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A VARIABLE DIFFUSION METHOD FOR MESH SMOOTHING

JOAKIM HERMANSSON AND PETER HANSBO

Abstract. In this note we suggest a new approach to mesh smoothing, based on a
combination of Laplacian smoothing and Winslow’s method. Using our approach, we can
avoid mesh folding and maintain/produce element stretch. We also make a comparison
with a method due to Giuliani and show that the latter method cannot ensure that folding
is avoided.

1. Introduction

Mesh smoothing techniques are used, e.g., in mesh generation processes and in arbitrary
Lagrangian–Eulerian (ALE) problems. The main purpose in mesh smoothing is from a
given mesh configuration, with an algorithm, automatically move the nodes to new posi-
tions and thereby generate a mesh with as good elements as the algorithm can carry out.
In ALE applications the computational domain can undergo large deformations, and in
order to represent the physical domain and thus the physical problem the mesh has to
change shape in the same way as the domain. Here we have two possibilities: create a
new mesh or move the nodes with a mesh smoothing algorithm using the boundary nodes
as prescribed variables. If feasible, the latter variant is preferable since the computational
cost is lower.

There are several mesh smoothing algorithms available, perhaps the simplest being the
Laplacian smoother, see [1, 3]. Its simplicity makes it attractive for mesh smoothing
purposes, but unfortunately it has the drawback that elements can become folded when
the domain boundaries are concave. The problem of folding is less severe in mesh smoothing
than in mesh generation, since the points in the mesh are already distributed according to
geometrical constraints. Nevertheless, there is usually a marked crowding of nodes in the
vicinity of concave boundaries that is highly undesirable. A method that attempts to avoid
this problem, based on minimization of geometrical measures (such as the distortion and
the squeeze of the elements) was proposed by Giuliani [2]. However, we have also found
that the elements can become folded in Giuliani’s method in some cases (cf. below).
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A common problem with the mentioned methods is that they cannot maintain element
stretches during the smoothing process (if such are present) or produce stretched elements
in their original formulation (for earlier examples of such methods, see, e.g., Shashkov and
Knupp [7] and Anderson [8]). Our purpose in this paper is twofold: we wish to find simple
modifications of the existing Laplacian and Guiliani smoothing methods such that

(1) the reulting methods maintain stretch, and
(2) avoid crowding of points (or folding) near concave boundaries.

For these purposes, we introduce a new smoothing algorithm, which is based on combining
the the linear Laplacian smoother and (a modification of) the nonlinear, but related,
Winslow’s method [1]. A parameter 0 ≤ p ≤ 1 has to be chosen by the user, and the two
extremes p = 0 and p = 1 correspond to Laplacian and a modified Winslow smoothing,
respectively. We will also incorporate ideas from Reference [3], in the proposed approach
and in Giuliani’s method, of how to maintain, or produce, element stretches during the
mesh smoothing process. The primary application in this work is mesh smoothing on
existing meshes, for instance mesh smoothing arising in arbitrary Lagrangian-Eulerian
problems or in cases where it is desirable to control the element stretches. We emphasize
that this problem is considerably easier than the full mesh generation problem, where
typically a logically rectangular domain is mapped to the physical domain. Thus, for
example, the original Laplacian smoothing is far from robust enough for mesh generation
purposes but can almost always be used to smooth an existing mesh without risk of folding.

2. THE VARIABLE DIFFUSION SMOOTHING METHOD

2.1. Auxiliary plane. We begin by recalling the ideas of how to produce or maintain
stretched elements from [3]. To incorporate stretched elements in mesh smoothing an
auxiliary (χ1, χ2)-plane is introduced. In this plane, the element is supposed to be un-
stretched. The smoothing algorithm is then expressed in its original form in the auxiliary
coordinates χ. Solving for χ we will get the mesh configuration in the auxiliary plane,
according to the chosen mesh smoother, but, since we are interested to control the element
stretches, we do not actually solve for χ. Instead we incorporate the Jacobian of transfor-
mation, i.e., the deformation gradient, in the smoother to map the element geometry from
the (χ1, χ2)-plane to the (x1, x2)-plane, i.e., our physical or final plane where the element
may be stretched. Depending on the smoothing algorithm this can be done explicitly or
implicitly. The explicit approach is applicable for mesh smoothers which are expressed
in position coordinates, while the implicit approach is suitable for mesh smoothers which
are expressed as differential equations. In the latter the Jacobians of transformation are
invoked in the weak form of the differential equation and are predefined by the user. The
Jacobian describes the mapping from the (χ1, χ2)-plane to the (x1, x2)-plane for an ele-
ment, and here we have chosen it to contain the element’s stretches and its corresponding
directions. If the Jacobians are chosen to be the identity matrix the auxiliary and the
physical plane will coincide.
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Figure 1. The equilateral reference triangle.

