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CROUZEIX-RAVIART AND RAVIART-THOMAS ELEMENTS FOR
ACOUSTIC FLUID-STRUCTURE INTERACTION

JOAKIM HERMANSSON

ABSTRACT. We consider the eigenvalue problem arising from small vibration fluid-structure
interaction. We propose using the lowest order Raviart—-Thomas (RT) element for the lin-
ear fluid and the first order non-conforming Crouzeix—Raviart (CR) element for the linear
elastic structure. The RT element, whose unknowns are the normal projection of the
field variable on the element sides, are known to give solutions free from spurious nonzero
frequency circulation modes The unknowns on the CR element are chosen as the normal
and tangential projection of the field variable at each side node. This choice leads to that
the normal degrees of freedom on the interface will be the same for the structure and the
fluid as long as the meshes match on the interface. Further, a consistent stabilizing term
is added to the weak form to make the CR element stable for elasticity. An additional
benefit of the CR element is that is does not lock for near incompressible materials.

1. INTRODUCTION

Small vibration fluid—structure interaction (FSI) in enclosed cavities, appears, for in-
stance, in vehicle compartments (cars, aircrafts, trains) or in buildings. Of special interest
are the eigenfrequencies and the corresponding eigenmodes of the coupled fluid-structure
system, since excitation of these modes may result in unwanted noise. To avoid such phe-
nomena, it is important already in the design process to predict the eigenfrequencies of
the coupled system with some numerical tool. Further, it can be of interest to predict
the sound pressure level, due to some given excitation, which can preferably be done with
a modal analysis approach. Here we will deal with a finite element (FE) formulation to
solve the eigenvalue problem, using the lowest order Raviart—-Thomas (RT) elements for
the linear fluid, and the first order non-conforming Crouzeix—-Raviart (CR) elements for
the linear elastic structure.

An attractive approach to discretize the fluid is to use standard (continuous) finite
elements. Unfortunately, this leads to spurious nonzero frequency modes, see, e.g., Hamdi
et al. [1]. A displacement formulation that avoids spurious nonzero frequency modes was
introduced in Bermidez et al. [2, 3], where the fluid displacements were discretized with the
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2 JOAKIM HERMANSSON

lowest order Raviart—-Thomas element, on which the unknowns are the normal projection of
the field variable on the element sides, see, e.g., Ewing and Saevareid [4]. If standard finite
elements are used to describe the structural displacements, conditions which relate the
unknowns of the fluid and the structure on the interface have to be introduced, since the
positions of the unknowns will not match on the interface. To quote Wang and Bathe [9],
referring to the Raviart—Thomas elements: “This formulation is promising but the degrees
of freedom of the fluid elements are not those of the structure and the coupling needs
special considerations”.

Here we suggest to discretize the structure using the first order Crouzeix-Raviart element
and defining the unknowns as the normal and tangential projection of the displacement
at each side node. Thus, using the Raviart-Thomas element for the fluid, the normal
displacement degrees of freedom on the interaction boundaries are the same for the fluid
and the structure, as long the meshes match on the interfaces. Since the unknowns on
the CR elements are located at the center of gravity on the element sides, the elements
can rotate around the side nodes violating Korn’s inequality for elasticity. In order to
stabilize the element, a consistent stability term is added to the weak form, as suggested
in Hansbo and Larson [5, 6] (see Brenner [7] for a proof of Korn’s inequality using this
stabilization method). The optimal magnitude of the stabilizing term is investigated by
a numerical example. Further, a numerical example is given with the proposed fluid-
structure interaction method. We remark that an additional benefit of the proposed version
of the CR element is that it does not lock for near incompressible materials. We also give
a numerical example showing this property.

