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ABSTRACT. Linear tetrahedral finite elements whose all dihedral angles are nonobtuse
guarantee the validity of the discrete maximum principle for a wide class of second order
elliptic and parabolic problems. In this paper we present an algorithm which generates
nonobtuse face-to-face tetrahedral partitions that refine locally in a neighborhood of a
given vertex of a polyhedral domain. Three numerical examples show how to treat singu-
larities of solutions and their derivatives at Fichera-like corners using the proposed local
nonobtuse tetrahedral refinements for the Poisson equation with Dirichlet boundary con-
ditions.
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1. Introduction

Linear tetrahedral finite elements are commonly used for solving second order
boundary value problems. The structure and properties of the associated stiffness
matrices essentially depend on the dihedral angles between faces of tetrahedral
elements. To see this fact, let us consider an arbitrary tetrahedron ABCD. Let p
and ¢ be two linear affine functions such that

1, p(B)=p(C)=p(D) =0,
1, —0,
then a straightforward calculation leads to the following formula (see [13, p. 63] for

the proof)

measy ACD measo BCD

1.1 . =—-
(1-1) Vr- Ve 9 (meass ABCD)?

cos

where « is the angle between the faces ACD and BCD (see Figure 1) and the
symbol measy stands for d-dimensional measure. If « > 7/2 , then the scalar
product in (1.1) is obviously positive. Hence, each obtuse dihedral angle of the
tetrahedron ABC D gives a positive contribution to the corresponding off-diagonal
entry of the element (and also global) stiffness matrix, when solving a boundary
value problem with the Laplace operator.

B

C
Figure 1. A general tetrahedron whose two faces include the angle a.

Note that the same is also true for a wider class of nonlinear elliptic problems of
the form (see [14])

f(z) in Q,
0 on 01,

(1.2) =V - (A(z,u, Vu)Vu)
(1.3) u

where A is a positive smooth function and 2 is a bounded polyhedral domain with
a Lipschitz-continuous boundary 0{2. Equations (1.2)—(1.3) describe, for instance,
a stationary nonlinear heat conduction.

Recall that a tetrahedron is said to be nonobtuse if all six dihedral angles between
its faces are less than or equal 7/2. In this paper, we shall use only face-to-face
tetrahedral partitions of Q, which are called, for simplicity, partitions. A partition
is said to be nonobtuse if it only contains nonobtuse tetrahedra.
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According to [14], linear elements applied to problem (1.2)—(1.3) on nonobtuse
partitions yield irreducibly diagonally dominant stiffness matrices (whose all off-
diagonal entries are nonpositive). It is well known (see [5, Chapt. 11.4.3] or [17,
p. 85]) that such matrices are monotone. This enables us to prove easily the L-
convergence of the finite element method like in [9], where a two-dimensional non-
linear problem is solved on nonobtuse triangulations. Nonobtuse tetrahedral parti-
tions also guarantee the validity of the discrete maximum principle for the problem
(1.2)—(1.3), i.e., we have up < 0 provided f < 0, where w, is the Galerkin approx-
imation of the solution of (1.2)—(1.3). In other words, u, attains its maximum on
the boundary 012, if the homogeneous Dirichlet boundary conditions and nonposi-
tive right-hand sides are considered. For the results on the validity of the discrete
maximum principle for parabolic problems on nonobtuse simplicial meshes, we refer
to [10].

In [11], we give a global refinement procedure yielding nonobtuse tetrahedra over
the whole domain. However, such a technique requires a large amount of computer
time and also computer memory to store the associated stiffness matrix. Therefore,
in the present paper we introduce a local refinement procedure yielding nonobtuse
partitions that refine only near a particular vertex, where a singularity of the exact
solution may appear (see [8], [16]).

In Section 2, we show that the discrete maximum principle can be violated for
standard trilinear block finite elements. In Section 3, we define a special tetrahedron
— a path tetrahedron — and show how to generate nonobtuse partitions that refine
near one of its vertices. In Section 4, we generalize this refinement procedure to a
neighborhood of the Fichera-like corners. Section 5 is devoted to several numerical
tests.