2.2. Winslow and modified Winslow methods. We start by establishing the equation
which defines Winslow smoothing for the auxiliary coordinates χ(ξ). The desired element
stretches will after that be built in the map from the auxiliary (χ1, χ2)-plane to the physical
(x1, x2)-plane, following Reference [3], in the weak form of the Winslow equation.

Winslow smoothing is based on solving the problem

(2.1) α
∂2χ

∂ξ2
1

− 2β
∂2χ

∂ξ1∂ξ2

+ γ
∂2χ

∂ξ2
2

= 0,
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(
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∂ξ2

)2
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(
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)2

,

β =
∂χ1

∂ξ1

∂χ1

∂ξ2

+
∂χ2

∂ξ1

∂χ2

∂ξ2

,

γ =

(

∂χ1

∂ξ1

)2

+

(

∂χ2

∂ξ1

)2

,

cf. [1, 4]. We can rewrite problem (2.1) as

(2.2) ∇ξ · A∇ξχi + b · ∇ξχi = 0, i = 1, 2,

where

A :=

[

α −β

−β γ

]

, b :=

(

∂β

∂ξ2

−
∂α

∂ξ1

,
∂β

∂ξ1

−
∂γ

∂ξ2

)

.

Writing (2.2) in variational form, we seek χi such that

(2.3)

∫

Ωξ

(

∇ξvi · A∇ξχi + vi b · ∇ξχi

)

dΩξ = 0

for all admissible vi, element-wise on the reference domain, see Figure 1. Since we here
deal with meshes built up from triangles the reference element is an equilateral triangle
because of its isotropic properties. If the mesh was built up from quadrilateral elements
the reference element would be a square. The location and orientation of the reference
coordinate system does not matter since the differential equation is (Galilean) invariant.

We now define a new method based on the following numerical experience:
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(1) The b – term, which makes the method unsymmetric, does not affect the crowding
of nodes near concave boundaries.

(2) The modified Winslow method as defined by (2.3) without the b–term tends to
generate elements of equal size, counteracting local refinement.

With these findings in mind, we propose the following approach: seek χi such that

(2.4)

∫

Ωξ

∇ξvi · A
p
∇ξχi dΩξ = 0

for all admissible vi. Here 0 ≤ p ≤ 1 is a free parameter to be chosen by the user. We note
that p = 0 corresponds to Laplacian smoothing (cf. [3]), and p = 1 is a modified Winslow
smoothing.

Remark. The omission of b will be of marked importance in the case of mesh genera-

tion. We will show the effect of including (simplistically) vs. omitting b in the numerical
examples.

Remark. Note that A = A(∇ξχi) can be computed elementwise on a given finite element
mesh. Ap can then be computed by finding the eigenvalues and eigenvectors to A.

2.3. Handling stretched meshes. The relation (2.4) can be used as a smoother if the
element sizes are supposed to be equal-sized. To extend the variable diffusion method to
stretched meshes, we must also use the map χ → x, which is given analytically beforehand
and represents the stretch. Defining
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,

we can apply the chain rule to find

∇ξχ = C∇ξx,

where
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Thus the final version of (2.4) is to seek x = x(ξ) such that
∫

Ωξ

∇ξv ·

[

Ap 0
0 Ap

]

C∇ξx dΩξ = 0

for all v = v(ξ).
Now, the geometry on each element is approximated as

x ≈ ϕT(ξ1, ξ2)X,

where ϕ contains the local shape functions, expressed in the local coordinates (ξ1, ξ2), and
is given by

ϕT(ξ1, ξ2) =

[

ϕ1 0 ϕ2 0 · · · ϕn 0
0 ϕ1 0 ϕ2 · · · 0 ϕn

]

.

Furthermore, XT = [X1

1 , X
1

2 , X
2

1 , X
2

2 , · · · , Xn
1 , Xn

2 ] is the vector containing the new element
nodal coordinates and n is the number of element nodes. Thus, A and J involve the
two maps ξ → χ → x and can be computed using the element approximation and the
analytically given map χ → x (which also directly defines C).