2. THE FLUID—STRUCTURE INTERACTION PROBLEM

The problem we aim to solve is the eigenvalue problem originating from the interaction
between a linear fluid enclosed in a linear elastic structure. The fluid domain is denoted
g, the structural domain €5 and the interaction boundary I'. The exterior structural
boundary is divided in two parts, ['p and I'y. The displacements are prescribed on I'p
while the traction is prescribed on I'y. The governing equations for the continuous fluid—
structure problem expressed in the frequency domain reads:

(2.1) Vp — w?ppup = 0 in Qp,
(2.2) p+EppV up =0 in O,
(2.3) V.o +wpsus =0 in Qg,
(2.4) on+p=0 onT,
(2.5) (up —ug) - mn=0 on T,
(2.6) o.=0 onT,
(2.7) ng-o=0 on I'y,
(2.8) us =g on I'p,
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where ur and ug are the fluid and structural displacements, respectively, and p is the fluid
pressure. Further, w is the angular frequency, c is the speed of sound, and pr and pg are
the fluid and the structural density, respectively. The stress tensor, o, is given by Hooke’s
law as 0;; = A6;;V - us + 2p¢;;(us), where §;; is the Kronecker delta, A and y are the Lamé
constants, and

1 auz an
The Lamé constants are given as u = E/[2(1 + v)] and A = Ev/[(1 + v)(1 — 2v)], where
E is Young’s modulus and v is Poisson’s ratio. Finally, 0, = ng - (ns - ) is the normal

stress on I', o, = ng - 0 — o,ng is the tangential traction vector on I', n is the outward
pointing normal to O, and ng is the outward pointing normal to {2s.

3. THE FINITE ELEMENT FORMULATION

The triangulation of (2 is denoted T5 and the triangulation of (2 is denoted Jx. Further,
&1 contains the interior element sides F on {25, and Ep contains the element sides F located
on the prescribed displacement boundary ['p. To each element side E there is an associated
predefined side normal vector ng. Next, we define the Crouzeix—Raviart finite element
space as

CR(Qs) = {v € Ly(Qs) : v|g € [PI(K)]? V element K € Tg,
v is continuous at the center of gravity of the element sides},

where Ly(Q2) = {v : [,v-vdQ < oo} and [P, (K)]* denotes a 2-dimensional vector contain-
ing linear polynomials defined on K. The Raviart-Thomas finite element space is defined
as

RT () = {v e H(div,Qr) : v|x = (a + bz, c + by), a,b,c € R

V element K € Ty, v - n is cont. and const. on the element sides},

where H(div,Qp) = {v € Ly(Q) : V-v € Ly(Q)}. The finite dimensional function space
to the given problem, with the interface condition invoked, follows as

Vi, = {(vr, vs) ERTXCR:/(’UF—’US)-’I’LdE:O

E

VE eT'}.

For our choice of element approximations, this means that the normal displacement degrees
of freedom, on the interface, are the same for the fluid and the structure. We emphasize
that this is an important property from an implementation point of view (higher order
versions of the RT and CR elements have the same property).

Our nonconforming finite element formulation for the fluid—structure interaction problem
can now be written: find U = (U, Us) € V), and wy, € Ry such that

(3.1) an(U,v) = w;by (U, v) Vv = (vp,vs) € Vp,
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where

ap(U,v) = Z / [AV - UsV - vs + 2ue(Us) : e(vs)] dQ

KE‘J’SK
1
+Cc Y / —(2ulUs] - [vs] + AU - n] [vs - ns] ) dE
E
Ee&Uép

+ pFCQ/V : UFV - Vf dQ,
Qp

bh(U,’U) = ,OF/UF -deQ-l-ps/Us "UsdQ.
Qp QS

The bracket [-] denotes the jump on the element sides, and is defined as [u] = u™ — u~
for all £ € &;. It does not matter on which side of the element sides u™ and w™ are
defined since the jump term is symmetric. Further, [Us] = Ud — g and [vs] = vg for
all E € &p. The wy, is the approximate w and hg is (here) the length of side E, but it
can be chosen differently, see [5]. The optimal magnitude of the stability parameter C
is investigated numerically in Section5.1. The second part of the stability term has to
be dropped if problems with near incompressible materials are going to be solved, since
A — oo as ¥ — 0.5, and locking can occur. See a numerical example in Section 5.1. The
first part of the first term, i.e., the A-term, does not cause any problem when v is close to
0.5 since the CR element can interpolate both the divergence and the displacement field,
see Thomasset [8]. Note that when v = 0.5, i.e., incompressibility, V - ug = 0.

