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NITSCHE’S METHOD FOR COUPLING NON-MATCHING MESHES IN
FLUID-STRUCTURE VIBRATION PROBLEMS

PETER HANSBO AND JOAKIM HERMANSSON

ABSTRACT. Nitsche’s method [9] is a classical method for imposing essential boundary
conditions weakly. Unlike the penalty method, it is consistent with the original differential
equation. The strong point of Nitsche’s method is that it retains the convergence rate of
the underlying finite element method, whereas the standard penalty method either requires
a “very large” penalty parameter, destroying the condition number of the resulting matrix
problem, or, in case the condition number is to be retained, is limited to first order energy-
norm accuracy. In this paper, we give a formulation of Nitsche’s method suitable for the
problem of fluid-structure interaction. Numerical examples are given.

1. INTRODUCTION

Nitsche’s method [9], which was introduced in the early seventies, is a method for im-
posing essential boundary conditions weakly in the finite element method (FEM) approxi-
mation of elliptic problems. Basically, Nitsche’s method consists of imposing the essential
(Dirichlet) boundary conditions via three boundary terms: two containing weak forms of
the normal derivatives of the solution and the test functions, and one containing a mesh—
dependent term penalizing the deviation from the correct boundary condition. The normal
derivatives are added so as to make the method consistent and symmetric, and the penalty
term is added to make the method stable. Thus, the penalty term does not play the same
role as in a pure penalty method: in a standard penalty method there is a consistency
error depending on the size of the penalty parameter which typically is chosen “large” to
minimize the effect of this error. In Nitsche’s method, which is consistent, the penalty
parameter can be kept at O(h™!), where h is the element size, irrespective of the degree of
the polynomial approximation.

In a recent paper, Becker, Hansbo, and Stenberg [4] extended Nitsche’s method to the
case of the coupling of non-matching grids for the finite element solution of Poisson’s
equation. Further developments of this approach were made in Hansbo & Hansbo [6], where
arbitrarily cut meshes for the approximation of problems with discontinuous coefficiens
were considered, in Hansbo, Hansbo & Larson [7], where overlapping meshes were used, and
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2 PETER HANSBO AND JOAKIM HERMANSSON

in Burman & Hansbo [3] where the coupling of Darcian and Stokesian flow was considered.
In this paper, we further extend the concept to deal with multi-physics problems: the
coupling of fluid and structure meshes in elastoacoustic vibration analysis.

2. THE CONTINUOUS PROBLEM

We shall consider the eigenproblem described by linear elasticity coupled with an irro-

tational fluid in R, where d = 2 or d = 3. Given the the density of the fluid, pp, and the

solid, pg, and the acoustic speed ¢, we seek the frequency w, the velocity field u = (ui)?:p

and the pressure p such that

(2.1) Vp — wprup 0 inQp,
(2.2) p+EppVoup = 0 in Op,
(2.3) V.o(us) +wpsus = 0  in g,
(2.4) on(ug) +p 0 onT,
(2.5) oi(us) = 0 onT,
(2.6) (up—ugs)-m = 0  onl,
(2.7) us = 0 on 0p

Here, the components of the stress tensor are given by

0ij = A0V - u+ 2pe; (u)

I

where 0;; is the Kronecker delta,

1 0% 011]-
gii(v) =< +
U( ) 2 (8$J aZCZ ,
and A and p are the Lamé constants. Further, o, = n - (6 - n) is the normal stress on
I', and oy = o - n — o,n is the tangential traction vector on I'. We assume that the
fluid domain is completely surrounded by the solid domain, and let n denote the outward

pointing normal to 2z on the interface [' that separates 2z from (g.
To formulate the problem in weak form, we introduce the function space

V= {(up,us) € H(div, Q) x H'(Qg), [u-n]=0onT,
ug = 0 on 082p},

where [u - n] := (up —ug) - n and
H(div, Qp) = {v € La(Qr) : [V - | 1505 < 00}

The continuous problem can now be stated in weak form as follows: find (up,us) € V
and w? € R such that

(prc®V -up,V - vrp)o, + (o(us), e(vs))as

2.8
(28) (wWorur, vr)ap + (Wosus, vs)as
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for all (vp,vg) € V. Here we have used the notation

(U(Us),é?(vg))gs = / ZO’ij(US)&j('vs) dCL’,

Qs 5

(’U,S,’Us)QS Z:/ ’U,S-’Usdl',
Qs

and so on.