2. Breakdown of the discrete maximum principle
for trilinear block elements

According to [13], some dihedral angles of linear tetrahedral elements can be
slightly larger than 7/2 and the discrete maximum principle for the Poisson equa-
tion with the Dirichlet boundary conditions is still valid. On the other hand, the
popular trilinear block elements do not preserve the discrete maximum principle, in
general. To see this fact let Q = (0,6) x (0,3) % (0,3) be decomposed into 3x3x3
congruent blocks whose edges have lengths a = 2 and b = ¢ = 1. Consequently,
there are 8 interior nodes. Let us assume that they are ordered lexicographically.
Using the trilinear finite elements for problem (1.2)—(1.3) with A = 1, we find that
certain off-diagonal entries of the associated stiffness matrix A = (Aij)§,j:1 are
positive, for instance (see [15, p. 68] for details),

ab ac bc> 2

A2 =4(75 F 155~ 9a) = 3

=3
Similarly, we can find that

ab ac be ab ac be 1
1 (90 * 9 9a) © 18T T 36c T 36b 36a g’



etc., and thus the whole stiffness matrix reads

96
16 96 sym.
-8 —4 96

1 -4 -8 16 96

241 -8 —4 -10 -3 96

-4 -8 -3 -10 16 96

-0 -3 -8 -4 -8 —4 96

-3 -10 -4 -8 -4 -8 16 96

It is easy to calculate that A is not monotone, since some entries of the inverse
matrix A~ = (A;')%,_, are negative, e.g., Aj,; = —0.039766. Hence, glob-
ally nonpositive heat sources f, corresponding to the discrete right-hand side f =
(0,-1,0,0,0,0,0,0) T, yield paradoxically a positive temperature u; = (A~!f); =
—Aj, =0.039766 at the first node. This means that the numerical heat flows from
colder to warmer parts of the computational domain, which destroys the reliabil-
ity of numerical solution. That is why it is important to keep the validity of the
maximum principle in the discrete case.

3. Local nonobtuse refinements of a path tetrahedron
Definition 3.1. A tetrahedron is said to be a path tetrahedron if it has three
mutually perpendicular edges which do not pass through the same vertex.

The reason for the name of the above tetrahedron is that its three perpendicular
edges form a “path” (see [4]).

Proposition 3.2. Any path tetrahedron is nonobtuse.
For the proof see [11, p. 728-729].

A typical example of a path tetrahedron is illustrated in Figure 2 (all its right
angles, solid and dihedral, are indicated there).

A

D
Figure 2. A path tetrahedron.
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The main idea of generating local nonobtuse tetrahedral refinements is exposed
in the following theorem, whose proof is constructive.

Theorem 3.3. Let ABCD be a path tetrahedron whose edges AB, BC, and
CD are mutually perpendicular. Then there exists an infinite family of nonobtuse
partitions of this tetrahedron into path tetrahedra that locally refine in a neighbor-
hood of the vertex A.

Proof. Let P be the orthogonal projection of the point B onto the line AC.
Obviously, P lies in the interior of the line segment AC, since ABC is the right
triangle.

Further, let @ be the orthogonal projection of the point P onto the line AD.
Since ACD is a right triangle, APD has an obtuse angle at P, and thus the point
Q lies in the interior of the line segment AD.

D
Figure 3. Partition of a path tetrahedron ABCD into three path tetrahedra.

We observe that the line segment BP is perpendicular to the face ACD. There-
fore, BP is perpendicular to any line which is contained in the plane ACD. From
this property we easily find that the original tetrahedron ABC D can be decomposed
into the following three path tetrahedra (see Figure 3):

BPCD with BP L1 PC1CD 1 BP,
BPQD with BP L1 PQ1QD L BP,
AQPB with AQ L QP L PB L AQ.

A

; ;
Figure 4. Partition of a path tetrahedron ABQP into three path tetrahedra.



Now we decompose the last path subtetrahedron AQPB again into three path
subtetrahedra following the same rules as above. Let S be the orthogonal projection
of the point @ onto the line AP, and let T be the orthogonal projection of the point
S onto the line AB. Then the path tetrahedron AQPB can be decomposed into
the following three path subtetrahedra (see Figure 4):

QSPB with QS _LSP L PB1QS,
QSTB with QS L ST LTB 1 QS,
ATSQ with AT 1 TS 1 SQ 1 AT.

Consequently, the five path subtetrahedra BPCD, BPQD, QSPB, QSTB, and
ATSQ form a face-to-face partition of the original path tetrahedron ABCD (see
Figure 5).

D
Figure 5. Final partition of a path tetrahedron ABCD into five path tetrahedra.

