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ADAPTIVE STRATEGIES AND ERROR CONTROL FOR COMPUTING
MATERIAL FORCES IN FRACTURE MECHANICS

PER HEINTZ, FREDRIK LARSSON, PETER HANSBO, AND KENNETH RUNESSON

Abstract. The concept of material forces pertains to a variation of the inverse motion
map while the placement field is kept fixed. From the weak formulation of the self-
equilibrating Eshelby (material) stress tensor it turns out that the classical J-integral
formulations in fracture mechanics are just special cases due to the choice of particular
weight functions. In this contribution, we discuss a posteriori error control of the material
forces as part of an adaptive strategy to reduce the discretization error to an acceptable
level. The data of the dual problem involves the quite non-conventional tangent stiffness
of the (material) Eshelby stress tensor with respect to a variation of the (physical) strain
field. The suggested strategy is applied to the common fracture mechanics problem of a
single-edged crack, whereby different strategies for computing the J-integral are compared.
We also consider the case in which the crack edges are not parallel, i.e a notch.

1. Introduction

In this paper we discuss a goal-oriented error control algorithm for computing material
forces in fracture mechanics. For an in-depth discussion of the theoretical background
and the design of the algorithm for computing the material forces from the finite element
solution, we refer to Steinmann et al. [1],[2]

The considered goal-quantities are derived from an equilibrium assumption and their
corresponding linearization are presented as part of the data to the dual problem. We
make a comparison between the different methods and present some numerical results. We
also consider the case where the crack edges are not parallel so that the contribution from
the edges can not be neglected.

The outline of the paper is as follows: In section 2 we recall the mathematical framework
behind the adaptive strategy. In section 3, we give a brief introduction to the concept of
material forces and its relation to the classical J-integral formulations in fracture mechanics.
In section 4, we discuss some aspects on the chosen goal functionals and their linearization.
Finally, in section 5 we consider the model problem of a single edge crack/notch in a linear
elastic plate, whereby we present some adaptive results together with some conclusions.
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2. Error Control based on a Dual Solution

We give a short review of the theoretical background and refer to [3], [4] and [5] for more
in-depth discussions. See also [6] for work on goal-oriented a posteriori error estimates in
elastic fracture mechanics.

The weak form of the primal problem is described with its semi-linear and linear forms

Find u ∈ V : a(u; v) = F (v) ∀v ∈ V.(2.1)

The FE approximation yields uh ∈ Vh and we are interested in the error in a particular
quantity. We denote the exact quantity by Q(u) and introduce E(u,uh) that measures
the difference between the exact and the approximated quantity

E(u,uh) = Q(u) − Q(uh).(2.2)

The directional derivative for E(u,uh) in the direction w is defined as

E ′(u,uh; w) =
∂

∂ε
E(u + εw,uh)|ε=0,(2.3)

and the secant form of E(u,uh) is obtained as

ES(u,uh; w) =

∫ 1

0

E ′(ū(s),uh; w)ds,(2.4)

where ū(s) = uh + se. Choosing w = e := u − uh leads to

ES(u,uh; e) = E(u,uh) − E(uh,uh) = E(u,uh).(2.5)

The dual bilinear form a∗
S
(u,uh; w,v) is defined as

a∗
S
(u,uh; w,v) = aS(u,uh; v,w) =

∫ 1

0

a′(ū(s),v; w)ds,(2.6)

where aS(u,uh; v,w) is the secant stiffness of the primal problem. The abstract variational
format of the dual problem is now defined as

Find ϕ ∈ V : a∗
S
(u,uh; ϕ,v) = ES(u,uh; v) ∀v ∈ V.(2.7)

Using the above definitions, the following exact error representation holds with v = e

ES(u,uh; e) = a∗
S
(u,uh; ϕ, e) = aS(u,uh; e,ϕ)

= aS(u,uh; e,ϕ − πhϕ)

= F (ϕ − πhϕ) − a(uh; ϕ − πhϕ).(2.8)

The third equality is obtained using the Galerkin orthogonality. In an adaptive scheme, the
error representation formula is evaluated numerically on the element level, and elements
with large contribution to the total error are chosen to be refined to the next grid-level.
Remark: When the primal problem is linear and symmetrical we have

a∗
S
(u,uh; ϕ,v) = a(ϕ,v). �(2.9)
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3. Material forces and the J-integral in fracture mechanics