In (2.8), the zero jump condition is hidden in the definition of the function spaces,
whereas in a finite element method (in particular with different kinds of approximations in
the different domains) this typically has to be modeled explicitly. In the following Section,
we will incorporate the zero jump condition weakly in a way that allows for arbitrary
approximations on either side of the interface. We emphasize that this coupling is in no
way related to the specific choice of discrete spaces we employ in this paper.

3. THE FINITE ELEMENT METHOD

In this Section, we shall extend the finite element method for non-matching meshes
introduced in [4] to the problem (2.1)—(2.7). To formulate our method, we suppose that
we have regular finite element partitionings 7;', i = 1,2, of the subdomains ; := Qp and
(s := Qg into shape regular simplexes K. These two meshes imply the existence of trace
meshes on the interface

(3.1) Gi={FE :E=KnNI, KeT'}.

By hr and hi we denote the diameter of element K € 7; and E € G, respectively.
Next, we introduce the Raviart-Thomas finite element spaces

RTk = {u € H(le, QF> . U|K € (Pk(K)>2 + CCPk(K>}

where Py (K) is the space of k :th degree polynomials on the element K (cf. Brezzi &
Fortin [5]). Further, we let

W, :={u e H'(Qg): w=00ndp, u|x € P(K)}.
Remark 1. The construction of the basis functions for the Raviart-Thomas spaces is per-

haps most easily done in the physical configuration, as opposed to standard FEM. Consider
an element in 2D with nodes x1, 9, x> and with side normals

n, ‘= (92 — Y1, T1 — x2)/l17
Ny 1= (y3 — Y2, T2 — 1’3)/12;
n3 = (yl — Y3, T3 — fl)/l&

where the l; denote the side lengths. The lowest order Raviart-Thomas approximation can

be written [5]:
a; bll'
o= (o] o)

and to construct the vector-valued basis {p,, ¥, 3} on the element we need to solve

P, =0;; atx=(x;+ x;11)/2 (modulo 3).
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This is a simple linear algebra problem
S| b | =F

f -2 ya—y1 (w1 +x2) (e —w1) (21— 22) (Y1 y2) ]
+
l l 21 21
.- Ty — X3 n ys — Y2 (T2 + x3) %ys. — 1Y) (22— x3) %yz +y3)
) ly ly 21 21
r3—x1  y1—vys (21+x3) 2.@1 —y3) (23 —x1) %yl +y3)
+
i I3 I3 215 215 ]

It is well known that restricting the approximation by using standard continuous finite
elements in the fluid domain will give rise to spurious eigensolutions with nonzero eigenval-
ues interspersed among the “real” ones. The use of Raviart-Thomas elements, which are
tailor-made for approximating vector fields where only normal continuity can be assumed,
will alleviate this problem. In particular, Rodriguez & al. (e.g., [1, 2]) have shown that
the approximation using the combination R7Ty and W is free from spurious solution and
gives optimal order error estimates for the eigenvectors and eigenvalues. In their work, a
particular projection scheme for the coupling on the interface was used (equivalent to the
Lagrange multiplier method discussed in Section 3.1). Here, we instead consider the use
of Nitsche’s method at the interface, which in particular allows for arbitrary combinations
of polynomial approximation on the different domains.

We now consider the problem of finding (U, Ug) € RTy x W; and \* € R such that

(3.2) an(U,v) = \N"b(U,v) Y(vp,vs) € RT) x W,
where
ap(w,v) = (ppc®V -up, V- -vp)o,
(3.3) +(o(us), e(vs))os — ({on(uw)},[v-n])r
~({on()}, [U -n])r + 7 X peg: by ([U - 0] . [v-n]),
(3.4) b(u,v) = (prup, vr)a, + (pPsts, Vs)ag,

and A\ is an approximation of w?. Here, we have used the notation
{o,(u)} = ao,(ug) + (1 — a)ppc®V - up,

with 0 < o < 1, ie., a convex combination of the (discrete) normal stresses on the
surface I". The number « can be chosen freely between 0 and 1, e.g., from implementation
considerations; indeed, it may even be chosen differently on different elements. We shall
in the following choose a@ = 0, i.e.,

{on(u)} = prc?V - up,

and we can then take the sum exclusively over the edges £ € G} in (3.3). The parameter
~v must be chosen from a perspective of stability and can neither be chosen too small or
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too large. A lower bound for v is easily computed, however (cf. below), and in order to
have a well conditioned problem it is prudent not to choose v much larger than this lower
bound. In our experience, the computed solution is, in the current context, less sensitive
to the choice of v for the particular choice a = 0. This choice also has a strong relation to
the work of Rodriguez & al. [1, 2], which we will discuss below.