4. PRACTICAL IMPLEMENTATION

Structural domain: The elastic structure (2D) is discretized with first order non-conforming
Crouzeix—Raviart elements, on which the unknowns are located at the center of gravity on
the element sides, see Figure 1a. Here we have chosen to describe each nodal displacement
by its normal and tangential component. The direction of a element side normal vector
ng (and thus the tangential vector) at a side node depends on its global definitions, i.e,
the depicted directions at a side node in Figure 1a may be rotated 180°. The approximate
displacements on a structural element follows as

US = Ps US )
where

ps =[pim1 @it pang oty p3ng psts)

contains the basis functions and the normal and tangential vector at each side node. The
basis functions are those used for a standard linear triangle, but defined on the inscribed
triangle, see Figure 1la. For instance, ¢; = 1 at side node 1, and ¢; = 0 at side node 2 and
3. Further, Ug = [U} Ul U2 U? U3 U2]T contains the normal and tangential displacement
components at the side nodes. The structural element stiffness matrix is built up from the
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first and the second term in the expression for a,(U,v) in (3.1). The contribution from
the first term to the structural element stiffness matrix is given by

K
where
I d9p1 4 op1 1
8x1 ™ 6371 tl
= op 0y

Opr 1 Opr 4 Op1 1, Op1 4
—_— — —t —t

-(6332 ™ 8.131 n2> (8:52 ! + 6331 2) _

D is the constitutive matrix for plane strain, see Hughes [10], n; = [n¢ ni]T, ¢t; = [t} £2]T
and 7 = 1,2, 3 is the side node number. The second term (stabilizing), which contributes to
the structural element stiffness matrix, give rise to that the bandwidth of the matrix will
increase, compared to standard finite elements. In the interior of the mesh the belonging
rows and columns in the stiffness matrix will contain 26 components (in 2D elasticity).
For instance, the side node on F; in Figure?2 is coupled to all unknowns on the patch.
This because the jump terms on the sides Ey — E5 will couple the unknowns at E; to
the unknowns at the outer side nodes on the patch. This can be compared with about
12 components for standard linear elements if each interior node is surrounded by five
elements. On the other hand, the consistent structural mass matrix (the second term of
br(U,v) in (3.1)) will be diagonal. This can be verified by the fact that for the three point
quadrature formula, which has its quadrature points on each midside node and integrates
quadratic polynomials exactly on a triangle, we have that at each quadrature point one
basis function is equal to one and the other two are equal to zero.

Fluid domain: The fluid domain (2D) is discretized using the lowest order Raviart-Thomas
element, see Figurelb, on which the unknowns are the normal projection of the field
variable on each element side. The normal projections are constant along the element
sides. The basis functions (vectors) on an element are given by, if the global element side
normal ng is pointing outward on E;,

Y = |2£ijg| (ili - wi')a

and if the global element side normal ng is positive inwards
_ B
‘PZ 2A

where 7 = 1,2, 3 is the side number, |E;| is the length of the element side i, A is the element
area, and the (') sign denotes the geometrical nodes. Further,

(CB - wi')v

P, n; = 5ij on Ej,
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where 7,7 = 1,2, 3. Finally, the displacements on an element are approximated as
U,
Ur = ppUr = [p; ¥, @3] U§
n

5. NUMERICAL STUDIES

The following data will be used in all numerical examples:
pr = 1000 kg/m?,

¢ =1430m/s,
ps = 7700 kg/m?,
E =144 GPa.

5.1. The stability parameter C. The magnitude of the stability parameter C in the
FE formulation, see (3.1), is investigated comparing the FE solution with the analytical
solution to the model problem seen in Figure 3. The boundary and the volume forces are
given by

H H vE
— )= —-24A— P
0-22(:517 2 ) 2 (1 + V)(l _ 2V) a,
H H vE
——)=24A— P
on(@ =) 2 (1+v)1—2v)
E(1-v)
B = —2A P
011( ,332) T2 (1 n 1/)(1 — 21/) a,

vE N
(1+4+v)(1-2v) m¥’

where A [1/m] is a constant. The analytical solution to the above problem reads

—2A
Us = |: A;%l‘?] .