3.1. Preliminaries. Subsequently, we consider the case of small strains and quasi-static
loading conditions. In absence of physical volume forces the physical (Cauchy) stress σ

fulfills the quasi-static equilibrium equation

∇ · σT = 0 in Ω.(3.1)

Similarly, in the absence of material volume forces, the material (Newton-Eshelby) stress

Σ̃ is also self-equilibrating

∇ · Σ̃T
= 0 in Ω.(3.2)

The Newton-Eshelby stress is defined as

Σ̃
def
= WI − HT · σ,(3.3)

where we used the notation H(u) = u ⊗ ∇ and W is the strain energy density. The

definition of Σ̃ in (3.3) is commonly adopted as the generic material stress tensor in the
mechanics of fracture and defects. Restricting the present discussion to linear elastic re-
sponse, we have

W (u) =
1

2
ε(u) : E

e : ε(u) =
1

2
H(u) : E

e : H(u),(3.4)

σ(u) = E
e : ε(u) = E

e : H(u),(3.5)

where ε(u)
def
= H(u)sym is the (small) strain operator and E

e is the constant elastic stiffness

tensor. It appears that Σ̃ can be computed a posteriori when the solution u to the direct
motion problem is available.

Consider now an arbitrary subdomain A ⊂ Ω with boundary Γ. From equilibrium (3.2),
the resultant to the material tractions along Γ must vanish

∫

Γ

Σ̃ · n dΓ = 0,(3.6)

where n is the outward unit normal to Γ. We now consider the case when the boundary
is non-smooth such that Γ can be decomposed into a regular part Γr and a singular part
Γs (comprising a notch, a crack tip, etc.) with Γ = Γr ∪ Γs and Γr ∩ Γs = ∅, see Figure 1.
We use (3.6) to single out the resultant vector force on the singular part Γs

F mat
def
= −

∫

Γs

Σ̃ · n dΓ =

∫

Γr

Σ̃ · n dΓ.(3.7)

We now define the (generalized) J-integral as the projection of F mat in the direction of a
possible unit extension e of the notch, crack, etc

J
def
== e · F mat =

∫

Γr

e · Σ̃ · n dΓ.(3.8)
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Figure 1. Arbitrary subdomain with regular (Γr = Γr1 + Γr2+ + Γr2−) and
singular (Γs) parts. a) Notch with concentrated force acting on singular point
and b) straight crack and J-integral.

3.2. Different formats of the J-integral. Consider the weak format of (3.2), which can
be rewritten as

Fmat(w)
def
= −

∫

Γs

w · Σ̃ · n dΓ =

∫

Γr

w · Σ̃ · n dΓ −
∫

A

H(w) : Σ̃ dA,(3.9)

for all virtual displacements w(x) of sufficient regularity. Next, we consider the special
case of a straight, traction-free, crack, which is tested for a possible extension in the same
direction, see Figure 1.

It is interesting to note that the J-integral in this case can be retrieved from (3.9) in
three different ways:

• Contour integral format
Setting w(x) = e|| (constant) in (3.9) gives

J = Fmat(e||) =

∫

Γr1

e|| · Σ̃ · n dΓ,(3.10)

where it was used that H(e||) = 0 in the subdomain A and that the contribution
from the crack faces vanishes (since e|| · n = 0 and σ · n = 0).

• Domain integral format
Setting w(x) = q(x)e|| with q = 1 on Γs and letting q decay within the chosen
domain until q = 0 at Γr1 , we obtain from (3.9)

J = Fmat(qe||) = −
∫

A

H(qe||) : Σ̃ dΩ = −
∫

A

(e|| ⊗∇q) : Σ̃ dΩ,(3.11)

where it was used that the boundary integral vanishes on Γr1 (since q = 0). Intro-
ducing the material force resultant

F mat(q)
def
= −

∫

A

Σ̃ · ∇q dΩ,(3.12)
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as a vector functional of the chosen q(x) within the chosen domain A yields

J = e|| · F mat(q).(3.13)

Remark: In practice, q(xc) = 1 at the crack tip x = xc. �

• Node integral format
As a special case of (3.13), due to the possibility to choose the subdomain arbi-
trary, we consider the limit situation when A shrinks to nothing. Letting A be
parametrizised by a typical radius r, we formally obtain

J = lim
r→0

Fmat(qe||) = lim
r→0

e|| · F mat(q).(3.14)

Remark: The notation ’node integral format’ alludes to the corresponding finite
element approximation, cf. below. �

Further background material on the contour and domain formats for computing J can be
found in [7], [8] and [9].

