CHALMERS

FINITE ELEMENT CENTER

<>

PREPRINT 200301

A hybrid method for elastic waves
Larisa Beilina

- . Chalmers Finite Element Center

<« p CHALMERS UNIVERSITY OF TECHNOLOGY
- Goteborg Sweden 2003






CHALMERS FINITE ELEMENT CENTER

Preprint 2003-01

A hybrid method for elastic waves

Larisa Beilina

Chalmers Finite Element Center
Chalmers University of Technology
SE—412 96 Goteborg Sweden
Goteborg, February 2003



A hybrid method for elastic waves
Larisa Beilina

NO 2003-01

ISSN 1404-4382

Chalmers Finite Element Center
Chalmers University of Technology
SE-412 96 Goteborg

Sweden

Telephone: +46 (0)31 772 1000

Fax: +46 (0)31 772 3595

www.phi.chalmers.se

Printed in Sweden
Chalmers University of Technology
Goteborg, Sweden 2003



A HYBRID METHOD FOR ELASTIC WAVES

LARISA BEILINA

ABSTRACT. We study a hybrid finite element/finite difference simulation of the time-
dependent elastic wave equation in two and three dimensions. The method is hybrid in
the sense that different numerical methods, finite elements and finite differences, are used
in different subdomains. The goal of this approach is to combine the flexibility of finite
elements and the efficiency of finite differences.

An explicit hybrid method for the elastic wave equation is presented where the finite
difference schemes and finite element schemes are used explicitly, applying finite differences
on the structured subdomains and finite elements on the unstructured domains.

The hybrid approach is illustrated by the numerical simulations of the elastic wave
equation in isotropic case in two and three dimensions with absorbing boundary conditions.

Comparison of the efficiency of the different approaches is a very important aspect
of this study. In our test cases, the hybrid approach is about 11 times faster in three
dimensional computations than the corresponding highly optimized finite element method.
We conclude that the hybrid approach may be an important tool to reduce the execution
time and memory requirements for large scale computations.

1. INTRODUCTION

In this work we extend our previous study [5] of hybrid finite element /finite difference
methods for the simulation of transient acoustic waves, to waves in elastic media. The
hybrid FEM /FDM combines the efficiency of FDM on structured grids with the flexibility
of FEM on unstructured grids. Our aim is to develop a fast time-domain solver for the
time-dependent wave equation (acoustic, elastic, electromagnetic) which allows efficient
simulation of wave propagation in complex three dimensional geometry.

With such a solver we may approach a large variety of inverse problems occuring in
seismic, non-destructive testing and medical imaging. We have shown part of this potential
in [6] with a study of inverse scattering for the acoustic wave equation, and we plan a similar
application of the elastic wave solver presented in this note.

In order to evaluate the hybrid approach, the elastic wave equation is simulated in
two and three dimensions. The computational domains for this kind of problems often
exhibit large regions where the geometry is simple, and small regions where the geometry
is complex. In this paper, we use the explicit methods to discretize the time-dependent
elastic wave equation in isotropic case. Absorbing boundary conditions are applied at the
boundaries of the computational domain.

Date: 3rd February 2003.
Larisa Beilina, Department of Mathematics, Chalmers University of Technology, S—412 96 Gdoteborg,
Sweden, email: larisa@math.chalmers.se.
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2 LARISA BEILINA

The implementation of the hybrid method is important point of this research. A set
of C++ classes is developed in order to handle space discretizations that consist of both
structured, Cartesian, grids, to be used with finite differences, and unstructured grids, for
usage with finite elements. The techniques of communication between subdomains are also
presented.

We present the performance results to compare hybrid approach with a pure finite el-
ement method, which show that the hybrid method is faster, in particular for problems
where the memory demands are high.

We conclude that our hybrid approach is especially useful for large problems where the
computational domain consists of big regions, where Cartesian grids can be used, together
with relatively small regions, where the geometry is more complex and unstructured grids
have to be used.

The outline of the work is following: in Section 2 we present the mathematical model
of the time-dependent wave equation in elastodynamics, in Section 3 we formulate the
hybrid FEM/FDM method, in Section 4 we present a fully discrete version used in the
computations, in Section 5 we present the numerical simulation of the elastic wave equation
in two and three dimensions together with performance comparison.

2. THE MATHEMATICAL MODEL

2.1. The wave equation in elastodynamic. Wave propagation in a non-homogeneous
anisotropic elastic medium occupying a bounded domain Q € R¢, d = 2,3, with boundary
I, is described by the linear wave equation:

(2.1) pa—%—v-'r = f in Qx(0,7)
at2 ) ) )
(2.2) T = Ceg
(2.3) v o= v o =0
T ot

where v(z,t) C RY, is the displacement, 7 is the stress tensor, p(z) is the density of the
material depending on z € , t is the time variable, T is a final time, and f(z,t) C R?, is
a given source function. Further, € is the strain tensor with components

1,0v; Ov;
-2+ Oy

2'\0x j 8$1

(24) €ij = Eij(’U)

coupled to 7 by Hooke’s law

d d
(2.5) Tij = Z Z Cijki €xt,

k=1 I=1

where C' is a cyclic symmetric tensor, satisfying

(2.6) Cijit = Criij = Cjim-
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If the constants Cjjn(z) do not depend on z, the material of the body is said to be
homogeneous. If the constants Cjjii(z) do not depend on the choice of the coordinate
system, the material of the body is said to be isotropic at the point z. Otherwise, the
material is anisotropic at the point z.
In the isotropic case C' can be written as
(2.7) Cijkr = N6ij0k + p(0i0r + 6utdin),
where 6;; is Kronecker symbol, in which case (2.5) takes the form of Hooke’s law
d
(2.8) Tij = A0y Erk + 20165,
k=1
where A and u are the Lame’s coefficients, depending on z, given by

B FE \— Ev
oo+ " T T+ )1 —2)

where E is the modulus of elasticity (Young modulus) and v is the Poisson’s ratio of the
elastic material. We have that

(2.10)

(2.9)

A>0,pu>0 << E>00<v<1/2

Eliminating the strain tensor using Hooke's law we can verify the elastic wave equation
in terms of v only. In the isotropic case with d = 3 (2.1) then takes the following form:

82’01 6 6’01 8’()2 8’03
p 8t2 B 8—.’131(()\+2M) Bxl +)\8$2 +)\8.’133)
_ 0 ((9’01 0’02
0272 K 61,‘2 89:1
0 81)1 0’03 .
B 8.’E3 M(a.’ﬂg 8.731)) N fl,
82’122 0 8?)2 8’01 8’03
o T aay AT Mg, T T ez,
. 8 81)1 n 8’02
8.5131 H amz 8%1
0 8’02 6’1)3 .
B 8.’173 'u(axg + 81!2)) N f2,
02113 0 8’1)3 61}2 6’01
e T Bay M 2Mgp, A0, T A5s,)
. 0 81)3 61)2 )
8.’132 H 8332 (9.733
0 (9’01 0’03 .
0271 M(al‘g 09:1)) N f3,
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or in more compact form

