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SMOOTHING PROPERTIES AND APPROXIMATION OF TIME
DERIVATIVES IN MULTISTEP BACKWARD DIFFERENCE METHODS
FOR LINEAR PARABOLIC EQUATIONS

YUBIN YAN

ABSTRACT. In this paper we consider smoothing properties and time derivative approx-
imation in multistep backward difference methods for nonhomogeneous parabolic equa-
tions. Smoothing properties and time derivative approximations in single step methods
for homogeneous parabolic equations have been studied in Hansbo [5], Yan [12], [13]. We
extend the similar results in Yan [12] to the multistep backward difference methods.

1. INTRODUCTION

In this paper we shall consider the smoothing properties and the approximation of time
derivatives in multistep backward difference methods for the following nonhomogeneous
linear parabolic equation

(1.1) u+ Au=f, fort >0, withu(0)=nuv,

in a Hilbert space H with norm || - ||, where u; = du/dt and A is a linear, selfadjoint,
positive definite, not necessarily bounded operator with a compact inverse, densely defined
in D(A) C H, where v € H and f is a function of ¢ with values in H.

The theory of stability and error estimates for the approximation of the solution of
(1.1) by a multistep method have been well developed, see Becker [1], Bramble, Pasciak,
Sammon, and Thomée [2], Crouzeix [3], Hansbo [6], LeRoux [7], [8], Palencia and Garcia-
Archilla [9], Savaré [10], Thomée [11], and the references there in. The smoothing properties
and the approximation of time derivatives in single step methods for homogeneous parabolic
problems have been studied by Hansbo [5], [6], Yan [12], [13].

This paper is related to Yan [12]. Let us first recall the main results in Yan [12]. Consider
(1.1) with f =0, i.e.,

(1.2) u+Au=0 fort >0, withu(0)=
0

v
Let U",n > 1, be an approximation of the solution u(t,) of (1.2) at time ¢, = nk, where
k is the time step, defined by a single step method,

(1.3) U =r(kA)U™ !, forn>1, withU" =,
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2 YUBIN YAN

where the rational function r(\) is accurate of order p > 1, i.e.,
(1.4) r(A) —e = 0N, as A — 0.

Let j > 1. Define the following finite difference quotient, with some nonnegative integers
mq, Mo and real numbers c,,

ma

- 1
(1.5) QU" = 5 _Z e, U™ forn > ms.

Assume that Qf; is an approximation of order p > 1 to the time derivative Dg, that is, for
any smooth real-valued function u,

(1.6) Diu(t,) = Qu" + O(k?), ask —0, withu"=u(t,).

We then have the following smooth data error estimates

(1.7) |QLU™ — Diu(t,)|| < CkP||AP*Iv]||, for n > my, v € D(APTY).
Further, if |r(c0)| < 1, then we have the following smoothing properties

(1.8) QU™ < Ct7|loll,  forn > mu, tn >0, v € H,

and nonsmooth data error estimates

(1.9) |QiU™ — Diu(t,)|| < CkPt;®*)||v|, forn >my, t, >0, v € H.

The purpose of this paper is to extend the above results for homogeneous parabolic
equation, which is approximated by a single step method, to the nonhomogeneous parabolic
equation, which will be approximated by a multistep backward difference method.

We introduce the backward difference operator 5,,, p>1, by

p i—1
_ kil _
(1.10) U= Tan", where U™ = (U™ — U™ /k.
j=1
With U, ... UP~! given, we define our approximate solution U™ by
(1.11) O,U" + AU" = f", forn >p, where f" = f(t,).

It is well known from the theory for numerical solution of ordinary differential equations,
see, e.g., Hairer and Wanner [4], that this method is A(f)-stable for some § = 6, > 0 when
p < 6. The error estimates for such method has been studied in Bramble, Pasciak, Sammon,
and Thomée [2]. It is easy to see that, for any smooth real-valued function u, see Thomée
[11, Chapter 10],

(1.12) u(t,) = Gu™ + O(kP), ask — 0, withu"=u(t,).