Since S is the orthogonal projection of @ onto the line AC, the line segments
Q@S and DC are parallel. Similarly we find that T'S and BC' are parallel, since T is
the orthogonal projection of S onto the line AB. From here we conclude that the
face T'SQ is parallel to BC D, and thus, the path subtetrahedron AT'SQ is similar
to the original tetrahedron ABCD.

The subtetrahedron AT'SQ can be now decomposed into 5 subtetrahedra in a
similar way as ABCD, and thus we can get further refinement near the vertex A.
By this reccurence procedure, we obtain the required infinite family of nonobtuse
face-to-face tetrahedral partitions. |

4. Local nonobtuse refinements near Fichera-like corners

In [12], we proposed an algorithm for a local nonobtuse tetrahedral refinement
of a cube in the neigbourhood of one of its vertices. If several cubes meet at one
point, then we can apply this algorithm to each of them so that the whole partition
remains face-to-face. For instance, in Figure 6 we see local nonobtuse tetrahedral
refinements of a polyhedral domain = (—1,1)3\ [0,1)3, which presents the union
of 7 cubes. The concave (reentrant) corner of such a domain is called the Fichera
corner or sometimes the Fichera vertez (see, e.g., [1, 2, 3, 16]).



Actually, the algorithm from [12] can also be viewed as the following procedure:
we divide first a cube into six path tetrahedra (cf. Figure 7b), and further make
a local nonobtuse tetrahedral refinement of each of the path tetrahedra toward to
one of their two common vertices so that the overall partition of the cube remains
always conforming.

If the algorithm from [12] is percieved as above, we immediately observe that
the corresponding local refinement of a single path tetrahedron coincides with the
refinement procedure presented in Section 3, applied to a particular type of path
tetrahedra — when the three mutually perpendicular edges are of the same length.

Figure 6. Local nonobtuse refinement of the Fichera domain.

The above comparison of two refinement procedures immediately suggests the
next generalization step, leading to a refinement procedure for more general corners
of a polyhedral domain, which we will refer to as Fichera-like corners. In particular,
now we introduce sufficient conditions which enable us to generate local refinements,
involving nonobtuse partitions near a given vertex:

(i) Let Ty,...,Tk be tetrahedra from an initial partition, which share a given
vertex A belonging to the longest edge of each T;,

(ii) T3 is a path tetrahedron,

(iii) each T; is a mirror image of any adjacent tetrahedron T with respect to
their common triangular face T; N T}, i,5 € {1,...,k}.

In Figure 7, we observe three examples of clusters of path tetrahedra satisfying
the above conditions (i)—(iii). Note that in Figure 7a, the “lower” face is an equi-
lateral triangle, in Figure 7b, we have a cube, and in Figure 7c, the “rectangular”
face is a square.

Now, let us consider a family of nonobtuse partitions of 77 whose existence is
guaranteed by Theorem 3.3. All adjacent tetrahedra to 7; that share the vertex
A are mirror images of T7. Therefore, their refinements will be defined as mirror
images of refinements of 7;. Similarly, we define refinements of all the other tetra-
hedra. Obviously, this construction preserves the overall face-to-face property of
partitions.



a) b) <)
Figure 7. Clusters of path tetrahedra.

5. Numerical tests in domains with Fichera-like corners

In this section, we compare the performance of the local mesh refinement proce-
dure on computer implementation of the solution of the Poisson equation with the
nonhomogeneous boundary condition

—Au=f in Q,

u=u on 0N,

where u € H!(Q) is a given function.

The errors in Tables 1, 3, and 5 are L?-norms of the difference between the exact
solution u and the computed finite element solution u; over domain 2

1/2
e — unllo = (/Q u—unf?d)

The errors in Tables 2, 4, and 6 are H'-seminorms of the difference between gradi-

ents of u and uy
1/2
|lu —uply = (/ |Vu — Vup|? dx) .
Q

These errors do not form monotone sequences, in general, due to more precise
numerical integration near the singularity after more refinement steps.

In order to calculate the entries of the stiffness matrix and the load vector, we
employ the higher order numerical quadrature formulae on tetrahedra from [5, 6],
with 4, 11, and 24 integration points, which are exact for all polynomials of the
second, fourth, and sixth orders, respectively.