0%
(2.11) P~ V- (uVv) = V(A +p)V-v) = f.
Inserting a Helmholtz decomposition
(2.12) v=Vop+V x19

with a scalar potential ¢ and a vector potential ¥ into (2.11), we get

2

(2.13) Vo+V xp) =pA(Ve+V x )+ A+ p1)V(V- (Vo +V x 1)),

P@(

which using that
V-(Vg) = Ag,

V- (Vxvy) = 0,

reduces to
0%¢ 0?
We conclude that if the potentials ¢ and v satisfy the wave equations
0%¢
2.1 — — (A +2u)p =
(2.15) Pop —(At2m)he = 0,
0?1
2.16 — —ulYy = 0
(2.16) Pap —HOY :

then v = V¢ + V X 1) satisfies (2.11). We note that v = V¢ corresponds to a pressure
wave with speed

A+ 2,u)1/2

=,

and v = V X % to a shear wave with speed

e (8"

In the pressure wave displacement is parallel to the direction of wave propagation, and
the shear wave is orthogonal to the direction of propagation.

2.2. Communication between FEM /FDM. In many real-life applications of the time-
dependent elastic wave equation ranging from subsurface and underwater imaging to medi-
cal and industrial diagnostics, only a small part of the computational domain 2 is complex,
where unstructured discretization can be used, whereas quite large regions of the computa-
tional domain are sufficiently discretized with simple, Cartesian grids. Consider a domain
consisting of two regions, Qrgy and Qppy. In the relatively small QQpgys subdomain,
we assume that an unstructured discretization is appropriate. In the (2rppjs domain, we
assume that a structured, Cartesian, grid is suitable. Fig. 1 illustrates the domain decom-
position in two dimensions. Our three-dimensional geometries are built up similarly. Fig. 2
shows that the FEM grid is generated such that the thin overlapping domain consists of
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FIGURE 1. Domain decomposition. The hybrid mesh (c) is a combination
of the structured mesh (a) and the unstructured mesh (b) with a thin over-
lapping of structured elements. The unstructured grid is constructed so that

the grid contains edges approximating an ellipse.

Y-A
Y-Axis

1

1
X-Axis X-Axis

(a) A quadrilateral,  split into two triangles.

Z-Axis

X=PAS

(b) A hexahedron, split into six tetrahedra.

FiGURE 2. In the overlapping domain the finite element grid is created by
splitting the structured cells into simplexes as depicted in (a) and (b) for 2D
and 3D, respectively.

simplexes obtained by splitting the structured cells. In the interior part of the FEM grid

the discretization can be only unstructured.
In most of our test cases, we have used the absorbing boundary condition, taken from

[10].
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Fi1GURE 3. Coupling of FEM and FDM. The nodes of the unstructured FEM
grid of (a) is shown in (b), where rings and crosses are nodes which are shared
between the FEM and FDM grids. The remaining nodes are marked with
stars. The ring nodes are interior to the FDM grid, while the nodes crosses
are interior to the FEM grid. At each time iteration, the FDM solution
values at ring nodes are copied to the corresponding FEM solution values.
At the same time at cross nodes the FEM solution values are copied to the
FDM solution values.

2.3. The numerical method. In this section we will formulate the hybrid method, which
uses a hybrid discretization of the computational domain as described in the previous
section.

We observe that the interior nodes of the computational domain belong to either of the
following sets:

wo: : Nodes interior to {2rpas and lying on the boundary of Qrgay,
wy: : Nodes interior to Q2ggy; and lying on the boundary of Qppy,
wy: : Nodes interior to Qrgys and not contained in Qppyy,
wp: : Nodes interior to Qrpys and not contained in Qrgay.

Fig. 3 illustrates a two-dimensional domain where some nodes are located on the ellipse,
which requires an unstructured discretization. The exterior and the interior of the ellipse
may use a structured discretization. Nodes belonging to Q2ppys are not shown.

In our algorithm, we store the nodes belonging to w, and €2y twice, both as nodes
belonging to Qrgy and Qppy. The main loop of the simulation for explicit time stepping
scheme can be formulated as follows:

For every time step we

(1) Update the solution in the interior of Qrpys, i.e. at nodes wp and w,
using FDM.

(2) Update the solution in the interior of Qrgys, i.e. at nodes w, and wy
using FEM.
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(3) Copy values at nodes wy from Qpgy to Qrpas-
(4) Copy values at nodes w, from Qrpy to Qrgas.

3. FINITE ELEMENT DISCRETIZATION.

We now formulate a finite element method for (2.1) based on using continuous piecewise
linear functions in space and time. We discretize Q x [0,7] in the usual way denoting by
K, = {K} a partition of the domain € into elements K (triangles in R? and tetrahe-
dra in R® with h = h(z) being a mesh function representing the local diameter of the
elements), and we let J, = {J} be a partition of the time interval I = [0,7] into time
intervals J = (tg_1,tx| of uniform length 7 = t; — tx_;. In fully discrete form the resulting
method corresponds to a centered finite difference approximation for the second order time
derivative and a usual finite element approximation in space.

To formulate the finite element method for (2.1) we introduce the finite element spaces
Wy defined by :

We = {ve[H'QxD]:v(-,0)=0,vp =0},
WP = {veW":v|gxs € [PU(K) x Py(J)?,VK € K;,VJ € Ji},

where P;(K) and P;(J) are the set of linear functions on K and J, respectively.
The finite element method now reads: Find v, € W}/, such that

k+1 _ 2,0’];: + Uk_l

(3.3) (pvh L ,17) + (qu,’j,Vﬂ)
+ ((A+ﬂ)v.vh,v-5) _ (fk,@) Vo e WP,
vp(0) = v,(0) = 0.

T2

4. FULLY DISCRETE SCHEME

Expanding v in terms of the standard continuous piecewise linear functions ¢;(z) in
space and ;(t) in time and substituting this into (3.3), the following system of linear
equations is obtained:

2 2
1
MV —ovk 4 vh1) = Tk _ T—,uK(évk 1y 3vk + 6vk+1)
P P
72 &

with initial conditions v° = v! = 0.