We note that a solution (up, ug,w?) to (2.1)-(2.7) also satisfies (3.2). Taking the gra-
dient of (2.2), subtracting (2.1), multiplying by v € RT) and using Green’s formula, we
obtain

(Wprup, vr)a, = (prc®V -up, V- vp)a, — (ppV - up, vp - n)r.

Similarly, multiplying (2.3) by vg € W, and using Green’s formula we find

(WPpsus, vs)as = (o(us), e(vs))as + (0(us) - n, v5)r.

Now, using that o -n = o, + 0,n = 0,n on I, together with (2.4) and (2.2) and the fact
that, since [u-n] =0on T,

0=—({on(v)} . [u-n]r+v ) hi' ([u-n],[v-n]).

Eeg}

we find that (ur, ug,w?) satisfy (3.2). Thus the method is “arbitrary order consistent”
and there is no conformity error that has to be dominated by a large penalty parameter
as in a pure penalty method.

For the stability analysis below we need the following mesh-dependent “discrete half-
norms”:

(3.5) Hv”%/zh,r = Z hf_zl HUH%Q(E)
Eeg}

and

(3.6) 10121 o = Y b 0110,
Eeg;

which satisfy

(3.7) [(v, w)r| < ||lvllij2nr [|w|-1/2,nr

We further define the energy-like norm

1/2 2
(3.8) [0]% = (o(vs), e(®s))as + 13 eV - vr 0 +7 1[0 - I3 o
The following estimate is readily proven by scaling from a reference element, see [8].

Lemma 1. There is a positive constant Cr, independent of h, pr, and c, such that

2

< C[(pFCQV"UF,V"UF)QF Yvp € RT,.

3.9 H 2.y,
(3.9) Pr ¢V UF ~1/2.AT
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A bound for the constant C; can be computed by solving a small eigenvalue problem,
cf. Hansbo & Larson [8]. In the case of RTy, V - v is a constant and we directly find, on

an element K with an edge E on I', that
h2
/ hg pr (Y -vp)?ds = hy pp (V- vp)? = ﬁ / prc*(V - vp)? dz,
E K

where |K]| is the area of the element, so C; = maxg h3/| K| depends only on the shape of
the elements (which are assumed to be shape regular).

It is now straightforward to show that the bilinear form ay(+, ) is positive on RTy x W;:
by (3.7), we have

an(U.U) > Uk, =200 eV - Urlaznrlod e [U-nl anr,
and thus, using 0 < (¢'/2a — ¢~1/2p)?2,
(U, 0) 2 U~ 4 eV Ul s = il [0 0] [ nr
Finally, invoking Lemma 1 we find
Clh(U, U) > C||U||2E,h>
as long as € > O; and v > € prc?. In the case of vp € RT, we thus require

PF C2h2E
| K]
at each element K (on the fluid side) with edge E at T.

Ve >

Remark 2. There are non-zero fluid modes that do not affect the structure and which have
zero energy. Thus ap(-,-) is only positive semi-definite (one could also say that || - || g is
a semi-norm). However, this is inherent in the physics and is not related to the stability
problem obtained when choosing v too small. Cf. [1, 2] for a more thorough discussion.

3.1. Relation to a Lagrange multiplier method. In [1], Alonso & al. analysed a
Lagrange multiplier method using piecewise constant pressures on the trace mesh G;. This
method, which was shown to be stable for approximations in R71y x W7, can be written as
the problem of finding \* € R and (U, Ug, P) € RTy x Wi x Cy, where

Cr:={q € Lo(T) : qlp € Po(E), YE € G}},

such that
(3.10) (prc®V -Up,V-vr)a, + (0(Us) e(vs))as + (P [v-n])r
. = (N'ppUp,vp)o, + (N'psUs, Vs)ass
and
(3.11) (¢,[U -n]) =0,

for all (’UF,’Us,q) € RTy x Wi x Cy,.
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In order to compare our approach to this multiplier method we modify our bilinear form
to
&h(Ua ’U) = (pFCQV ’ UF; V- vF)QF + (U(US)’ E(vs))ﬂs
—(prc?V - Ul*Iv [v-n])r — (pre®V - ve, [U -n])r
+72Eeg}t hl_E (Ph [[U ’ ’I’L]] s Py [[’U ’ n]])E?

where we have introduced Py, [v-n] as the mean value of [v-n] on E. If we now let
v — 00, we see that the mean value of [U - n] on each E € G} tends to zero, which is also
the statement of (3.11). Since ppc?V - vp is a constant, for v € RTy, on each edge in
Gi, we thus recover the solution to the Lagrange multiplier problem in the limit of infinite
v. Note that we cannot in general let ¥ — oo in our approach; only by using a suitable
projection in the penalty term is this possible. This is similar to the reduced integration
penalty methods, cf. [5].

