKβ · ∇U‖
2 − J(CπhhKβ · ∇U,CπhhKβ · ∇U).

The claim now follows by applying (2.7) in the two last terms, (2.14) and Lemma 4 for
the two other non-positive terms and finally choosing C sufficiently small. To conclude we
need to show that ∃c such that |‖U + CπhhKβ · ∇U‖| ≤ c|‖U‖|, but this is immediate by
the inverse inequalities (2.7) and (2.14). �

2.2. A priori error estimates. We now proceed to prove a priori error estimates for the
discrete solution using the triple norm and the inf–sup condition defined above. For the a
priori analysis we need the following approximation result

Lemma 5. The following interpolation estimate holds:

|‖u− πhu‖| ≤ C(ε1/2h+ h3/2 + σ1/2h2)‖u‖H2(Ω).
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Proof The estimates

‖ε1/2∇(u− πhu)‖L2(Ω) ≤ Chε1/2‖u‖H2(Ω)

and
‖σ1/2(u− πhu)‖L2(Ω) ≤ Ch2σ1/2‖u‖H2(Ω)

follow from standard interpolation theory. Further, we have, using (2.8),

‖∇(u− πhu)‖2
L2(∂K) ≤ C

(

h−1
K ‖∇(u− πhu)‖2

L2(K) + hK‖u‖2
H2(K)

)

≤ ChK‖u‖
2
H2(K),

and it follows by summation that J(u− πhu, u− πhu)
1/2 ≤ Ch3/2‖u‖H2(Ω). � Using this

interpolation estimate and the consistency we prove the following a priori estimate in the
convection dominated case when ε < h.

Theorem 2. Let u ∈ H2(Ω) be the solution of (2.2) and U ∈ Vh the finite element solution
of (2.4); then

|‖u− U‖| ≤ C(ε1/2h+ h3/2 + σ1/2h2)‖u‖H2(Ω).

Proof We decompose the error into

|‖u− U‖| ≤ |‖u− πhu‖|+ |‖U − πhu‖|

the first part is bounded by Lemma 5 and for the second part we use the inf–sup condition
of Theorem 1 and the consistency to obtain, using the notation ẽ = U − πhu

α|‖ẽ‖| ≤ supwh∈Vh

A(ẽ, wh) + J(ẽ, wh)

|‖wh‖|

= supwh∈Vh

A(u− πhu, wh) + J(u− πhu, wh)

|‖wh‖|
,

where nominator may be written

A(u− πhu, wh) + J(u− πhu, wh) = (ε∇(u− πhu),∇wh)

+(σ(u− πhu), wh) + (β · ∇(u− πhu), wh)

+J(u− πhu, wh) = i + ii + iii + iv.

We now bound the four contributions. The first and second terms are handled by applying
Cauchy-Schwartz inequality followed by the inverse inequality (2.7)

i ≤ c̃‖ε1/2∇(u− πhu)‖‖ε1/2∇wh‖ ≤ c̃‖ε1/2∇(u− πhu)‖ |‖wh‖|

ii ≤ ‖σ1/2(u− πhu)‖‖σ
1/2wh‖ ≤ c̃‖σ1/2(u− πhu)‖ |‖wh‖|.

In the third term we integrate by parts in the ẽ part and use (2.6) in the second part to
obtain

iii ≤ (u− πhu, β · ∇w̃h) ≤ c̃‖h−1/2
K (u− πhu)‖‖h

1/2
K β · ∇wh‖

≤ c̃‖h−1/2
K (u− πhu)‖|‖wh‖|.
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For the edge penalty term finally we simply apply Cauchy-Schwartz inequality

iv ≤ c̃J(u− πhu, u− πhu)
1/2J(wh, wh)

1/2

≤ cJ(u− πhu, u− πhu)
1/2|‖wh‖|

The claim now follows by applying Lemma 5. �

We proceed to prove an a priori L2-estimate for the diffusion dominated case using a
duality argument. Consider the following adjoint problem: find ϕ ∈ H1

0 (Ω) such that

(2.20) A(v, ϕ) = (ψ, v), ∀v ∈ H1
0 (Ω)

this problem is well-posed and if ψ = u − U then ‖εϕ‖H2(Ω) ≤ C‖u − U‖. Using the
Aubin-Nitsche duality argument we obtain

Theorem 3. Assume that ε is bounded away from zero and let u ∈ H 2(Ω) be the solution
of (2.2) and U ∈ Vh the finite element solution of (2.4). Then