Here, M is the mass matrix in space, K is the stiffness matrix, D is the divergence
matrice, k = 1,2,3. .. denotes the time level, F* is the load vector, v = (v, Vs, v3) is the
unknown discrete field values of v = (v, vq,v3), and 7 is the time step.
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The explicit formulas for the entries in (4.1) at the element level can be given as:

(4.2) Mze] = (‘Pu‘ﬂj)ea

(4.3) Ki; = (Vi V9j)e
(4.4) Di; = (V9,7 9j)e
(4.5) Fim = (f,0j%m)exJ,

where (.,.). denotes the Ls(e) scalar product. The matrix M, is the contribution from
element e to the global assembled matrix in space M, K* is the contribution from element
e to the global assembled matrix K, D¢ is the contribution from element e to the global
assembled matrix D, F° is the contribution from element e to the assembled source vector
F.

To obtain an explicit scheme we approximate M with the lumped mass matrix MZ~,
given by

L Zn Mi,n ) 1= j7
(456) ul={ 3 L i4],
where the diagonal approximation is obtained by taking the row sum of M, see e.g. [12].
By multiplying (4.1) with (M")~! and replacing the terms gv¥= 4 2vk 4 ZvFEH by vF,
we obtain an efficient explicit formulation
72 2
(4.7) virl = —(ME) T FR 4 oovE — —p(ME) T RVE
p p
2

— O+ w(MH T DvE — v
p

4.1. Finite difference formulation. In this section we present the finite difference dis-
cretization for elastic wave equation in three dimensions.

Using centered finite difference approximation for the second order time derivative and
a following approximation of the cross derivative ( see [7]) appearing in the scheme

5 k ok ok k

0w Wiy~ Wity ~ Wity o1 T Wil
~o

Oxdy 4dzxdy ’

we get following finite difference discretization for elastic wave equation (2.1) in three
dimensions

(4.8)

2

.
P R k ko k-1
(4.9) Yige 7~ P (figa + “Avlm,l) + 201, ~ v,
b =2k ok
)\_|_ ) i+1,5,0 5,1 i—1,5,1
k ok ok k
A v2¢+1,j+1,l U21‘71,j+1,l ,U21'+1,j71,l + /U21;71,j71,l
+ A+ 4dzxdy
ok ok ok 1ok

A id1,5,0141 v3i—1,j,l+1 U3i+1,j,l—1 U3i—1,j,l—1
+ (Atp) 4dzdz ’
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2

.
k+1 . Tk k ko k-1
(4.10) Y20 0 (figa+ ”AU%J‘J) + 205, V2,
k k k
Uy, . - 2’02. -+ vy
,j+1,1 4,50 3,5 —1,1
+ A+ p a0
k .’ ok k
A Uli+1,j+1,z Uli—l,j+1,l vli+1,j—l,l + lic1,5-1,
+ (+u) 4dzdy
k ok Lk k
2 U3, i Y3101 Y3i41,01 + U35 1,01
2
-
S " ko k-1
(4]‘1) U3¢,j,l ~ (fi,j,l + /"LAU?) l) + 2?}3 gl 1031',]',1
k 2 k k
—2v + v
3i,5,141 34,5, 3i,5,1-1
+ A+ pw 5
dz
k Lk Lk k
+ ()\ + )vli+1,j,l+1 Ulz’—l,j,l+1 U1i+1,j,l—1 + vli—l,j,l—l
a 4dxdz
k ok Lk k
A v2i,j+1,l+1 v2i,j71,l+1 U2i,j+1,l—1 + /U2i,j71,171
where Ufm’,j,l’ s = 1,2,3 is the solution on time iteration k at point (¢, 7,1), fF;, is the source

function, 7 is the time step, and Avfi s =1,2,3 is the discrete Laplacian :

J0nt?

k o,k k k o,k k
A,Uk: _ /Us‘i+1,j,l ZUSLJ‘J + vsi—l,j,l + /Usiaj+1,l 2/031-,]-,1 + Usi,j—lwl +
Sigl dzr2 dy2
k o,k k
vsi,j,l-‘rl 2,Usi7j,l + vsi,j,l—l
(4.12) : ,
dz

where dz, dy, and dz are the steps of the discrete finite difference meshes in the directions
x,v, z, respectively.

4.2. Dispersion relation. In this section we present the dispersion relations for the time-
dependent elastic wave equation. These relations allows as to get the information on the
stability and accuracy properties of the numerical models.

Searching for a plane wave solution of the homogeneous two-dimensional elastic equation
in the form

(4.13) v = vy e @thEthy)

(4.14) Uy = g ei@ithiathay)

we get two dispersion relations by identifying eigenvalues of the problem
(4.15) AX = psin2%X,

where X = (vy,,v9,) and
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2

4T (/\+2u)sin2k1%€h+usin2k2h (A + ) sin &% sin 2% cog B2 cog 222
~ h2 \ (A + p) sin BE sin 82k cog Bk cog B2t (A +2p) s1n2k2h+,usm2%,
which gives
2
T | akah
(4.16) psin’—- = -3 (A + 2p)(sin 2 5 +s 2)
kih koh
— (A+u)sin2%sin2%),
2
R ORI
(4.17) psin’—- = 13 p(sin? 5 T+ sin 2)
okih . o koh
+ (A +p)sin? 7sm %)

4.3. Stability criterion. To determine the time step restriction for stability of our explicit
method, we assume sin%t < 1 and k1h = ksh = ksh = 7 corresponding to the highest
spatial frequency resolved by the grid, and deduce from (4.16 - 4.17) the CFL condition:

0

4.1 < .
(4.18) 7<h N+ 3n

4.4. Absorbing boundary conditions. We have also simulated a variation of the prob-
lem (2.1) applying absorbing boundary conditions at the boundary Qppys. It means, that
these boundary conditions approximate the solution on the boundaries. We use the fol-
lowing boundary condition taken from [10] :

(4.19) —U— —U

z=0

We are using forward finite difference approximation in the middle point of the condi-
tion (4.19), which gives a numerical approximation of a higher order than the ordinary
(backward or forward) approximation. For example, for the left boundary of the Qrpy we
obtain:

k-1 k k+1 k
gl — Uil Yirrgi — Yit150
dt dt
k ok E+1 k41
(4.20) Uittt — Yige  WYiy1,j0 Wil _
dr dr ’
which can be transformed to
S . dr — dt
7.77l Z+17.77 ,.7, dx + dt
k1 dz—di

(4.21) Ui g 1 ap

For other boundaries of the Qppy, we find analogous boundary conditions.
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4.5. Neumann boundary condition. The problem (2.1) have also been simulated ap-
plying Neumann boundary conditions at the boundary Qpp,.

If the surface forces T; € C(T'),i = 1,2, 3 are prescribed on the boundary T this leads to
the condition

(422) Tij; = T’i, zel
where 7;; are stresses (2.5) and n; are the components of the unit outer normal to I'. Using
the generilized Hooke’s law for isotropic material, we get
d
(423) /\5”’1% Z €xk + 2}L€ij’nj = T'z
k=1
In this case we seek a solution u; € C%(Q),7 = 1,2, 3, which satisfies (2.1) and (4.23).