3.3. Finite element approximation. In a finite element setting we choose w(x) ≈
wh(x) =

∑

n

Nn(x)W n, where Nn is the basis function associated with the node at x = xn

and W n is the nodal displacement vector. Hence, we obtain

Fmat(wh) =
∑

n

W n · F n

mat,(3.15)

where we introduced

F n

mat

def
=

∫

Γr
n

NnΣ̃ · n dΓ −
∫

An

Σ̃ · ∇Nn dΩ,(3.16)

i.e. F n

mat is the material nodal force (vector) associated with the basis function N n for
n = 1, 2, 3, .., N , and where An ⊂ A is the part of A where Nn has support. Moreover,
Γn is the boundary of An and in order to account for singularities we decompose Γn as

Γn = Γr1
n
∪ Γr2+

n
∪ Γr2−

n
∪ Γs

n
. Expanding q(x) =

∑

n

Nn(x)Qn, we may thus summarize:

• Domain integral format

Jh(u) = −
∑

n

Qn

∫

An

(e|| ⊗ ∇Nn) : Σ̃(u) dΩ.(3.17)

• Node integral format

Jh(u) = −
∫

Anc

(e|| ⊗ ∇Nnc) : Σ̃(u) dΩ.(3.18)
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Figure 2. Three different situations: a) internal node, b) external node
and c) crack tip node.

3.4. The internal, external(notch) and crack tip node. Consider the three different
situations schematically described in Figure 2.

• Internal node
In this case Nn = 0 on Γr1

n
. Moreover, the contributions from Γr2+

n
and Γr2−

n
are (in

the continuous formulation) self-equilibrating. This yields

F n

mat = −
∫

An

Σ̃ · ∇Nn dΩ.(3.19)

In the discrete setting there are jumps in the tractions along Γr2
n

, hence, the contri-
bution is in general not self-equilibrating. For a sufficient resolution, however, the
contribution is small and could be neglected without loss of accuracy.

• External (Notch) node
In this case Nn = 0 on Γr1

n
, whereas Nn 6= 0 on Γr2+

n
∪Γr2−

n
. Hence, the contribution

from the surface integral does not vanish and we have

F n

mat =

∫

Γr2
n

NnΣ̃ · n dΓ −
∫

An

Σ̃ · ∇Nn dΩ(3.20)

In case there are no physical tractions along Γr2+
n

∪ Γr2−
n

we have Σ̃ · n = Wn and
the material tractions will not vanish.

• Crack tip node
A special case, the notch degenerates into a crack with parallel surfaces. Further,
in the case that we want to compute the J-integral of a straight, traction free crack
for a possible straight extension, then e|| · n = 0 and the contribution from Γr2

n

vanishes. Hence, (3.20) becomes

F n

mat = −
∫

An

Σ̃ · ∇Nn dΩ(3.21)

For n = nc, defining the crack tip node, we may compute the FE-discretized J ≈ Jh

from the domain or node integral format by setting n = nc in (3.21).
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4. Goal quantities and their linearization

4.1. Contour integral format. Choosing the contour integral format for computing J

leads to

Q(u) =

∫

Γ

e|| · Σ̃(u) · n dΓ,(4.1)

with the associated linearization

E ′(u,uh; w) =

∫

Γ

(

e|| ⊗ n
)

: C̃ : H(w) dΓ,(4.2)

where C̃ is the tangent stiffness tensor associated with the Newton-Eshelby material stress
Σ̃ with respect to a variation of the (physical) strain field:

C̃ = I ⊗ σ − I⊗σ − HT · Ee.(4.3)

In practice, we linearize C̃ using a p-refined approximation for u.
The contour Γ can, without restriction on the theoretical applicability, be chosen as a

path of element edges (defining the boundary of A) in the finite element subdivision of Ω.

4.2. Domain integral format. Choosing the domain integral format for computing J

leads to

Q(u) = −
∫

A

(

e|| ⊗ ∇q
)

: Σ̃(u) dΩ,(4.4)

with the associated linearization

E ′(u,uh; w) = −
∫

A

(

e|| ⊗ ∇q
)

: C̃(ū) : H(w) dA.(4.5)

In the finite element approximation of Q(u) = Jh(u) ≈ Jh(uh), the expression (3.17) is
used.