‖u− U‖ ≤ Ch2‖u‖H2(Ω)

Proof Choosing ψ = v = u− U in equation (2.20) we obtain, since ϕ ∈ H2(Ω)

‖u− U‖2 = A(u− U, ϕ) = A(u− U, ϕ− πhϕ) + J(u− U, πhϕ)

= A(u− U, ϕ− πhϕ) + J(u− U, ϕ− πhϕ)

Writing out the different contributions and applying Cauchy-Schwarz in the last term we
have

‖u− U‖2 ≤ (β · ∇(u− U), ϕ− πhϕ) + (σ(u− U), ϕ− πhϕ)

+(ε∇(u− U),∇(ϕ− πhϕ))

+J(u− U, u− U)1/2J(ϕ− πhϕ, ϕ− πhϕ)1/2

≤ C|‖u− U‖|
(

‖h−1/2
K (ϕ− πhϕ)‖

+‖ε1/2(ϕ− πhϕ)‖H1(Ω) + J(ϕ− πhϕ, ϕ− πhϕ)1/2
)

.

From Theorem 2 we now that |‖u− U‖| ≤ C(ε1/2h+ h3/2) and applying standard interpo-
lation estimates we estimate the norms of the dual solution by

‖h−1/2
K (ϕ− πhϕ)‖+ ‖ε1/2(ϕ− πhϕ)‖H1(Ω) + J(ϕ− πhϕ, ϕ− πhϕ)1/2

≤ C
(

h3/2

ε
+ h

ε1/2

)

‖εϕ‖H2(Ω).

and consequently ‖u− U‖ ≤ Ch2
(

h
ε

+ h1/2

ε1/2
+ 1

)

‖u‖H2(Ω). �
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2.3. A posteriori error estimates. We consider estimates of general linear functionals
of the error, following Becker and Rannacher [1].

Theorem 4. Let u be a solution to (2.4), let ψ and ϕ be the data and solution to (2.20),
and define Iψ(u− U) = (u− U, ψ). Then

|Iψ(u− U)| ≤
∑

K

(ρKωK + ρ̃Kω̃K)

where

ρK = ‖σU + β · ∇U − f‖K + h
−1/2
K ‖[εn · ∇U ]‖∂K , ρ̃K = γh

1/2
K ‖[n · ∇U ]‖∂K

and
ωK = max{‖ϕ− πhϕ‖K, h

1/2
K ‖ϕ− πhϕ‖∂K}, ω̃K = h

3/2
K ‖[n · ∇πhϕ]‖∂K.

Proof We have, using Lemma 1, that

Iψ(u− U) = A(u− U, ϕ) = A(u− U, ϕ− πhϕ)− J(U, πhϕ)
= A(u− U, ϕ− πhϕ)− J(U, πhϕ)
= (f, ϕ− πhϕ)− (β · ∇U + σU, ϕ− πhϕ)−

(ε∇U,∇(ϕ− πhϕ))− J(U, πhϕ).

We note that the stabilizing term is bounded by

J(U, πhϕ) ≤
∑

K

1

2
γh2

K‖[n · ∇U ]‖∂K ‖[n · ∇πhϕ]‖∂K

The desired estimate is then obtained by an integration by parts in the third term together
with an element wise application of the Cauchy-Schwartz inequality. �

Remark 4. The sum over ρ̃Kω̃K may be replaced by |J(U, πhϕ)|.

We now prove that for sufficiently regular solution and adjoint solution the stabilizing
term contribution is of the right order.

Corollary 1. If ϕ ∈ H2(Ω) and u ∈ H2(Ω) then

|J(U, πhϕ)| ≤ Ch2

Proof The result is an immediate consequence of the consistency and the interpo-
lation.