The explicit expressions for the computations of the surface forces T; € C(T"),i = 1,2,3 at
the boundary I" in the three dimensional case take the following form:

ovy Ovy  Ovs ov,  0Ovg ov;  Ouvs

Tl = ()\+2,u,)8—$1n1+)\(8—x2+8—x3)n1+M(8—x2+a—x1)n2+ﬂ(a—x3+8—xl)n3,
_ 9 vy, Ovs v, , Ovs v, | Ou

T, = (A+2u)ax2n2+>\(axl + ax3)n2+“(ax3 + (,))962)77,3+u(a$1 + am)nl,
_ Ovs Oui | Ov, Ovs , Ov Ovr  Ovg

T3 = (/\+2M)8—$3n3+/\(8—331+8—332)n3+u(8x2 + (91‘3)n2+'u(8$3 + aml)nl-

5. IMPLEMENTATIONAL ISSUES

To implement the hybrid FEM/FDM method we use C++. This language allows us to
implement the problem and the algorithms on a high level of abstraction without much
loss of efficiency. Important notions such as grid, boundary, elastic equation operator,
input/output of results are implemented as C++ classes. The new class ElasticEqQEpQOpt
was written for implementation of the hybrid method for elastic wave equation. This class
combines previously written classes for implementation of FDM, FEM for scalar wave
equation ( see [5] for more details) and also include new classes for FEM/FDM method
to implement elastic wave equation in two and three dimensions. The software package
PETSc [3] is used for matrix vector computations.

We present the use of the hybrid method on problem (2.1). For flexible implementation
the class ElasticEqEpOpt have different constructors which are configured either to use
FDM in the whole region (using a structured grid), or to use FEM in the whole region
(using a hybrid or a structured grid), or to use only the hybrid method. In a simplified
form, the main program looks as following (Compare with the algorithm in Section 2.3):

ElasticEqOpOpt(gg, # constructor with meshes
sdg, # for FEM and FDM, space
nsd, # dimensions, bool

EXCHANGE, # variables, values
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USE_FEM, # of the parameters
USE_FDM,
USE_RHS,
USE_DIRICHLET_FEM,
USE_DIRICHLET_FDM,
USE_ABSORB,
PRINT_FILES,
nrSTEPS,
lambda,mu,
maxtime,rhs,
type_of_material,
velocity,
guess_velocity) ;
dt = p.InitTime(); # time initialization
notimesteps = int(maxtime/dt);
if (EXCHANGE) # for hybrid method,
{ # initialization FDM, FEM,
p.InitFDMQ); # and EXCHANGE in the common nodes
p.InitFEMforElasticMat (type_of_material,
velocity,
mu,
lambda) ;
p.InitExchangeCommon() ;
}
if (USE_FDM)
p.InitFDMQ); # initialization FDM
if (USE_FEM)
p-InitFEMforElasticMat (type_of_material, # initialization FEM

velocity,
mu,
lambda) ;
MV_Vector<real> thetimesteps(notimesteps) ;
for( k = 0; k < notimesteps; k++) # main loop
{
if (EXCHANGE) # for hybrid method
{
p- ElasticFDM( k); # perform one time step
# using FDM
p.DifMatElastiqEqSolver(t,k, # perform one time step
type_of_material, # using FEM
velocity);
p.ApplyExchangeCommon() ; # perform exchanges
p.ApplySwapElasticFEM() ; # swap solution vectors
p-ApplySwapElasticFDM() ;
}

if (USE_FDM)
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{
p-ElasticFDM( k);
p-ApplySwapElasticFDM() ;

}

if (USE_FEM)

{
p.DifMatElastiqEqSolver(t,k,
type_of_material,
velocity);
p.ApplySwapElasticFEM() ;

}

thetimesteps(k)=t;
t+=dt;
}

The main work is done for each time step in DifMatElastiqEqSolver and elasticFDM
where the source function f is evaluated and matrix vector multiplications are performed.

5.1. Notes on optimization. In this section are described some of the optimization steps
for evaluation of the hybrid method. They are similar to the ones, used for the scalar wave
equation, see [5] .

In (4.7) we can write 2v¢* — %,u(ML)_lKVS"c = AvsF, s = 1,2,3, where A = 2T —
% u(ML)=1K is a sparse matrix, and I the identity matrix. If the time step 7 is constant,
A is independent of time and can therefore be computed in the initialization step. We can
write the term for the divergence matrix in a similar way %()\+ w)(ME) 1 Dvk = DVvF,

where %()\ + u)(ME)™1D = DV and DV is following block-matrix in R3:

DViy DViy DVis
DV = | DVy DV DVa
DV3i DVsy DVss

Here, DV;, 1,5 = 1,2,3 are the matrices appearing in the assembling of the divergence
matrix. Again, for constant time step matrix DV is independent on time and can be
computed in the initialization step. A similar optimization is used for FDM.

Regarding the computation of the load vector F* in (4.7), a standard assembly compu-
tation using Gaussian quadrature is expensive.

To compute the load vector F* in (4.7) the nodal quadratures are used. Then the load
vector will be F* = (Mp)~!f* where the vector f* is the source function evaluated at the
nodes of the grid at time t;. Alternatively, the source function can be approximated by
the finite element function obtained by interpolating the source function at the nodes. In

this case, exact quadrature yields that F* = Mf*.
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size of | number of numbe.r of spatial
th h p) .| number of | nodes in the | °%
e mesh | nodes in . . dimen-
nodes in ) | overlapping |
elements, h | Qrpm layers sion
0.0025 6561 160801 3192 2
0.005 1681 40401 1592 2
0.01 441 10201 152 2
0.02 121 2601 72 2
0.01 9261 1030301 4348 3
0.02 1331 132651 988 3
0.04 216 17576 208 3

TABLE 1. Meshes for the performance test.

Thus, we get the following expressions for FEM computations of the solution v ¥*!, s =
1,2,3

2

(51) Vlk—*_1 = T—fk + Avlk + DVllvlk + DViszk + D%3V3k — Vlkil,
p
2

(5.2) vt = 7——f’“ + Avy® + DV vi® + DViaavo® + DVygvsh — vkt
p
2

(5.3) vghtl = T gk + Avs® + DVa1vi* + DViyvo® + DVigvgh — vkt
P

As mentioned, the matrices A and DV = DV}, 1,5 = 1,2, 3 are sparse. Using the same
motivation, as in [5], we replace the sparse matrices A and DV with matrices where the
zero components are eliminated. Then a matrix vector product with a new reduced matrix
has a correspondingly smaller cost. The size of the reduced matrix A is 5/7 times the size
of the original matrix in R? and 7/15 in R®. The correspondings factors for the divergence
matrices DVj; and DVayy are 3/7 in R%. The factors for matrices DViy, DVay, DV33 are
3/15 in R3. For DV;;, 4,5 = 1,2,3,i # j the factors are 1. These factors appear during
assembling the matrices A and DV. The numbers of zero and nonzero elements for matrices
A, DV are confirmed in the numerical tests, see Table 2 for two dimensional computations
and Table 3 for three dimensional computations. The computational grids for these tests
are presented in Table 1 .