In Theorem 2.1 below, we obtain the following smoothing property: if U™ is the solution
of (1.11) with f = 0, then we have, with p <6,
p—1
10,U"|| < Ct,*! Z |U7||, formn > 2p.

j=0
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It is natural to approximate the time derivative wu;(¢,) of the solution of (1.1) by
8 U™ (n > 2p), where U™, n > p, is computed by the multistep backward difference
method (1.11). In Theorems 3.1 and 3.4, we obtain the following error estimates

tn
10,U" — us(tn)]] < C’Z | AU — )| + Ckp/ |Au®*D(s)||ds, forn > 2p,
0

and, with G(s) = [u®*+V (S)\Q,zp,l + 522y (5) |2 + 2|y (s) |2,
2p—1

BPOU" — ()l < € Y (107 =gy + RPA@ ~ )

tn
v one( [ ato)ds + i),

respectively.
When we choose some suitable discrete starting values U° U',.-. UP™! we get the
following nonsmooth data error estimates, with f = 0 and p < 6,

18,U" — wy(tn)|| < CRPLP o], for n > 2p.

By C and ¢ we denote large and small positive constants independent of the functions
and parameters concerned, but not necessarily the same at different occurrences. When
necessary for clarity we distinguish constants by subscripts.

2. SMOOTHING PROPERTIES

In this section we will show the smoothing properties for the multistep backward dif-
ference method. Before showing this, we first discuss some properties of the backward
difference operator 3, defined by (1.10). We first note that (1.10) can be written in an-
other form, see, e.g., Yan [12],

(2.1) o,U" = k7! zp:cyU"—“,
v=0
where the coefficients ¢, are independent of k. Introducing P(z) = Y P_ c,a", it is easy
to check that (1.12) is equivalent to
(2.2) Pe™) = A=0(\), asA—0.
In fact, with u(t) = €’ in (1.12), we have
Ple ™) —k=0(""), ask—0,

replacing £ by A, we show (2.2). On the other hand, if (2.2) holds, (1.12) follows from
Taylor expansion of d,u™ at t,.
For p =1, (1.11) reduces to the backward Euler method

U -U"Y/k+AU" = f*, forn >1,

and the starting value is U° = v.
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For p = 2, we have
(%U” —2Uu™ 4 %U"_Q)/k + AU™ = f", forn > 2,

and both U® and U' are needed to start the procedure.
Bramble, Pasciak, Sammon, and Thomée [2] obtain the following stability result, i.e.,
with U™ the solution of (1.11),

p—1 n
(2.3) JU™| < CY U+ CkYNfl,  forn > p.
Jj=0 Jj=p

In this paper we first show the following smoothing property for the multistep backward
difference method.

Theorem 2.1. Let p < 6. Then there is a constant C, independent of the positive definite
operator A, such that for the solution U™ of (1.11) with f =0,

p—1
(2.4) 18,U™| < Ct;" Y U, forn > 2p.
=0
To prove this theorem, we need the following lemma from Thomée [11, Lemma 10.3].
Lemma 2.2. The solution of (1.11) may be written, with ¢ = kf? = kf(t;),

n p—1
(2.5) U= Bu j(kA)g’ + Z Brs(kAYU®,  forn > p,
j=p =0
where the B;(A) and Bns(X) are defined by, with A >0, P({) =Y_"_,c.¢”,
(2.6) D BN = (PO +N Bas(A Z Brs—i
Jj=0 j=p—s

If p < 6, there are positive constants c¢,C' and Xy such that

27) 6,00 < {Ce‘cﬂ“, for 0 < X < X,

CA\7te=,  for X > ).
Proof of Theorem 2.1. By (2.5) and (2.1) we find that

"=k lzCUZB(n s (KA)U* = Zﬁm (kAU

where obviously we require that n — v > p (0 < v < p) which implies n > 2p, and where

! (A\) are some functions of . Since 9,U" is linearly dependent on U® (0 < s < p—1), it

suffices to consider separately the cases when all terms but one on the right of (2.4) vanish.
We consider the case when U' 40, 0< [ <p—-1and U* =0, 0<s<p-—1, s#1.