It should be noted that in our approach, the jump is not enforced to be zero. However,
the vibrational modes in which the jump is large are in the upper part of the spectrum.
Such modes are not to be considered spurious in the sense that they are pushed higher up
in the spectrum as the mesh is refined.

4. NUMERICAL EXAMPLE

To demonstrate the proposed method we solve the eigenvalue problem arising from the
coupled problem given in Figure 1a. The outer domain dimensions are 1.5 x 1.5m? and the
inner dimensions are 1 x 1m?, and the non-matching meshes are seen in Figure 1b. The
structure is discretized with both linear and quadratic triangle elements. In the simula-
tion the following data will be used: pr = 1000kg/m?, ¢ = 1430m/s, ps = 7700 kg/m?,
E = 144 GPa and v = 0.35, where FE is Young’s modulus and v is Poisson’s ratio. Fur-
ther, the Lamé constants are given as p = E/[2(1 +v)] and A = Ev/[(1 + v)(1 — 2v)].
The parameter @ = 0 and the penalty parameter is chosen as v = 2ppc?h?/|K|. The
computed eigenfrequencies [Hz] to the model problem are given in Table1, and some of
the corresponding eigenmodes are seen in Figure2. The ‘exact’ eigenfrequencies given in
Table 1 are those extrapolated eigenfrequencies given in [2]. To see how the coupling of the
normal displacement on the interface works, the normal displacement of the finite element
solution for three eigenmodes are plotted in Figure3. In the figures to the left the struc-
ture is discretized using linear elements and to the right using quadratic elements. The
discontinuous line is the normal displacement of the fluid and the continuous line is the
structural normal displacement.

5. CONCLUDING REMARKS

In this paper, we have suggested a new approach for fluid-solid coupling in fluid-structure
vibration analysis. In the spirit of the finite element method, the coupling is achieved by use
of a weak formulation of the interface conditions. It is possible to use for any combination
of polynomial degree finite element method on either side of the interface; we have used it in
combination with nonconforming finite element for the fluid and conforming finite elements
for the structure, which in particular alleviates the problem of spurious zero eigenvalues.
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We believe that the general methodology suggested by Nitsche’s method [9], as applied
in this paper, holds great promise for interface problems. To our knowledge, together
with [3] this is the first example of application of the Nitsche methodology to multiphysics
problems. We are currently investigating the extension to fluid-structure interaction in the
space—time domain.
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o
n
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FIGURE 1. Model problem (left) and the domain with a non-matching mesh (right).

TABLE 1. The computed coupled eigenfrequencies [Hz] using linear and qua-
dratic structural elements compared with the extrapolated eigenfrequencies
in Reference [2].

Mode Linear Quadratic Err. [%] (Lin.) Err. [%] (Quad.) ‘Exact’
1 113.9 106.1 11.54 3.88  102.2
2 3645 345.0 8.22 244 336.8
3 5779 948.5 13.42 7.66  509.5
4  641.3 621.3 5.93 2.62 605.4
5 681.7 672.3 1.70 0.30  670.3
6
7
8
9

757.6 749.0 1.54 0.39 746.1
833.2 822.2 1.55 0.21  820.5
901.1 868.0 5.12 1.26  857.2
1005.8 998.9 1.28 0.59  993.0
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FIGURE 2. Eigenmodes of the coupled problem in Figurel. The displaced
structure to the left and the displacement field of the enclosed fluid to the
right. (a) The first eigenmode, (b) the third eigenmode, and (c¢) the ninth

eigenmode.
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(a)

F1GURE 3. The normal displacement of the FE solution to the coupled prob-
lem on the interface. The discontinuous line is the fluid normal displacement
and the continuous the structural normal displacement. Linear structural el-
ements were used in the left figures and quadratic in the right figures. (a) The
Ist, (b) the 3rd, and (c) the 9th eigenmode.
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