The nonlinear boundary value problem is solved using the foregoing iteration’s solution
to update A on each element. The components in the matrix C, see (2.5), are still unknown
and can be computed from the inverse of the Jacobian. The Jacobian, which defines the
mapping χ → x, is defined as

Jij =
∂xi

∂χj

.

This map will be user defined and constructed using the principal element stretches and
its principal directions as given, see [3]. The Jacobian (also referred to as the material
deformation gradient) is constructed as

J = QT

[

Λ1 0
0 Λ2

]

Q,

where Λ1 and Λ2 are the principal stretches and Q = [n1, n2] contains the corresponding
principal directions. The stretch is defined, e.g., in one dimension as the current length
divided by the original length. In order to compute the matrix C we need the inverse of
the Jacobian, which can be computed as

(2.6) J−1 =
∂χi

∂xj

= Q











1

Λ1

0

0
1

Λ2











QT.

All tools which are needed to smooth with the variable diffusion smoothing method with
stretched elements are now established. Numerical examples are given in Section 4.
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Figure 2. (a) A generic triangle. (b) Influence domain on a quadrilateral patch.

3. GIULIANI SMOOTHING OF STRETCHED ELEMENTS

The Giuliani smoothing method is based on minimization of geometrical measures such
as the distortion and the squeeze. The smoothing procedure is conducted for each interior
node i (or a sliding boundary node) at each time for all movable nodes on the mesh. For
each movable node i there is a belonging influence domain, which is defined as the set
of triangles which connect node i with its neighboring nodes, see the shadowed area in
Figure 1b. The influence domain can be built up from quadrilateral or triangle elements
(in two dimensions). The idea is to iteratively minimize the distortion and the squeeze for
all influence domains on the mesh. The function to minimize on each influence domain is
defined as

E =
∑

N

(

h − h̄

h̄

)2

+

(

2d

b̄

)2

,

where N is the number of elements on the influence domain, h the height, d the distortion, b

the base, see Figure 1a, and the superscribed bar denotes the average value on the influence
domain. The resulting scheme which minimizes the distortion and the squeeze can be
seen in Reference [2]. To incorporate the idea in [3] of using a predefined Jacobian of
transformation, we choose to transform the node coordinates on each influence domain to
the auxiliary plane (χ1, χ2) in order to smooth the mesh. The displacements of node i are
then transformed back to the physical plane and the node coordinates can be updated. The
node coordinates are transformed to the auxiliary plane using the inverse of the Jacobian,
see (2.6), as

dx = J dχ ⇒ χ = J−1x + D,

where the integration constant can be set to D = 0. This because the smoothing algorithm
only uses differences. To avoid folded elements during the transformation we choose to
transform each influence domain using a local coordinate system located at node i. The
background for this is that if one of the nodes on the influence domain is located in an
area which is defined to be stretched and the other nodes are not, and the domain is
located ‘far away’ from the global origin, elements can become folded. This can also occur
if neighboring nodes are located in different zones with a large difference in the stretch. For
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(a) (b) (c)

Figure 3. A quadrilateral patch smoothed with Giuliani’s method. (a) The
(failed) patch. (b) The influence domain. (c) The new node position.

the original smoothing scheme without stretched elements, Sarrate and Huerta [5] claims
that a node cannot depart from its influence domain since it is an unstable position in
terms of distortion and squeeze. We cannot find that this holds for an arbitrary element
configuration; for instance, the node in Figure 3b will depart from the influence domain.
The new node position is seen in Figure 3c.

4. NUMERICAL EXAMPLES

In the first two examples we investigate the proposed variable diffusion smoothing
method’s ability to withstand folded elements. We start to examine the element con-
figuration where the Giuliani smoother failed, see Figure 3 or 4a. For p = 0, i.e., Laplacian
smoothing, the node departs from the domain, see Figure 4c, and for p = 0.1 the node
stays in the domain, see Figure 4d. As can be seen i Figure 4 the elements become more
equal-sized as p increases.