In the case 0 < | < p—1, we need to show
(2.8) 18,U" ] < Gt [U*]].
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By Lemma 2.2, we have

p p p
BU" = kY e (Bl =k D6 Buveio(kA)e; U
v=0 v=0 j=p—I

= k_l i (ic,,ﬂn_y_l_j(kA))Cle, for0 << p— 1.

j=p—1l v=0
We also note that

p
(2.9) chﬁn,u,s()\) =—Abn-s(A), forp<s<n, n—v—s>0.
v=0

In fact, if n—s < p, (2.9) follows from comparing the coefficients of * of (2.6) for 0 < 5§ < p.
If n — s > p, by comparing the coefficients of (* of (2.6) for 5§ > p, we get
(co+ A)Bs+ -+ ¢cpfBs_p =0.

Replacing § by n — s (n > 2p, n— s > p), we get (2.9).
Thus (2.8) follows from

P
‘n)\ 3 /3n_,_j(A)‘ <C, for0<l<p—1,
j=p—l
which follows from, for fixed [, 0 < <p—1,

» P
‘")‘ Z Bn—l—j()\)‘ <C Z ne DA <00 for 0 < A< A,
j=p—1 j=p—I
and
D P -
‘n)\ Z Bn—l—j()\)‘ <C Z ne =0 < ¢, for A > A,.
j=p—1 j=p—1

We now consider the case [ = 0, we have, by Lemma 2.2,

P P
o,U" = k! Z v (Bin-vyoU°) = k7 ( Z Cuﬁn—u—p(kA))chO'
v=0

v=0

We will show

(2.10) g

p
chﬁn_u_s()\)‘ <O, for e o(kA), n>2p.
=0

Assuming this in the moment, by spectral representation, the desired estimate ||0,U"| <
CtH|U|| follows.
It remains to prove (2.10). In fact, since (2.9), it suffices to show,

(2.11) ﬁ\/\ﬁn,s(/\)\ <C, forAeo(kA), n>2p, p<s<n,
s
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which we will now prove. For small A < )¢, we have, by (2.7),
g|)\ﬂn_s()\)| < (nAe™ ™) (571 < (nAe™™) max{p~ e}, n e} < C.
For A > Ay, using again (2.7), we have,
A (V] < Clne ) (s7'e) < €,

which completes the proof of (2.11). Together these estimates complete the proof of The-
orem 2.1. [l

3. ERROR ESTIMATES

In this section, we will show the error estimates for the approximation 5pU " of the time
derivative u,(t,) in both smooth and nonsmooth data cases. Recall that the error estimate
for the approximation U™ of u(t,) in the smooth data case reads, see Thomée [11, Theorem
10.1],

p—1 tn
(3.1) U™ —u™|| < C’Z U7 — 2| + C’k”/ |u® V) (s)||ds, for n > p.
0

=0

Applying (3.1), we can easily prove the following smooth data error estimate for the
time derivative approximation.

Theorem 3.1. Let p < 6. Then there is a constant C, independent of the positive definite
operator A, such that

p—1 tn
(3.2)  [|GpU™ — uy(tn)] < C’Z | AU — u?)|| + Ckp/ | Au®tV (s)|| ds, forn > 2p.
i=0 0

Proof. By (1.11) and (1.1), we have
10,U™ — us(ta) | = A" = ultn)-
Applying (3.1) with norm ||A - ||, we obtain (3.2). The proof is complete. O

We now turn to nonsmooth data error estimate. Below we will use the norm |v|; =
(A%v,v)'/2, s € R, defined by

o0
0P =m0, < oo, forseR,
=1

where {1, 152, is the eigensystem of the operator A.
We first recall the following stability result, see Thomée [11, Theorem 10.4].
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Lemma 3.2. Let p < 6 and s > 0, and let U™ be the solution of (1.11). Then we have,
with C independent of the positive deﬁnite operator A,

BT+ kY G107 < CZ (072 + K07IP)
j=p
+CRY PR+ PR, fornzp
j=p
We need the following generalization of Lemma 3.2.