The reader is referred to [5] for other optimizations in the C++ code. Compare also
with [2, 4] which are dealing with optimizing C++ code and studying the effect of the
cache sizes of the computer, respectively.

6. NUMERICAL EXAMPLES

In this section we present the use of the hybrid method on several examples. In the three
dimensional examples we simulate model problem (2.1) in the domain Q = [0, 5.0] %[0, 2.5] X
[0, 2.5], with absorbing boundary conditions, and with initial conditions v; = % =0, 1=
1,2, 3. In two dimensional examples the computational domain is 2 = [0, 1.0]?. The domain
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number of | number of | number 22;22?2 of E?mber sero

nodes in | nonzero of ZI0 | 4 ents clements

QrEMm elements, A | elements, A ’ ’

DV11,DVay | DV11,DVao

6561 32481 12800 19521 25760
1681 8241 3200 4961 6480
441 2121 800 1281 1640
121 561 200 341 420

TABLE 2. Number of zero and nonzero elements in two dimensional compu-

tations of the sparse matrices A, DVi;, DVay

number of | number
number of | number of | number
) nonzero of Zero
nodes in | nonzero of Zero
Q ) ts. A | el ts. A elements, elements,
FEM elements, elements, DVij, i=j | DVyj, i—j
1030301 7150901 8060000 3070501 12140400
132651 8241 3200 4961 6480
17576 2121 800 1281 1640

TABLE 3. Number of zero and nonzero elements in three dimensional com-

putations of the sparse matrices A, DV;;, i = j

TABLE 4. Computational time in seconds to perform one step in elastic
equation solver. For computations are used three dimensional meshes pre-
sented in Table 1.

) is decomposed into the two domains Qrgys and Qppys with two overlapping layers of

h | Hybrid | FDM | FEM
0.01| 389 25.2 | 460
0.02 4.8 2.6 57
0.04 0.6 0.3 7.2

15

nodes. The inner domain in three dimensional tests is Qpgy = [0.3,4.7] x [0.3,2.3] X
[0.3,2.3] and in two dimensional tests Qrgy = [0.4,0.6]%. In the Qppy we apply FDM
with absorbing boundary conditions. The space mesh in two dimensional examples in the
Qrprm is unstructured and consists of triangles. In three dimensions we use tetrahedra for
the unstructured grid. We present some examples with spherical pulses, generated at the

different points in Qppys or in Qppys, which are given by the source functions

{ 10%sin® 7t if 0 <t <0.1and |z — zo| <7,
0

(6.1)

(6.2)

fi(z, zo)

f2(37’ xO)

0

otherwise;

otherwise;

{ —n?sint if 0 <t <0.1and |z — x| <,
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a) b)

F1GURE 4. Computational grids for the two-dimensional numerical tests. In
the graph a) we present mesh for FDM computations , and in the graph
b) for FEM computations. The computational mesh for hybrid method is a
combination of the structured mesh a) and the unstructured mesh b) with a
thin overlapping of structured elements.

First, we present a few model applications in two and three dimensions. Next, we present
performance comparisons of the different methods and efficiency results in terms of cpu
time per node and time iteration.

6.1. Two-dimensional examples. In the first example we solve the problem (2.1) with
absorbing boundary conditions on the {2zpjy; boundary. We have chosen the explicit scheme
(4.7) to implement the FEM and the explicit scheme (4.9 — 4.11) to implement FDM. Com-
putational tests were performed during the time interval [0,1.0] and with source function
f1, which was initialized at the point (0.5,0.5). The time step is 7 &~ 0.001 and satisfied to
criterion (4.18) with the density p = 1.0 and Lame coefficients A = p = 0.5. We plot the
uz component of the hybrid method solution in Fig. 8, and u = v/u12 4+ us? in Fig. 9.

In Fig. 21 we show the solutions of the two dimensional elastic wave equation with
absorbing boundary conditions at the one point with coordinates (0.5,0.5). In the graph
Fig. 21-a we present FDM and hybrid solutions on the mesh with element size h = 0.0025,
in the graphs Fig. 21-b and Fig. 21-c we present FDM and Hybrid solutions, respectively,
on the meshes with element sizes h = 0.0025, 0.05,0.1.

In the second example we present hybrid method for the two-dimensional elastic wave
equation with absorbing boundary conditions in the inhomogeneous Q2rpy;. The domain €2
composed of different material types having different density p. We have chosen a source
function located at the center of the unstructured domain, presented in Fig. 4-b. The
coefficient is taken as p = 0.5 inside the elliptical domain ( see Fig. 4-b) and p = 1.0
outside it. In Fig. 10-a we present u = v/u1? + us? in the Qppys, in Fig. 10-b we present
u = Vui? + us? in the Qpgys, in Fig. 10-c,d are presented u; and uy components of the
hybrid solution.

In the third example we present a plane wave propagation. The plane wave, initialized
on the left boundary of the 2rpy, and moving in the positive x direction, has the form



TABLE 5. Performance for the two dimensional elastic wave equation.

h Hybrid FDM FEM FEM/Hybrid | FEM/FDM
0.01 | 3.85363e-06 | 2.22983e-06 | 4.41040e-05 11.448 19.7791
0.02 | 4.45080e-06 | 2.06256e-06 | 4.50294e-05 11.1171 21.8318
0.04 | 4.08512e-06 | 2.12790e-06 | 4.43559e-05 10.8579 20.8449
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h Hybrid FDM FEM FEM/Hybrid | FEM/FDM
0.0025 | 1.19402e-06 | 1.1534e-06 | 2.62187e-06 2.1958 2.2732
0.005 | 1.19304e-06 | 1.19242e-06 | 3.28700e-06 2.7551 2.7566
0.01 | 1.37241e-06 | 1.11754e-06 | 2.9507e-06 2.1500 2.6404
0.02 | 1.23030e-06 | 1.16505e-06 | 3.46020e-06 2.8125 2.9700

TABLE 6. Performance for three dimensioanl elastic wave equation.

u = (u1,0,0), where

2 2
(6.3) w1(2,y, 2,1) |s—o= 0.1sin (25 (¢t — %) —7/2)+0.1,0<¢t< %

We make tests using the hybrid method with the time step 7 ~ 0.001. The time-dependent
computational solution in different time moments for hybrid method is presented in Fig. 5,
the same solution but only in 2ppys is presented in Fig. 6 and solution only in Qpgas is
presented in Fig. 7.