|J(U, πhϕ)| = |J(U − u, πhϕ− ϕ)|
≤ |J(U − u, U − u)|1/2|J(πhϕ− ϕ, πhϕ− ϕ)|1/2

≤ C(ε1/2h+ h3/2 + σ1/2h2)2

where the last inequality follows from Lemma 5 and Theorem 2. �

Remark 5. We note that the stabilization term J(U, U) will not make convergence dete-
riorrate when ε > h; hence there is no need to tune the stabilization parameter in such a
way that it tends to zero when the fine scales of the flow are resolved to preserve order.
This is another advantage of our method compared with the SUPG method.
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2.4. Monotonicity. In a recent paper [3] the authors constructed shock-capturing terms,
for which they rigorously proved a discrete maximum principle (DMP). This was in the case
of the streamline diffusion method and only for strictly acute meshes. These monotonicity
results were then developed further in [4]. Here we follow their example and construct
an edge based shock-capturing term. Moreover we prove that our method can be tuned
with respect to the mesh to satisfy a DMP. We wish to point out that this result differs
from the results in [3] in several ways, first of all, the shock-capturing we propose is not
residual based, but staying true to our concept of edge stabilization, we use the jumps in the
gradient over element edges, this time giving diffusion in the edge tangent direction. This
latter concept also permits us to lift the hypothesis of strictly acute meshes, instead the
size of the shock-capturing term will depend on the smallest angle of the mesh. Moreover,
the right hand side does not play any role in the stabilization, making it possible to use
nodal quadrature for source terms and making the shock capturing term independent of
data. We proceed by presenting some elementary Lemmas for local minima of piecewise
affine functions, for the proofs of which we refer to [4]. We recall the notation of section
2.1, consider some node Si, let Ni be the set of all triangles K containing node i, Ωi =
∪K∈Ni

supp(K), Si the set of all edges connected to Si and S̃i the set of all edges in Ω̄i.
Furthermore we denote by vi the function in Vh, such that vi = δij in node Sj and by [x]e
we denote the jump of the quantity x across the edge e.

Lemma 6. Let τ denote a unit vector tangent to the edge e. If U ∈ Vh and U has a local
minimum in the node Si then

sign(τ · ∇U) τ · ∇vi|e ≤ 0 ∀e ∈ Si.

Lemma 7. If U ∈ Vh and U has a local minimum in the node Si then

(2.21) ‖U − Ū‖L1(Ωi) ≤ C0‖hK∇U‖L1(Ωi) ≤ C1‖h
2
∂K[∇U ]‖L1(Si)

where Ū is a constant such that
∫

Si

(U − Ū) dx = 0.

Lemma 8. There exists a constant C, depending only on the mesh geometry, such that

‖∇vi‖L∞(K) ≤ C min
∂K∈Si

|τ · ∇vi|

and
‖∇vi‖L∞(Si) ≤ Cmin

e∈Si

|τ · ∇vi|

Theorem 5. If U ∈ Vh is a function such that

(2.22) A(U, v) + J(U, v) + Jsc(U, v) = (f, v) ∀v ∈ Vh

with σ = 0 in A(U, v), f ≥ 0 and

Jsc(U, v) =
∑

K

∫

∂K

Ψ(U) sign(τ · ∇U) τ · ∇v ds

where Ψ(U)|K = hK(Cεε+ Cβ,γhK) maxe∈K |[n · ∇U ]e|, then U ≥ 0.
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Proof First some remarks are in order, we notice that the shock capturing term is
divided into two parts one of order hKε and the other of order h2

K . The first contribution
is needed to control violations of the DMP due to the Laplace operator discretized on
non strictly acute meshes, the other term controls violations of the DMP provoked by the
convective term and the stabilization. We will assume that there is a local minimum in
the node Si and test (2.22) with the corresponiding testfunction vi. First, we integrate by
parts to obtain

A(U, vi) =

∫

Si

[εn · ∇U ]vi ds+

∫

Si

(Ū − U) β · ∇vi dx.

Next, we apply Lemma 6 to bound the first term
∫

Si

[ε n · ∇U ]vi ds

+Cεε

∫

S̃i

h∂K max
e∈K

|[n · ∇U ]e|sign(τ · ∇U) τ · ∇vi ds

≤ ε
1

2
‖[n · ∇U ]‖L1(Si) − Cεε

∑

K∈Ωi

‖max
e∈K

|[n · ∇U ]e|‖L1(∂K) ≤ 0

with Cε ≥
1
2
. In the same manner we write for the second term

∫

Ωi

(Ū − U) β · ∇vi dx

+Cγ,β
∑

K∈Ωi

∫

∂K

h2
∂K max

e∈K
|[n · ∇U ]e| sign(τ · ∇U) τ · ∇vi ds

≤ ‖Ū − U‖Ωi)‖β · ∇vi‖L∞(Ωi)

−Cγ,βh
2
K

∑

K∈Ωi

‖max
e∈K

|[n · ∇U ]e|‖L1(∂K) min
Si

|τ · ∇vi| ≤ 0

where the last inequality is a consequence of Lemma 7 and Lemma 8. Consider finally the
least-squares stabilization term J(U, vi):

∑

K

1

2

∫

∂K

γh2
∂K [n · ∇U ][n · ∇vi]ds

+Cγ,β

∫

Si

h2
∂K max

e∈K
|[n · ∇U ]e| sign(τ · ∇U) τ · ∇vi ds

≤ h2
K

γ

2
‖[n · ∇U ]‖L1(S̃i)

‖∇vi‖L∞(Si)

−Cγ,βh
2
K‖max

e∈K
|[n · ∇U ]e|‖L1(S̃i)

min
Si

|τ · ∇vi| ≤ 0.