Lemma 3.3. Let p < 6 and s > 0, and let U™ be the solution of (1.11). Assume that
m >p and U™ P, --- U™ are given. Then we have, with C independent of the positive
definite operator A,

n m—1
BINU P+ kY Ui <C Y (U2, + k07|17

j=m j=m—p

n
+Ck Z(|fj|2_s_1 +1f71%),  forn>m.
j=m
Proof. We modify the proof of Lemma 3.2. By eigenfunction expansion, it suffices to show

(3.3) n* (U™, 00)* + (k) Z] U, @)* <C Z (km +1>(Uj,90z)2

Jj=m—p
+ CZ ((m)—s—1 +j5(kul)_1)(kfj,gol)2, for 1 <1 < oo.

By (1.11), we find that, with 1 <1 < oo,

(co+ k) (U™ 1) + 1 (U™ 1) + - + (U™, 1) = (kf", 1)
We now instead consider the equation, with A € o(kA), W™ = W"(]\),

(3.4) (co + W™ +e W oo 4 o, WP =F"  forn>m,
where W™P ... W™l € R are given and F' € R, (m < | < n) are arbitrary. We shall
show
n m—1

(3.5) n (W2 + XY )2 <C > (A + )W)

j=m Jj=m-—p

+CY (AT AT (FI),
j=m

Assuming this and applying this to W™ = (U™, ¢;), A = ky; and F™ = (kf", ¢;), for fixed
,1 <1< o0, we complete the proof of (3.3).
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We now turn to prove (3.5). By linearity it suffices to consider separately the case when
Wm=t=0,1<1<p, and then the case when F! =0 for [ > m.
By Lemma 2.2, we find that

(3.6) n*|Bal + A 418l < C(A+ M%), forn > 0.
=0

In fact, by (2.7), we have, for 0 < A < ),
n®|Bal < Cnfe ™ < CX75,

and
A FIBI S CAY e N =CAT Y e < OX
§=0 §=0 §=0
and for A > A, the left-hand side of (3.6), is less than Cn’e™" 4 C’Z?’;O j%e~% which is

bounded.
We also note that the solutions W™(n > m) of (3.4) satisfy, by (2.5),

p—1
W™ = ﬁo()\)Fm + Z BPS(A)Wﬁ—m—P,
s=0
p—1
W= By (A F™ + B E™ 4+ B (W7,
s=0

n p—1
w" = Z ﬂnfj()‘)F] + Zﬁ(p—kn—m)s()\)ws—l_mipa n=m,
j:m s=0

or, in general form,

n p—1
(3.7) W= BosiF"+ > Btn—m)s WP, forn >m.
j=m s=0
After the above preparations, we now consider the proof of (3.5) in the case when
Wmn? =...=Wm™ ! =0. We have, by (3.7),
W= BugF' =Y BF", forn>m,
j=m =0

so that, using the Schwarz inequality,

n—m

wrny = (3 ar) < (32 180) S 1R
=0 =0

= =0
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Hence, by (3.6), and noting that n®* < C(I* + (n —{)*) and 1 < (n —[)*, we find

3

—m

(3.8) (W2 < ON LY (PIBIF™ 2 + (n = 171G (F™)?)