6.2. Three-dimensional examples. We demonstrate the use of the hybrid method on
the domain Q = [0,5.0] x [0,2.5] x [0,2.5], with absorbing boundary conditions. For
the numerical simulations we have chosen a finite element mesh with element size 0.04 and
perform computations in the time interval [0, 1.6]. We compute with time step 7 ~ 0.00266,
with the density p = 1.0 and Lame coefficients A = p = 0.5. In the first example we are
solving the model problem (2.1) with absorbing boundary conditions and with the one
source function f; initialized at the center of Qrgys. We show the time-dependent hybrid
method solution in Fig. 14.

The second example is solution of model problem (2.1) with absorbing boundary condi-
tions and with two source functions, initialized in the Qgpys. The hybrid solution of this
problem we present in Fig. 15, Fig. 16, Fig. 17.

The third example is the same as second one, but now with elements, which have different
values of the density in the Qggy,. We present contour fill for the scalar result of the
common solution u = v/u12 + uy2 + u3? in Fig. 20. The values of the Lame coefficients are
A, i = 0.5, density p = 2.0 on the elements forming cone, and p = 1.0 in the rest of the
domain.

In Figure 19-a we show the time-dependent hybrid and FDM plane waves solutions at
the one point with coordinates (0.4,0.4,0.4). The computational domain for these tests
is cube Q = [0,1] x [0,1] x [0,1] with element size h = 0.02. We perform computations
during the time [0, 1.0] with the time step 7 = 0.001, density p = 1.0 and Lame coefficients
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A = u = 0.5. The plane wave, initialized on the left boundary of the Qrp,s and moving in
the positive = direction, has the form v = (u4,0,0), where
2w
25
In Figure 19-b), c), d) we show the time-dependent hybrid and FDM solutions at the
one point with coordinates (0.4,0.4,0.4). For this example we solved the elastic equa-
tion with absorbing boundary conditions and one source function, initialized at the point
(0.5,0.7,0.7) in Qpppr- The Tables 7 - 8 show the Hybrid and pure FDM solutions for
previous example at the different time moments. We see, that Hybrid and FDM solutions
slightly differ because the FDM and FEM stencils on a structured mesh are not completely
identical.

2
(6.4) wi (2, Y, 2,t) lomo= 0.1sin (25 (t — —=) —7/2) + 0.1, 0 <t < %

6.3. Performance comparisons. To show the performance of the different methods we
computed time-dependent elastic wave equation on structured grids, presented in Table 1,
measuring the cpu time per node and per iteration.

The benchmarks were run on SUN workstation with 2069376K total memory, 1417844K
used and 649208K free memory.

Table 5 and Table 6 present efficiency results, in terms of cpu time per node and iteration.
The fractions FEM /Hybrid and FEM /FDM are also presented in the tables. We note that,
for two dimensions, the fraction FEM/Hybrid ~ 2.5 and the fraction FEM/FDM = 2.7. In
our three-dimensional tests, the corresponding fractions have increased. Here, the fraction
FEM /Hybrid ~ 11, and the fraction FEM/FDM is around 20.

The tables show that the fractions increase with the size of the grid. This can be
explained by cache effects, since the required memory of the FEM sparse matrix is much
larger than the corresponding FDM difference molecule. Another effect of importance is
that the nodes at the boundary is making up a smaller part of the total number of nodes.
For the hybrid method, the relative cost associated with computing the solution in the
overlap region with both methods and exchanging solution values, decreases as the grid
sizes increase, compare with Table 1.

We refer to [5] for remarks on the performance comparisons and memory consumption
of hybrid method.
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time it. | Hybrid, u; | Hybrid, us | Hybrid, us | Hybrid,u

4 0.000001 0.000004 0.000004 | 0.000007
0.000053 0.000210 0.000209 | 0.000334
0.000852 0.002816 0.002806 | 0.004359
0.004986 0.015861 0.015863 | 0.024075
0.015755 0.049427 | 0.049462 | 0.073775
9 0.030699 0.093020 0.092995 | 0.137026
10 0.051720 0.132620 0.132203 | 0.196366
11 0.082044 0.169849 0.170238 | 0.255907
12 0.109924 0.203353 0.203432 | 0.309652
13 0.136333 0.232136 0.232058 | 0.356931
14 0.163883 0.256261 0.256631 | 0.399301
15 0.179513 0.282381 0.282537 | 0.439262
TABLE 7. The time-dependent hybrid solution at the one point with coor-
dinates (0.4,0.4,0.4).

00 g O Ot

time it. | FDM, u; | FDM, us | FDM , ug | FDM, u

4 0.000001 | 0.000005 | 0.000005 | 0.000008
5 0.000063 | 0.000218 | 0.000218 | 0.000348
6 0.000859 | 0.002808 | 0.002808 | 0.004354
7 0.004859 | 0.015759 | 0.015759 | 0.023899
8 0.015490 | 0.049374 | 0.049374 | 0.073645
9 0.031605 | 0.094499 | 0.094499 | 0.139392
10 0.053441 | 0.133898 | 0.133898 | 0.198797
11 0.083259 | 0.172020 | 0.172020 | 0.258965
12 0.111539 | 0.204361 | 0.204361 | 0.311519
13 0.137541 | 0.233072 | 0.233072 | 0.358595
14 0.165049 | 0.257830 | 0.257830 | 0.401586
15 0.180538 | 0.282534 | 0.282534 | 0.439811
TABLE 8. The time-dependent FDM solution at the one point with coordi-
nates (0.4,0.4,0.4).

7. CONCLUSIONS

The explicit hybrid methods for the time-dependent elastic wave equation is presented.
The efficiency of FDM is combined with the flexibility of FEM.

Object-oriented C++ classes are developed as independent modules for easy application
of FEM, FDM and hybrid methods for elastic wave equation.

Numerical examples are presented, illustrating the capabilities of our approach in two
and three dimensions.

Hybrid approach compared with pure FEM is studied. The test examples for structured
grids indicates that the hybrid method is 2-11 faster, than a highly optimized pure finite
element version.
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FicUure 5. Hybrid method for the two-dimensional elastic wave equation

with a plane wave. We define a plane wave on the left boundary of the outer
domain.