It follows that all three contributions are negative which leads to a contradiction, since the
right hand side is positive. Hence a function U ∈ Vh presenting a local minimum in node Si
can not be solution to the discrete problem. The same argument may be repeated if there
are several connected nodes which are taking the same minimal value by choosing a test
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function v which takes the value 1 in all these nodes. Since there can be no local minimum
in the interior of the domain and U = 0 on the boundary we conclude that U ≥ 0. �

Remark 6. We note that this holds true also for elliptic problems, allowing for the discrete
maximum principle to hold in this case on meshes that are not strictly acute. However when
ε > h we do not expect the shock capturing term to have the right order. The σ > 0 case
may be included in the above framework, either by using nodal quadrature (lumped mass)
for the source term, or by adding a shock-capturing term tailored to control the source term.
For further detail on these issues we refer to [4].

Remark 7. The above form of Ψ(U) has been chosen in order to enhance clarity of the
argument, however it is not the minimal coefficient assuring a DMP. Indeed a more detailed
study allows for a minimal shock capturing term where each of the terms is accounted for
separately.

3. Numerical examples

In this section we will illustrate the theoretical results obtained above with some com-
putational experiments.

3.1. Convection-diffusion-reaction. The model problem (2.1) is considered, choosing
σ = 1, β = (1, 0) and ε = 10−5, corresponding to the convection dominated case. We let
Ω = [0, 1]× [0, 1] and use two different source terms f in order to get the following exact
solutions, see figure 1

• Test case 1: u = exp(− (x−0.5)2

aw
− 3(y−0.5)2

aw
),

• Test case 2: u = 1
2
(1− tanh(x−0.5

aw
)).

Figure 1. The two exact solutions, left: the Gaussian, right: the hyperbolic tangent.

For the Gaussian the parameter controlling the slope was chosen to aw = 0.2 and for the
hyperbolic tangent the parameter was chosen to aw = 0.05. Two different types of meshes
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SD ES EC
N L2 H1 L∞ L2 H1 L∞ L2 H1 L∞
20 0.0014 0.17 0.0060 0.0014 0.17 0.0060 0.0020 0.14 0.0040
40 3.3 E-4 0.080 0.0014 3.1 E-4 0.080 0.0014 3.7 E-4 0.070 0.0010
80 7.9 E-5 0.040 3.5 E-4 7.7 E-5 0.040 3.5 E-4 8.5 E-5 0.034 2.9 E-4

Table 1. Convergence results for test case 1 on mesh 1

SD ES EC
N L2 H1 L∞ L2 H1 L∞ L2 H1 L∞
20 0.0023 0.20 0.0070 0.0025 0.20 0.0070 0.0050 0.20 0.010
40 5.4 E-4 0.10 0.0016 5.8 E-4 0.097 0.0017 8.1 E-4 0.097 0.0013
80 1.4 E-4 0.050 3.5 E-4 1.5 E-4 0.048 3.9 E-4 1.7 E-4 0.048 3.3 E-4

Table 2. Convergence results for test case 1 on mesh 2

have been used, illustrated in figure 2, both are based on square elements, in the first case
(denoted mesh 1 ) they are cut into four triangles and in the other (denoted mesh 2 ) the
square elements are cut into two triangles, with the diagonal chosen randomly. We have

Figure 2. The two different meshes used, left mesh 1, right mesh 2

computed the solution using the streamline diffusion method, edge stabilization, with the
term given by (2.3) (abbreviated EC) and the one given by (2.5) with γβ⊥ = 0 (abbreviated
ES). The stabilization parameter for the edge stabilization was choosen to γ = 0.025 and
no shock capturing was used. The solutions were computed on three consecutive meshes
having N = 20, N = 40 and N = 80 elements on each side respectively. We present the
errors in the L2 norm, the H1 norm and the L∞ norm for the three methods applied to
the two test cases in tables 1 to 4.