S ~
Lol
S o

<ONIY (A o+ (n = 1)) (P

which is the desired estimate for the first term of the left hand side in (3.5). For the second
term in (3.5), we have, by (3.8),

)\Zns( 2

n—

Y (A3 IBIE)2 + 1Byl n — )" (F)2))

>

A
gs

Ms'

IN

_ (fw + 7781 ) (F7)2

J

3

< C)\ ! Z( +)\—s)(Fn)2 + AL Z ns(Fn)Q
SCAT Y (A4 (FM),

n=

3

which completes the proof in the present case. )
We next consider the case when Fi=0,m<j<nand W™ l£0, 1<I<p Wnl=
0, 1 <1 <p, l+#I1. We begin with the special case [ = p. By (3.7) with s = 0, we have

wW" = 6(p+n—m)0()‘)Wmip = /Bn—m()\)chmip,
so that, using (2.7) and n® < C((n — m)* + m?),

n*(W™)? < Cn°Brm(N) (W™ P2 < C(1+ (n—m)*) Boem(A) (W™ P)?
< O+ X5 (W™ P)2,

From this we also obtain
)\Z (Wny? <C)\Z(1+ n—m )) 2 () (WmP)?
<CA+ 2% (wm p) )

For the general case | # p, we have, by (3.7) with s =p —

wn —ﬁ(p—l—n m)(p— l Wm ! Zﬁn m+l— j c]Wmila
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so that, using (2.7) and n°* < C((n —m+1—j)* + (m =1+ j)%),
p
RV < C® 3 Bt (WY
=

<CY (1+Mm—m+1-35)°)Bnmui V) (W™)?

M-

l

J

<Oy (L+ A5 (Wmh2,

M-

7=l

From this we also obtain

)\Z (wn)? <CAZZ L+ =m+1=35)") By NV

n=m j=|
<O+ A=) Wmh
Together these estimates complete the proof. [l

Now we are the position to state our error estimate.

Theorem 3.4. Let p < 6 and let U™ and u be the solutions of (1.11) and (1.1), respectively.
Then, with G(s) = [u®(s)[2 5, 1 + s [u®*D(s) [} + 5*[ue(s) 3,

2p—1

AU — wlt)P < O (107 =2y, + K72 A7 - ))|?)
Jj=p

tn
+0k2p(/0 G(s) ds+tgp|ut(t2p)|%>’

Proof. The error €™ = 3,U™ — uy(t,) (n > p) satisfies
Ope™ + Ae™ = —7",  where 7" = A(Gpu(t,) — w(tn)), forn > 2p.

Applying Lemma 3.3 with s = 2p + 2, m = 2p, we have, for n > 2p,
2p—1

2P < O ) (167 gpmn + K7l
Jj=p
n
+ Ck Z (|7—J|2,2p,3 + t§p+2‘71|%1).
J=2p
We now estimate the term kY7, [77]2,, 5. We will show that, with any norm || - || in
H,
_ t;
(3.9) 10,u(t;) — uy(t;)]| < CkP~ / |u®tV(s)|| ds, for j > 2p.
ti_

Jj—p
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Assuming this we have

. tj
77255 < Ckal/ [u®) ()2 “op_1ds, forj>2p.
ti—p

Thus

kZ 1775y 5 < CkaZ/ w®H( ) gp 1 ds

J=2p J=2p

tn
< Ok / WP (5)[2,, , ds.
0

It remains to estimate kzj o ]2p+2\77\2 . If j # 2p, we have, by (3.9) with norm
|AYZ -,

k Z t2p+2|7_3|2 < Ck> Z 12p+2 ‘u(p+1 )2 ds.
Jj=2p+1 j=2p+1 tj—p
Here we have t; < cs for s € [tj_p,t;], j > 2p+ 1 which follows from

t; t
t; < s—- < g22tl <cs, forj>2p+1.
Jj—p tpt1

Y e <o Y [ e

Jj=2p+1 j=2p+17ti-»
For j = 2p, we write, since Y »_ ¢, =0,

72— ](1,4( Ep: cu(top—y) — Ut(t2p))

v=0

=k 1A ch/% ) s—ut(tgp))

Hence

and we obtain .
2p
K2, < C / g(5)[2 ds + lue (tap) 2,
tp

which follows from

th v
AR Z\ JRRZCLES

t2p v
< Ck- zpk / ur(5)[? ds + s )2

t2
< Ck! ue(8)? ds + |us(top) -

tp

o+ lunlt)2)
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Thus, we get

top
g ey < ok ([ o) ds + Hu(ea))
t

top
<o ([ (o) ds + 8t ).
tp

It remains to estimate (3.9). We write, by Taylor expansion around ¢;_,,

o '
u(t) = Z 7(;!] v) (t—tj )+ %/ (t — s)PulPtV(s) ds

= Q(t) + R(t).