We conclude that the hybrid approach is advantageous, in particular for big problems

where large parts of the computational domain may be discretized by uniform grids, while
unstructured grids are more suitable in small regions of the domain.
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FIGURE 6. Hybrid method for the two-dimensional elastic wave equation
with a plane wave. We present only FDM solution, which is a part of solution
, presented in Fig. 5. The grid for the computations is presented in Fig. 4-a.
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Ficure 7. Hybrid method for the two-dimensional elastic wave equation
with a plane wave. We present only FEM solution, which is a part of solution,
presented in Fig. 5. The grid for computations is presented in Fig. 4-b.
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Ficure 8. Hybrid method for the two-dimensional elastic wave equation
with Dirichlet boundary conditions, only us-component. We choose a source
function located at the center of the unstructured domain, presented in

Fig. 4-b.
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FiGUurE 9. Hybrid method for the two-dimensional elastic wave equation

with Dirichlet boundary conditions, common solution u = v/u12 + uy2. We

choose a source function located at the center of the unstructured domain,
presented in Fig. 4-b.
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Ficure 10. Hybrid method for the two-dimensional elastic wave equation
with absorbing boundary conditions in the inhomogeneous 2 composed of
different material types having different density p. We choose a source func-
tion located at the center of the unstructured domain, presented in Fig. 4-b.
The coefficient is taken as p = 0.5 inside the elliptical domain ( see Fig. 4-b)
and p = 1.0 outside it. In Fig. 10-a we present u = v/u12 + u2? in the Qppyy,
, in Fig. 10-b we present u = 1/u1? + us? in the Qpgyy, in Fig. 10-c,d are
presented u; and uy components of the hybrid solution.
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FIGURE 11. We present u = v/u12 + u9? in the Qpgys at the different time moments.
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FiGUure 12. Hybrid method for the two-dimensional elastic wave equation
with absorbing boundary conditions in the inhomogeneous 2 composed of
different material types having different density p. We choose a source func-
tion located at the center of the unstructured domain, presented in Fig. 4-b.
The coefficient is taken as p = 0.5 inside the elliptical domain ( see Fig. 4-b)
and p = 1.0 outside it. In Fig. 12-a we present u = v/u12 + u2? in the Qppy,
, in Fig. 12-b we present u = v/u12 + us? in the Qpgy, in Fig. 12-¢,d are
presented u; and uy components of the hybrid solution.
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Ficure 13. Hybrid method for the two-dimensional elastic wave equation
with absorbing boundary conditions in the inhomogeneous 2 composed of
different material types having different density p. We choose a source func-
tion located at the center of the unstructured domain, presented in Fig. 4-b.
The coefficient is taken as p = 0.5 inside the elliptical domain ( see Fig. 4-b)
and p = 1.0 outside it. In Fig. 13-a we present u = v/u12 + uz? in the Qppy,
, in Fig. 13-b we present u = /u12 + us? in the Qpgyy, in Fig. 13-c,d are
presented u; and uy components of the hybrid solution.
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Fi1GURE 14. Hybrid method for the three-dimensional elastic wave equation
with absorbing boundary conditions at all the boundaries and one source
function located in the center of the inner domain . We present contour fill
for u = v/u12 + u92 + uz2. The values of the Lame coefficients A,z = 0.5
and density p = 1.0. The effect of the absorbing boundary conditions is
presented in the graphs (c)-(d).
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FI1GURE 15. Hybrid method for the three-dimensional elastic wave equation
with absorbing boundary conditions at all the boundaries and two source

functions initialized in the outer domain .

We present contour fill for u =

Vui? + ug? + uz?. The values of the Lame coefficients A, u = 0.5 and density

p=1.0.
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FIGURE 16. Hybrid method for the three-dimensional elastic wave equa-
tion with absorbing boundary conditions at all the boundaries and two
source functions initialized in the outer domain . We present contour fill
for u = v/ui2 + up? + u3? only in the outer domain. The values of the Lame
coefficients A, x = 0.5 and density p = 1.0.
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FIGURE 17. Hybrid method for the three-dimensional elastic wave equa-
tion with absorbing boundary conditions at all the boundaries and two

source functions initialized in the outer domain .

We present contour fill

for u = v/u12 + us? + uz? only in the inner domain. The values of the Lame

coefficients A, x = 0.5 and density p = 1.0.
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)t =0.6 d)t=0.9

Fi1GUuRrE 18. Hybrid method for the three-dimensional elastic wave equation
with a plane wave. We present only FDM solution. The computational
domain is a cube Q = [0,1] x [0, 1] x [0, 1] with element size h = 0.02. We
perform computations during the time [0, 1.0] with the time step 7 = 0.001,
density p = 1.0 and Lame coefficients A = u = 0.5.
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— FDM solution
* _Hybrid solution

— FDM solution
% _Hybrid solution

FIGURE 19. a) Plane wave solutions of the three dimensional elastic wave
equation at one point (0.4,0.4,0.4); b) - d) uy, ug, u components of the three
dimensional elastic wave equation solution at one point (0.4,0.4,0.4) with
absorbing boundary conditions and pulse function, initialized in Qgpys at
the point (0.5,0.7,0.7).
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FiGURE 20. Hybrid method for the three-dimensional elastic wave equa-
tion with absorbing boundary conditions at all the boundaries and two

source functions initialized in the outer domain

We present contour fill

for u = v/u12 + us? + uz? only in the inner domain. The values of the Lame
coefficients A\, u = 0.5, density p = 2.0 in the elements forming cone, and

p = 1.0 in the rest of the domain.
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u,. first component of the solution

uy. first component ofthe solution

10 15
number of the timesteps

u,, first component of the solution

10 15
number of the timesteps

c)

FI1GURE 21. Solutions for the two dimensional elastic wave equation with
absorbing boundary conditions at one point (0.5,0.5). In the graph a) we
present FDM and hybrid solutions on the mesh with element size h = 0.0025,
in the graphs b) and c) we present FDM and Hybrid solutions, respectively,
on the meshes with element sizes h = 0.0025,0.05, 0.1.

/



REFERENCES

[1] B. Auld. Acoustic fields and waves in solids Vol.2. ISBN 990090687X ,Malabar,Krieger,1990.

[2] E. Acklam, A. Jacobsen and H.P. Langtangen. Optimizing C++ code for explicit finite difference
schemes. Oslo Scientific Computing Archive, Report 1998-4.

[3] S. Balay, W. Gropp, L-C. McInnes, B. Smith. PETSc user manual, http://www.mcs.anl.gov/petsc

[4] C. Douglas, J. Hu, M. Kowarschik, U. Riide and C. Weiss. Cache optimization for structured and
unstructured grid multigrid. ETNA volume 10, pp.21-40, (2000)

[5] L. Beilina, K. Samuelsson, K. Ahlander. A hybrid method for the wave equation. Proceedings of
International Conference on Finite Element Methods, Gakuto International Series Mathematical
Sciences and Applications, GAKKOTOSHO CO.,LTD, 2001.