In the second example we examine the method’s ability to withstand folded/bad elements
in problems where the domain undergoes large deformations, e.g., fluid–structure interac-
tion, and where the nodes are moved using a smoothing algorithm instead of remeshing.
Here we choose to displace the top boundary on a unit square, see Figure 5. The Giuliani
smoother produces folded elements close to the top boundary, see Figure 5b, which also
the variable diffusion smoother does for p . 0.8. A good result is achieved for p = 0.9, and
for p = 1 the solution does not converge due to extreme stretching of the elements.

The third example treats the methods’ abilities to smooth a mesh including a curved
boundary with local element refinements, see Figure 6a. The Giuliani smoother does not
preserve the element sizes close to the curved boundary, which was also reported in [5].
The variable diffusion smoother preserves the element sizes for small p, let say p < 0.1.
Again, the solution did not converge for p = 1.

In the fourth example, we produce a stretched layer on the unit square for 1

3
< x < 2

3

with the predefined stretches Λ1 = 0.5 and Λ2 = 1.0, see Figure 7. We note that all
methods are able to produce the desired stretch.

Finally, we show the effect of including the b–term in the smoothing scheme. We have
made a simplistic implementation on bilinear quadrilaterals, where we have directly com-
puted b elementwise (it will not be zero because of the x y–term in the approximation).
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(a) (b) (c)

(d) (e) (f)

Figure 4. A comparison between the proposed variable diffusion method,
with Λ1 = Λ2 = 1, for different p and the Giuliani method, on the mesh con-
figuration which failed for the latter method, see Figure 2. (a) The original
configuration. (b) The mesh smoothed with the Giuliani smoother, and (c)
p = 0 (Laplacian), (d) p = 0.1, (e) p = 0.5 and (f) p = 1 (modified Winslow).

In Figure 8 we show the resulting meshes for 20 × 20 elements. Note that the modified
Winslow scheme (without b) tends to produce more equal-sized elements.

5. CONCLUDING REMARKS

A mesh smoothing approach has been proposed, which is based on a combination of
Laplacian smoothing, see [3], and a modified Winslow’s method, see [1]. A parameter
0 ≤ p ≤ 1, where p = 0 is Laplacian smoothing and p = 1 is a modified Winslow’s
method, has to be chosen by the user. By this approach the features of the Laplacian
smoother and the modified Winslow’s method can be utilized in a better way by a good
choice of the parameter p, where the choice of p depends on the problem. Further, it is well
known that the original Winslow formulation always result in an unfolded transformation
on the continuum level (under certain restrictions on the boundary map), see Knupp and
Steinberg [6]. This is not necessarily the case with our modified version. As noted earlier,
the problem of folding is however considerably less severe for mesh smoothing than for
mesh generation.

Based on our limited set of numerical examples we suggest that a mesh with a concave
boundary or a mesh where the elements are wished to be equal-sized needs a larger p, and
a mesh where local refinements are present needs a small p. During the simulations it
turned out that for p = 1 the solution did not converge for our choice of examples, except
for the failed patch example. In most cases there is no need to choose a large p to avoid
folded elements at concave meshes, a small p is sufficient.



A VARIABLE DIFFUSION METHOD FOR MESH SMOOTHING 9

(a) (b)

(c) (d)

(e)

Figure 5. (a) The original mesh. The mesh smoothed with Λ1 = Λ2 = 1
using (b) Giuliani’s method, the proposed variable diffusion method with p

chosen as (c) p = 0.0 (Laplacian), (d) p = 0.5, and (e) p = 0.9.

Further, the idea in [3] of how to produce, or maintain, stretched elements during smooth-
ing processes has been incorporated in Giuliani’s method, see [2], and in the proposed
variable diffusion smoother. During the numerical simulation it turned out that Giuliani’s
method cannot guarantee that the elements not become folded for all element configura-
tions.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. A mesh with local element refinements at a curved boundary.
The stretches are chosen to be Λ1 = Λ2 = 1. (a) The original mesh. (b) The
mesh smoothed with the Giuliani smoother, (c) p = 0.0 (Laplacian), (d) p =
0.1, (e) p = 0.5 and (f) p = 0.9.
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(a) (b)

(c) (d)

(e)

Figure 7. A mesh with a stretched layer in the interval 1

3
< x < 2

3
. The

stretches were chosen as Λ1 = 0.5 and Λ2 = 1.0. (a) The original mesh. The
stretched layer produced with (b) Giuliani’s method, (c) p = 0.0 (Laplacian),
(d) p = 0.5, and (e) p = 0.9.
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