For the first test case we note the following approximate convergence orders
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SD ES EC
N L2 H1 L∞ L2 H1 L∞ L2 H1 L∞
20 0.0051 0.63 0.019 0.0068 0.76 0.039 0.0084 0.6 0.037
40 0.0014 0.34 0.0052 0.0015 0.37 0.0067 0.0015 0.29 0.013
80 3.4 E-4 0.17 0.0013 3.5 E-4 0.18 0.0017 3.3 E-4 0.14 0.0045

Table 3. Convergence results for test case 2 on mesh 1

SD ES EC
N L2 H1 L∞ L2 H1 L∞ L2 H1 L∞
20 0.015 0.90 0.067 0.017 0.97 0.073 0.013 0.75 0.06
40 0.0060 0.65 0.032 0.0060 0.061 0.03 0.0029 0.35 0.014
80 0.0020 0.45 0.014 0.0020 0.45 0.015 6.6 E-4 0.17 0.0044

Table 4. Convergence results for test case 2 on mesh 2

• ‖u− uh‖0,Ω ≈ O(h2)
• ‖∇(u− uh)‖0,Ω ≈ O(h)
• ‖u− uh‖0,∞ ≈ O(h2)

on both meshes. We note that the edge stabilization method ES, using the jumps only in the
streamline derivative gives results very similar to that of the streamline–diffusion method,
whereas the method EC, where the jump of the whole gradient is used for stabilization
gives slightly larger errors on the coarsest mesh. On finer meshes the errors of all three
methods are comparable.

For the second test case the results differ dramatically for the two meshes. On mesh 1
the behavior of the three methods compare to that of the previous testcase. One can note
a slight degradation in the L∞ convergence for for the method EC compared to the other
methods.

In the last case, test case 2 on mesh 2, the velocity is aligned with the mesh and or-
thogonal to the gradient, in this case the L2 norm convergence of SD and ES degenerates
to approximately O(h3/2), the H1 norm convergence to O(h1/2) and the L∞ norm con-
vergence degenerates to O(h). The method EC on the other hand, having some intrinsic
crosswind diffusion, retains optimal convergence order in both L2 and H1 and shows only
a minor loss of convergence in L∞. We conclude that ES, the edge stabilization using
the stabilizing term with only streamline derivative jumps (2.5) behaves essentially as the
streamline diffusion method, whereas EC where the whole gradient jump is taken into
account (2.3) yields a method having the same order but giving somewhat larger errors
especially on coarser meshes, on the other hand, this latter method is more robust and
does not seem degenerate to O(h3/2) in the same fashion as methods giving only diffusion
in the streamline direction does.

3.2. Outflow layers and discrete maximum principle. In this section we will show
qualitatively the loss of stability in outflow layers discussed in remark 2 and how this
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instability can be countered using the shock capturing term proposed in section 2.4. We
propose a classical testcase with a convection–diffusion problem, (σ = 0, |β| = 1, η = 10−5).
The geometry, the boundary conditions and the orientation of β are resumed in figure 3.

55

β

U=0

U=1

Figure 3. Boundary conditions and flow orientation, for outflow layer test
case.

As was noted in [4] the DMP satisfying shock capturing methods result in very ill
conditioned non-linear equations due to the lack of continuity of the operator. We counter
this by regularizing the sign operator, replacing it by signε defined by signε(x) = tanh(x/ε),
we choose ε = 1 and Cβ,γ = 10, a choice for which Newton’s method remains reasonably
well behaved and spurious oscillations are eliminated. The results of the three methods

Figure 4. Outflow boundary layer testcase using SD, left without shock
capturing, right with shock capturing
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Figure 5. Outflow boundary layer testcase using ES, left without shock
capturing, right with shock capturing

Figure 6. Outflow boundary layer testcase using EC, left without shock
capturing, right with shock capturing

method SD ES EC
SC 0.38 0.99 1.2
No SC 20 95 85

Table 5. Maximum violation of the DMP in % for the different methods

applied with and without shock capturing term is presented in figure 4-6. We note the
large oscillations on the outflow layer for both edge stabilization approaches. In the case
of the streamline diffusion method the violation of the DMP is localised essentially at
the inflow in this case. The maximal overshoot for the respective cases are reported in
table 5. Although the weaker ouflow stability of the edge stabilization method results in
huge overshoots we see that the DMP satisfying shock capturing term wipes them out
almost entirely, the remaining violation of the DMP of about one percent is due to the
regularization of the sign operator, see [3].
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