[6] Adaptive FEM/FDM methods for inverse scattering problems. Thesis for the Degree of
LICENTIATE of Ingineering, Chalmers University odf Technology, Géteborg University, Sweden,
2002.

[7] G. C. Cohen. Higher Order numerical methods for transient wave equations. ISBN 3-540-41598-X
Springer Verlag Berlin Heidelberg New York, 2002.

[8] F. Edelvik, U. Andersson, and G. Ledfelt. Hybrid finite volume - finite difference solver for the
Maxwell equations. In AP2000 Millennium Conference on Antennas & Propagation, Davos,
Switzerland, (2000).

[9] F. Edelvik and G. Ledfelt. Explicit hybrid time domain solver for the Maxwell equations in 3D. J.
Sci. Comput., 2000.

[10] B. Engquist, A. Majda. Absorbing boundary conditions for the numerical simulation of waves,
Math. Comp., Volume 31, number 139, p.629-651, (1977).

[11] K. Eriksson, D. Estep and C. Johnson. Computational Differential Equations. Studentlitteratur,
Lund, (1996).

[12] T. J. R. Hughes. The Finite Element Method. Prentice Hall, (1987).

[13] S. C. Brenner, L. R. Scott. The Mathematical theory of finite element methods. Springer-Verlag,
(1994).

[14] F. Ihlenburg Finite Element Analysis of Acoustic Scattering. ISBN 0-387-98319-8 Springer-Verlag
New York Berlin Heidelberg, 1998.



38

2001-01

2001-02

2001-03

2001-04

2001-05

2001-06

2001-07

200108

2001-09

2001-10

2001-11

2001-12

2001-13

2001-14

2001-15

2001-16

200117

2001-18

2001-19

LARISA BEILINA

Chalmers Finite Element Center Preprints

A simple nonconforming bilinear element for the elasticity problem

Peter Hansbo and Mats G. Larson

The LL* finite element method and multigrid for the magnetostatic problem
Rickard Bergstrom, Mats G. Larson, and Klas Samuelsson

The Fokker-Planck operator as an asymptotic limit in anisotropic media
Mohammad Asadzadeh

A posteriori error estimation of functionals in elliptic problems: experiments
Mats G. Larson and A. Jonas Niklasson

A note on energy conservation for Hamiltonian systems using continuous time
finite elements

Peter Hansbo

Stationary level set method for modelling sharp interfaces in groundwater flow
Nahidh Sharif and Nils-Erik Wiberg

Integration methods for the calculation of the magnetostatic field due to coils
Marzia Fontana

Adaptive finite element computation of 8D magnetostatic problems in potential
formulation

Marzia Fontana

Multi-adaptive galerkin methods for ODEs I: theory & algorithms

Anders Logg

Multi-adaptive galerkin methods for ODEs II: applications

Anders Logg

Energy norm a posteriori error estimation for discontinuous Galerkin methods
Roland Becker, Peter Hansbo, and Mats G. Larson

Analysis of a family of discontinuous Galerkin methods for elliptic problems:
the one dimensional case

Mats G. Larson and A. Jonas Niklasson

Analysis of a nonsymmetric discontinuous Galerkin method for elliptic prob-
lems: stability and energy error estimates

Mats G. Larson and A. Jonas Niklasson

A hybrid method for the wave equation

Larisa Beilina, Klas Samuelsson and Krister Ahlander

A finite element method for domain decomposition with non-matching grids
Roland Becker, Peter Hansbo and Rolf Stenberg

Application of stable FEM-FDTD hybrid to scattering problems

Thomas Rylander and Anders Bondeson

Eddy current computations using adaptive grids and edge elements

Y. Q. Liu, A. Bondeson, R. Bergstrom, C. Johnson, M. G. Larson, and K.
Samuelsson

Adaptive finite element methods for incompressible fluid flow

Johan Hoffman and Claes Johnson

Dynamic subgrid modeling for time dependent convection—diffusion—reaction
equations with fractal solutions

Johan Hoffman



200120

200121

2001-22

200201

2002-02

200203

200204

2002-05

2002-06

2002-07

200208

2002-09

200210

2002-11

2002-12

2002-13

2002-14

2002-15

2002-16

2002-17

A HYBRID METHOD FOR ELASTIC WAVES 39

Topics in adaptive computational methods for differential equations

Claes Johnson, Johan Hoffman and Anders Logg

An unfitted finite element method for elliptic interface problems

Anita Hansbo and Peter Hansbo

A P%-continuous, P'—discontinuous finite element method for the Mindlin-
Reissner plate model

Peter Hansbo and Mats G. Larson

Approzimation of time derivatives for parabolic equations in Banach space:
constant time steps

Yubin Yan

Approzimation of time derivatives for parabolic equations in Banach space:
variable time steps

Yubin Yan

Stability of explicit-implicit hybrid time-stepping schemes for Mazwell’s equa-
tions

Thomas Rylander and Anders Bondeson

A computational study of transition to turbulence in shear flow

Johan Hoffman and Claes Johnson

Adaptive hybrid FEM/FDM methods for inverse scattering problems

Larisa Beilina

DOLFIN - Dynamic Object oriented Library for FINite element computation
Johan Hoffman and Anders Logg

Ezxplicit time-stepping for stiff ODEs

Kenneth Eriksson, Claes Johnson and Anders Logg

Adaptive finite element methods for turbulent flow

Johan Hoffman

Adaptive multiscale computational modeling of complex incompressible fluid
flow

Johan Hoffman and Claes Johnson

Least-squares finite element methods with applications in electromagnetics
Rickard Bergstrom

Discontinuous/continuous least-squares finite element methods for elliptic prob-
lems

Rickard Bergstrom and Mats G. Larson

Discontinuous least-squares finite element methods for the Div-Curl problem
Rickard Bergstrom and Mats G. Larson

Object oriented implementation of a general finite element code

Rickard Bergstrom

On adaptive strategies and error control in fracture mechanics

Per Heintz and Klas Samuelsson

A unified stabilized method for Stokes’ and Darcy’s equations

Erik Burman and Peter Hansbo

A finite element method on composite grids based on Nitsche’s method

Anita Hansbo, Peter Hansbo and Mats G. Larson

Edge stabilization for Galerkin approximations of convection—diffusion prob-
lems

Erik Burman and Peter Hansbo



2002-18 Adaptive strategies and error control for computing material forces in fracture
mechanics
Per Heintz, Fredrik Larsson, Peter Hansbo and Kenneth Runesson
2002-19 A variable diffusion method for mesh smoothing
J. Hermansson and P. Hansbo
2003-01 A hybrid method for elastic waves
L.Beilina

These preprints can be obtained from

www.phi.chalmers.se/preprints