4.3. Node integral format. Choosing the node integral format for computing J leads to
(in practice)

Q(u) = − lim
r→0

∫

Anc

(

e|| ⊗ ∇Nnc

)

: Σ̃(u) dΩ,(4.6)

where r is a typical diameter of Anc
. The associated linearization obviously becomes

E ′(u,uh; w) = − lim
r→0

∫

Anc

(

e|| ⊗ ∇Nnc

)

: C̃(ū) : H(w) dA.(4.7)

In the finite element approximation Q(u) = Jh(u) ≈ Jh(uh), the expression in (3.18) is
used.

Remark: At any ’regular’ node, the associated material force F n

mat should vanish at
sufficient mesh refinement, i.e.,

lim
h→0

e|| · F n

mat =

(

J when n = nc

0 when n 6= nc

)

.(4.8)
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Hence, it would be possible to define a global measure Q that accounts for this fact.
For example, choosing A = Ω and w = u (the exact solution), we expect to obtain
Fmat(u) = u(xc) · F mat. At least, the values F n

mat should give information that can be
used to move the nodes and improve the quality of the mesh. Indeed, such a strategy was
recently suggested by Mueller et al. [10]. �

5. A comparison between the integral formats for computing J

Consider the pre-cracked plate in Figure 3 with the dimension w = 0.5m, h = 1.0m,
and crack length a = 0.1m. The plate is loaded along its upper boundary by the traction
t = [0, 1e+06]T N. The elasticity parameters are E = 210e+09Pa and ν = 0.3.

Figure 3. Plate with a single-edged crack of length a.

Figure 4 shows how the different methods used for computing J result in different
adapted grids to meet the required tolerance TOL = 0.5%. Figures 5-6 show the con-
vergence rate and the effectivity index η, respectively. In these figures we use the notation

h̄ =
m(Ω)√

N el
, η =

F (ϕ̃ − πhϕ̃) − a(uh; ϕ̃ − πhϕ̃)

Q(u) − Q(uh)
,(5.1)

where N el is the number of elements in the mesh. The improved dual solution ϕ̃ is
computed with quadratic approximation. In Figure 5 we can see that the convergence rate
is much higher for the contour and domain integral methods. The reason for this is that
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linear elements do not capture the 1√
r

singularity very well. The plot in Figure 6 shows

that the error representation formula for the node integral method gives an error estimate
approximately 40% below the actual error, which should be compared with 10 − 20% for
the other considered methods.

Figure 4. Adaptive meshes for the different methods used to compute J .
From left: initial mesh and contour Γ, contour integral method, domain
integral method and, finally, node integral method.
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5.1. Edge notch. We now concider the case when the crack edges are not parallel such
that the contribution from Γr2 is not zero.
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Figure 7. The discrete material force vectors acting on the nodes. a)
Coarse mesh and large material forces along the notch boundary and b)
fine mesh and more localized boundary effect.

In Figure 7 we show the resulting discrete nodal material force vectors obtained for
two different meshes. As expected, the internal and external forces decrease for a refined
mesh. The large forces acting around the crack tip node are due to the inability to resolve
the singularity with ordinary elements. In this figure we use linear approximation, i.e.
piecewise constant stresses. An asymptotic study of the contribution from the boundary
term, for a sequence of refined grids is shown in Figure 8. For a typical non-singular node
on the boundary the material forces vanish for a sufficiently refined mesh. However, for a
singular (crack tip) node the contribution is still about 1%. This shows that the boundary
term can not be neglected when computing the material force vector for a singular node.

5.2. Summary and outlook. We have recalled the theory for goal-oriented adaptivity
together with an introduction to the ’material force’ concept. An adaptive strategy was
applied to the fracture mechanics problem of a straight traction free crack, whereby differ-
ent methods to compute the energy release rate were compared. The results show that the
contour and domain integral formulations yield the best results in terms of convergence
rates and effectivity index. It was also noticed that the contribution from the crack faces
cannot be neglected in case the crack edges are not perpendicular to the anticipated direc-
tion of crack extension. Future development would include the incorporation of a fictitious
crack with the appropriate cohesive law. Moreover, curved cracks and closed cracks with
friction, where the boundary term also includes the physical tractions, should be studied.
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