By (1.12) and since Q(t) is a polynomial of degree p, we have 8,Q(t) — Q:(t) = 0. Thus,
by (2.1),

p
Opulty) — wilty) = GpR(t;) — Ry(t;) =k cyR(tj—) — Ru(ty).
v=0
Noting that

tj
IR < ow [* s, o<y <p,
t

j—p
and
1 g ~1, (p+1)
IR = =g [ = o7 s s
: j—p
t
<cwt [ o) ds,

ti—p

we complete the proof of (3.9).
Together these estimates complete the proof. Il

In the homogeneous case, i.e., f = 0, we have the following nonsmooth data error
estimates.

Theorem 3.5. Let p < 6 and let U™ and u be the solutions of (1.11) and (1.1), respectively.
Assume that f = 0 and the discrete initial values satisfy

(3.10) U7 — | gy + KPTHA(U? — u?)|| < CKP||v]|, forp<j<2p—1.
Then, with C' independent of the positive definite operator A,
10,U™ — us(t,)|| < CkPt 27 |vll, forn > 2p.

Proof. For the solution u of homogeneous parabolic equation, it is easy to show that

tn tn
/ WP (5)[2,,_1ds < C|lo]?, / s (s)[Fds < Cllo?,
0 0
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and 3 |uy(tg|? < Cllv||>. Applying for Theorem 3.4, we complete the proof. O

4. ERROR ESTIMATES FOR THE STARTING VALUES

In Theorems 3.4 and 3.5, we see that it is necessary to define starting approximations
{U? }?;é such that

U7 — |9 + K" A(U? = )| = O(K?), forp<j<2p—1.

In this section we will investigate two simplest cases p = 1,2. The approach can be
extended to the general case for p > 2, but the proof is more complicated.
In the case of p = 1, the approximate solution is defined by the backward Euler method

(4.1) UM+ AU™ = f*, forn>1, withU’=v,
or, with 7(A) =1/(1+ A),
U™ = (kAU + kr(kA)f*, forn>1, withU° =wv.
We then have the following lemma.
Lemma 4.1. Let U' and u be the solutions of (4.1) and (1.1), respectively. Then we have

(4.2) |U1 —u1|_2—i-/c2||A(U1 —u1)||
k k
< Ckllv — A F(0)]| + Ck / |A ()| dr + OF / 17 ()1l dr.
0 0

In particular, if f =0, then
(4.3) U —ul| o + B2 AU —ub)|| < CKl|v|.

Proof. Noting that u' = e %4y + fok e~ (k=34 f(s) ds and using Taylor’s formula, we have

U'—u' = (r(kA) — e "o + kr(kA) f' — /k e~ k=94 £(5) ds

0

= (r(kA) — e *)v + kr(kA) (f(O) N /Ok £ dT)

—k /0 e—<l—s>’“‘( OB () dT) ds
= (r(kA) — e_kA)v + kbo(KA)f(0) + kR(f),

where

(4.4) R(f) = r(kA) /0 F(r)dr — /0 ka7 gy s

0
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Thus we have, noting that Aby(\) = —(r(\) — e™),

(4.5) AU —ut) = (r(kA) - e_kA) (Av — f(0)) + EAR(f)
= —(r(kA) — e *")u,(0) + KAR().