Example 5.1. Let Q = ((—1,1)2 x (0,1)) \ ([0,1) x (=1,0] x (0,1)), i.e., Q is
the union of three unit cubes (see Figure 8). We shall take the right-hand side f
so that the true solution u in the cylindrical coordinates (r, ¢, 2) reads

a(r, @, 2) = 2'/2r?/3 sin(2¢).

and u satisfies the Poisson equation

1
—Au = Zz*3/2r2/3 sin(2¢).



nodes elements 4 pts 11 pts 24 pts
16 18 0.0135088 0.0141321 0.0141394
38 87 0.0123574 0.0131168 0.0130618
60 159 0.0123575 0.0131169 0.0130619
82 231 0.0123575 0.0131169 0.0130619

Table 1: L?-norm of the error for Example 5.1

nodes elements 4 pts 11 pts 24 pts
16 18 0.182881 0.453355 1.27426
38 87 0.317062 0.562961 1.30833
60 159 0.327977 0.576841 1.32415
82 231 0.330272 0.580989 1.33239

Table 2: H'-seminorm of the error for Example 5.1

Furthermore, we shall consider solutions of the form

(5.1) u(e) = (/a3 +a3+43)",

where z = (21, z2, z3) and ¢ is a real number, in the unit sphere. Using the standard
spherical coordinates (r, ¢, 6) and the substitution theorem, we get for ¢ > —% that

1 27 I
Jul2 = / / / (420 4 2r2=2),2 6in 0 4B dip dr
0 0 0
2

1
1 q

=4z r29t2 4 2r%)dr :471'( + ) € (0, 00),

/o( ) 2¢+3  2q+1 (0, 00)

and the triple integral is not finite whenever q < —%. The same will be true if
we replace the unit sphere by the union of several cubes which contain the origin
(0,0,0).

The right-hand side f = —Aw corresponding to the solution (5.1) is

u(z)
= — ]_ .
f(x) Q(Q+ )wf—l—:l:%—i-z%
Example 5.2. Let Q = ((—1,1)2x (-1,0))U((0,1)2 x[0,1)), i.e., Q2 is the union
of five unit cubes (see Figure 10). We set ¢ = % and take w = u on 0X2, where u is
given by (5.1).

nodes elements 4 pts 11 pts 24 pts
22 30 0.0533061 0.0577743 0.0579317

84 265 0.0153702 0.0162520 0.0162535
115 385 0.0153585 0.0162387 0.0162401
146 505 0.0153585 0.0162387 0.0162401

Table 3: L2-norm of the error for Example 5.2.



10

nodes elements 4 pts 11 pts 24 pts
22 30 0.958325 1.028670 1.038700

84 265 0.590882 0.590969 0.590941
115 385 0.610457 0.610116 0.610112
146 505 0.713116 0.712898 0.712911

Example 5.3. Let Q = (—1,1)3\ [0,1)3, i.e.,  is the union of seven unit cubes
(see Figure 12) and the Fichera corner is in the origin (0,0,0). We set ¢ = —1, and
again take u = u on 0. In this case, the solution itself has a singularity at the

Table 4: H'-seminorm of the error for Example 5.2.

origin, see (5.1).

nodes elements 4 pts 11 pts 24 pts
26 42 0.3705270 0.3708450 0.3697510
100 371 0.0196610 0.0210155 0.0209284
137 539 0.0115099 0.0141417 0.0141224
174 707 0.0107786 0.0135825 0.0135698
Table 5: L2-norm of the error for Example 5.3
nodes elements 4 pts 11 pts 24 pts
26 42 1.97317 2.37207 2.54099
100 371 1.43409 1.45116 1.44991
137 539 2.79540 2.80079 2.80042
174 707 6.35086 6.35945 6.35787

Figure 9.

Table 6: H'-seminorm of the error for Example 5.3.

Computed solution on the three times refined mesh for Examples 5.1.
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Figure 10. Local mesh refinement of three cubes forming a Fichera-like corner
after one, two and three refinement steps. The left figure shows only surface lines.
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Figure 10. Local mesh refinement of five cubes forming a Fichera-like corner
after one, two and three refinement steps. The left figure shows only surface lines.
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Figure 11. The solution of the Poisson equation for Example 5.2. We present a
contour fill of u; on one, two, three and four times refined mesh.
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Figure 12. Local mesh refinement of seven cubes forming a Fichera-like corner
after one, two and three refinement steps. The left figure shows only the surface

lines.
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The solution of the Poisson equation for Example 5.3. We present a contour fill
of up on one, two, three and four times refined mesh.
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