Further, plain strain (£33 = 0) was assumed in the derivation. To see the influence of the
second part of the stabilizing term, i.e., the A\-term, we calculate the error for different v
with and without the A-term. The minimum of the error for different v occurs for C' ~ 1.5
when the A-term is included, see Figure4a. When the A-term is dropped the minimums
of the errors are not the same for different v, see Figure4b. The computed displacement
to the model problem with all terms included for C' = 0.01 and C' = 1.5 can be seen in
Figure6. For C = 0.01 the elements rotate around their side nodes. To demonstrate that
locking is avoided when the A-term is dropped, we solve a problem on the unit square with
the following (non-physical) displacement boundary conditions

'U/S(O, .TQ) = 07 US(la 372) == 07
uS(‘xl:O) =0, ’u’S(xl, ]-) = [1:0]T

K2:2A
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Poisson’s ratio is chosen as v = 0.499 and C = 1.5. As can be seen in Figure5 locking
occurs when the A-term is included in the FE-formulation. The locking phenomena appears
as oscillations in the displacement field

Remark: Note that even though we obtain less accurate solutions for certain ranges of
C, the convergence rate, which is optimal in energy norm (O(h)) and Lo—norm (O(h?))
(cf. [5]), will not be affected. The choice of C only affects the solution on a fixed mesh.

5.2. Structural eigenvalue problem. To further examine the properties of the proposed
structural FE formulation, we solve the structural eigenvalue problem arising from the
model problem given in Figure 7 with vacuum inside. Poisson’s ratio is set to v = 0.35 and
the stability parameter to C' = 1.5. The computed eigenfrequencies are compared with the
extrapolated eigenfrequencies, referred to as the ‘exact’, given in [2]. The result is seen in
Table 1.

5.3. Fluid—structure interaction example. To investigate the proposed method’s abil-
ity to solve fluid—structure interaction problems we solve the coupled eigenvalue problem
arising from the configuration in Figure 7. Poisson’s ratio is set to ¥ = 0.35 and the stability
parameter to C' = 1.5. The computed eigenfrequencies are compared with the extrapolated
eigenfrequencies, referred to as the ‘exact’, given in [2], and can be seen in Table2. The
displaced structure and the displacement field of the enclosed fluid for three eigenmodes
are seen Figure8.

6. CONCLUSIONS

A nonconforming finite element method for solving small vibration fluid-structure in-
teraction was proposed. The fluid was discretized using the lowest order Raviart—Thomas
element, and the structure was discretized using the first order Crouzeix-Raviart element
with the unknowns defined as the normal and tangential projection of the displacement at
the side nodes. These elements in combination with meshes that matched on the interface,
led to that the normal displacement degrees of freedom were the same for the fluid and
the structure. Thus conditions which related the normal displacement degrees of freedom
on the interface did not have to be introduced. Further, a consistent stabilizing term was
added to the weak form to make the Crouzeix—Raviart element stable for elasticity.

Numerical examples were given in order to demonstrate the method’s ability to solve
eigenvalue problems arising from structural dynamics and fluid-structure interaction. The
results were compared with results given in [2|. Further, a numerical example showed that
the stabilized Crouzeix-Raviart element works for near incompressible materials as proven
in [5].
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FIGURE 1. (a) The first order Crouzeix—Raviart element, the location of the
unknowns (on the center of gravity of the element sides) and the directions
of the unknowns. (b) The lowest order Raviart—Thomas element and the
directions of the unknowns.
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FIGURE 2. A structural element patch and its element sides E; — Fs.
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FIGURE 3. Test problem with the dimension B x H and the acting forces.
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FIGURE 5. Structural example with v = 0.499. Formulation according to
Equation (3.1) with the A-term included (left) and excluded (right).

TABLE 1. The computed structural eigenfrequencies [Hz] compared with the
‘exact’ eigenfrequencies given in [2].

Mode Computed ‘Exact’ Error [%]

1 106.7  106.0 0.65
2 366.6  363.6 0.82
3 610.8  605.3 0.91
4 620.7  617.5 0.52
) 7184 7174 0.14
6 875.6  870.7 0.56
7 1220.3 1204.1 0.13
8 1224.1 1216.1 0.65
9 1649.5 1635.2 0.88

TABLE 2. The computed eigenfrequencies [Hz] to the coupled problem com-
pared with the extrapolated eigenfrequencies given in [2].

Mode Computed ‘Exact’ Error [%]

1 105.0  102.2 2.78
2 343.7  336.8 2.04
3 547.0  509.5 7.35
4 620.4 605.4 2.46
) 671.7  670.3 0.20
6 748.7  746.1 0.34
7 821.7  820.5 0.14
8 866.5  857.2 1.09
9 998.6  993.0 0.56
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