We first show that
(4.6) FIAU = ul)ll < CklIA™ uy(0)]| + CK /Ok 1 (7)l dr-
In fact, by (4.4) and (4.5),
FIAU = uh)l| < klIkA(r(kA) — e*) A™huy (0)]]

kAr(kA) /0 ' £1(7) dTH

1 ks
/ kAe~(1-9kA / F(r) dr dsH
0 0
— T+ IT+1II.

+ k2

+ k2

For I, we have, since [A(r(A) —e )| < C for 0 < A < o0,
I < Ck||A™ u, (0)).

For I1, we have, since [Ar(A)| < C for 0 < A < oo,
k
1< ci [
0

For 111, we have, since ‘f; e (1=9)A ds‘ <Cfor0<e<l,

kol
/ / kAe U9k (1) ds dTH
0 Jr/k
k 1
< 018(/ 1F' () df)‘ / kAe—(1-9)kA dsH
0 T/k

k
<cR? / 1/ ()]l dr.

III = k?

Thus we obtain (4.6).
We next show that

k
(4.7) |A(U" = ') -4 < CK[|A  uy(0) ]| + Ck/o |A~ (1)l dr.
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In fact, by (4.4) and (4.5),
AU = uh)| s < EII(kA) T (r(RA) — e A7 uy (0)]

+kH (kA) / L7 dTH
+kH/ ~(- S>’€A/ A7) dr ds|
=I1+11+111.
For I, we have, since |[A"!}(r(\) —e )| < C for 0 < A < oo,

I < CE[|[A™ uy(0)]| < Ckllv — AT F(0)]]-
For I1, we have, since |r(A)| < C for 0 < A < oo,

k
11 < C’k/ 1A=L £/ ()] dr.

For 111, we have, since ‘f —(- s)’\ds‘ <Cfor0<e<l,
111 = kH / / kAe™ (=4 A1 £ (1) dis dTH
0 J7/k

<ox( ["1arona)| [ / e (A |

k
< Ck/ | AL f!(7)]| dr.
0
Thus we obtain (4.7). O

We now turn to the case p = 2. In this case we need two starting values U°, U!. We will

use the backward Euler method to compute U?, i.e., the approximation U™ of the solution
u(ty) of (1.1) is defined by

(4.8) OU™ + AU™ = f* forn > 2, U + AUt = £, with U° = w.
We have the following lemma.

Lemma 4.2. Let U7, j = 2,3 and u be the solutions of (4.8) and (1.1), respectively. Then
we have

tj
(@9) U7 =+ RAQ7 — ) < CR (ol + 15O+ [ 17E)dr), 5 =23
0
In particular, if f =0, then
(4.10) U7 —ud| g+ K3 AU? — )| < CKHv|, 7 =2,3.
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Proof. Here we only prove the case j = 2, i.e., we will show that
(4.11) \U? — u?|_y + B3| A(U? — u?)|| = O(K?).

The proof for the case j = 3 is similar.
Since 0,U? = k—l(%U2 —2U + %Uo), we may write

U? = qi(kA)U" + g2(kA)U° + kP (kA) f2,

where
2 ~1/2 1
- \) = =

a(A) =

Thus, noting that u? = e~ 24y 4 fo% e~ (2k=9)4£(s) ds, we have
U? —u? = q(kA) (U — ul) + qo(kA)(U° — u°) + Es.
Here
By = q(kA)u' + qo(kA)u’ + kP(kA)f? — u?
k
=q(kA) (e_kAU + / e~ k=94 £ (5) ds)
0
+ go(kA) + kP (kA) f2
2k
- (e*QkAv +/ e k=94 £ () ds)
0

(4.12) - (ql(kA)e’kA + o (kA) — e’%)v

+ kg1 (kA) / 1 e*@*SW‘( f(0) + ’ f(r) dT) ds

0

+kPkA / F(r dT

—Qk/ 1sk:A / f dT
0

=Q(kA)v + kbo(kA)f( +kR(f

where

and
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and
ks

R = ka) [ 0= [ ) ar) as

+ P(kA) /0 f'(r)dr

1 2ks
— 2/ 62(13)’“‘4(/ f'(7) dT) ds.
0 0

Thus we have
(4.13) AU? —u?) = Aqi (kA)(U' —u') + AE,.

Let us show that
2k
(4.14) BIAQE =) < Ok (Il + KIFOI+ & [ 170l ar)

In fact, by (4.12) and (4.13),

FIAU? = u?)|| < | Aq (kAU - u')]| + K AQ(kA)v]|
+ ||k Abo (kA) f(0)]] + K[| EAR(f) |
=I+1T+1IT+1V.

We first estimate the terms I1, I11, and IV, then we turn to the term 1.
For I, we have, since |AQ())| < C for 0 < A < o0,

1T = K|BAQ(kAY| < CH*|u].
For I11, we have, since |Aby(A\)| < C for 0 < \ < oo,
111 = ||k Aby (kA) F(0)]| < CE|| f(0)]-

For IV, we have

1V < Ck?’HkAql(kA) /k /1 kAe (L-9kA 17y deTH
0 T/k
+ K[ kAP(kA) / " ar]
0
+ Ok kA / " / D2k i) ds ]
0o Jr/2%

2k
<CK / /()] dr.

17
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Now we turn to I.
I=k¥|Ag (kA)(U" — u")[| < K[| Ags (K A) (r(kA) — o)

+ k3HAq1(kA) (kr(ka) - k /0 PR ds) (O)H

+ 1| Agu (k) (Kr (k) /Ok f'(r)dr — /f/o1 e~k /Oks f'(r)dr ds) |

:Il+IQ+I3.

It is easy to show that

k
I < CE|v||, I, < CE*|f(0)]], and I5< 2k3/ .|| dr.
0
Thus we get

k
r<ce(Joll+ kIFO)+ [ 171dr).

Combining this with the estimates for 17, I1] and IV, we obtain (4.14)
We next show that

2k
4.15 A(U? —u?)|_¢ < CK® "(7)|| dr ).
(1.15) A=) < ORIl + [ 17(0)lr)
In fact, by (4.12) and (4.13),

[A(U* = u?)| =6 < [Aqu(RA) (U — u')|-6 + [AQ(KA)v| 6
+ |k Aby (kA) £(0)| 6 + [kAR(f)| -6
(4.16) =I'+1I'+1II'+ IV

We first estimate the terms II', I1I', and IV’, then we turn to the term I'.
For IT', we have, since |A2Q(\)| < C for 0 < A < oo,

ITI' = [kAQ(kA)v| ¢ = k*||(kA) *Q(kA)v|| < CE?|Ju]].
For ITI', we have, since [A\71ho()\)| < C for 0 < \ < oo,

11T = kAo (kA) F(0)] s = R2I|(6A) " "bo(kA)A™" ]| < CRF(O)].
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For IV’  we have

k 1
Iv'SCHkA*qu(kA) / / kAe’(l’s)kAf'(T)dsdTH
0 Jr/k
2k
—l—CHkA*ZP(kA) / £1(7) dTH
0
2k 1
+cﬂMAf2/m‘/' EQO”MAfKTﬁﬁdTH
0o Jr/2%

2k
SOWA|mwmw

Now we turn to I'.

I' = [Aqi(kA) (U — u')| = < |Aqi (kA)(r(kA) — e o]

+ ‘Aql(kA) (kr(kA) .y / ok ds) f(O)‘

0 —6

k 1 ks
+ ‘Aql (]{IA) (kT‘(kA)/ f’(T) dr — k/ e(ls)kA/ f’(T) dr dS)‘
0 0 0 -6
=1+ 1) + .

It is easy to show that
k
L<CRol, B<CRISO), ad <0k [Irdr
0

Thus we get

k
r< e (jull+ 1o+ [ ).

Combining this with the estimates for I1', I1I' and IV’ we obtain (4.15).
Together these estimates we show (4.11). The proof is complete. O
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