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POSTPROCESSING THE FINITE ELEMENT METHOD FOR
SEMILINEAR PARABOLIC PROBLEMS

YUBIN YAN

ABSTRACT. In this paper we consider postprocessing of the finite element method for
semilinear parabolic problems. The postprocessing amounts to solving a linear elliptic
problem on a finer grid (or higher-order space) once the time integration on the coarser
mesh is completed. The convergence rate is increased at almost no additional computa-
tional cost. This procedure was introduced and analyzed in Garcia-Archilla and Titi [13].
We extend the analysis to the fully discrete case and prove error estimates for both space
and time discretization. The analysis is based on error estimates for the approximation
of time derivatives by difference quotients.

1. INTRODUCTION

In this paper we shall consider postprocessing of the finite element method for the
semilinear parabolic problem
(1.1) u— Au=F(u) inQ, forte (0,7,

u=0 ondQ, forte (0,7], withu(0)=o,
where ) is a bounded domain in R¢, d = 1,2, 3, with a sufficiently smooth boundary 052,
uy = Ou/0t, A is the Laplacian, and F' : R — R is a smooth function.

Let H = Ly(S2). We define the unbounded operator A = —A on H with domain of
definition D(A) = H*N Hy, where, for integer m > 1, H™ = H™(Q) denotes the standard
Sobolev space Wi (2), and H; = Hj(Q) = {v € H' : v[sgqo = 0}. Then A is a closed,
densely defined, and self-adjoint positive definite operator in H with compact inverse. The
initial-boundary value problem (1.1) may then be formulated as the following initial value
problem

(1.2) up+ Au = F(u), for0<t¢t<T, withu(0)=uv,

in the Hilbert space H.

Recently, a postprocessing technique has been introduced to increase the efficiency of
Galerkin method of spectral type, see Canuto, Hussaini, Quarteroni, and Zang [4], De
Frutos, Garcia-Archilla, and Novo [6], De Frutos and Novo [7], [9]. Postprocessed methods
yield greater accuracy than standard Galerkin schemes at nearly the same computational
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2 YUBIN YAN

cost. In Garcia-Archilla and Titi [13], the postprocessing technique has been extended
to the h-version of the finite element method for dissipative partial differential equations.
There, the authors prove that the postprocessed method has a higher rate of convergence
than the standard finite element method when higher order finite elements, rather than
linear finite elements, are used. FError estimates in L, and H' norms in the spatially
semidiscrete case are obtained. More recently, in De Frutos and Novo [8], the authors
show that the postprocessing technique can also be applied to linear finite elements and
the convergence rate can be improved in H! norm, but not in L, norm. The analysis is
restricted to the spatially semidiscrete case.

The purpose of the present paper is to derive the error estimates in the fully discrete
case for the postprocessed finite element method applied to (1.2). To do this, we introduce
the time-stepping method to compute the discrete solution of (1.2) and define a difference
quotient approximation to time derivative. We then define the postprocessing step in the
fully discrete case and show the error estimates for postprocessing method by using the
error estimates for time derivatives. For simplicity we only consider the error estimates
in Ly norm. Our technique of proof is related to, but different from, the one employed in
Garcia-Archilla and Titi [13].

The paper is organized as follows. In Section 2, we introduce some basic notations and
lemmas. In Section 3 we consider error estimates for the postprocessed finite element
method in the semidiscrete case. In Section 4, we consider error estimates in the fully
discrete case. In Section 5, we consider the starting approximation of time derivatives.
Finally, in Section 6, we consider higher order time-stepping in the context of the linear
homogeneous problem.

By Cy we denote positive constant independent of the functions and parameters con-
cerned, but not necessarily the same at different occurrences.

2. PRELIMINARIES

Let 7 denote a partition of {2 into disjoint triangles 7 such that no vertex of any triangle
lies on the interior of a side of another triangle and such that the union of the triangles
determine a polygonal domain 2, C 2 with boundary vertices on 0€2. Let h denote the
maximal length of the sides of the triangulation 7,. We assume that the triangulations are
quasiuniform in the sense that the triangles of 7, are of essentially the same size.

Let r be any nonnegative integer. We denote by || - || the norm in H". Let {Sp} =
{Shr} C Hy be a family of finite element spaces with the accuracy of order r > 2, i.e., Sy
consists of continuous functions on the closure 2 of Q which are polynomials of degree at
most 7 — 1 in each triangle of 7, and which vanish outside €2, such that, for small A,

inf {llv =xll + RV =)} < CR|lv]|s, forl<s<w,
XESh,
when v € H* N H.

The semidiscrete problem of (1.2) is to find the approximate solution uy(t) = un(+,t) € Sp
for each ¢, such that,

(2.1) unt + Apun = PoF(up),  with up(0) = op,
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where v, € Sy, P, : Ly — S, is the Ly projection onto Sy, and Ay, : S, — S, is the
discrete analogue of A, defined by

(22) (Ahq/}: X) = A(waX)’ v @b,X € Sh-

Here A(-,-) = (V-, V-) is the bilinear form on H; obtained from A.

Error estimates for finite element methods for semilinear parabolic problems with various
conditions on the nonlinearity have been considered in many papers, see, e.g., Akrivis,
Crouzeix, and Makridakis [1], [2], Crouzeix, Thomée, and Wahlbin [5], Elliott and Larsson
[10], [11], Helfrich [14], Johnson, Larsson, Thomée, and Wahlbin [15], Thomée [21], Thomée
and Wahlbin [22], Wheeler [23]. The long time behavior of finite element solutions was
studied by Elliott and Stuart [12], Larsson [16], [17], Larsson and Sanz-Serna [18], [19].

Let us now describe the idea of the postprocessed finite element method proposed by
Garcia-Archilla and Titi [13]. Suppose that we want to obtain high order approximation,
for instance O(h™2). Then we can use, in every time step, either a family of high order
finite element spaces S, = Shr42 with the order r + 2 of accuracy, or a family of finite
element space S, := Sj,» With accuracy of order r, but with finer partition 7T;, of the domain

Q, such that, A"t? = hT. In [13], another technique, called the postprocessed finite element
method, is presented, which improves the convergence rate without using a high order finite
element space S, in every time step. Suppose that we are interested in the solution of (1.2)
at a given time 7. At time 7', rewriting (1.2), we have

(2.3) Au(T) = —uy(T) + F(u(T)).

Thus, u(T') can be seen as the solution of an elliptic problem whose right hand side is not
known but can be approximated. Garcia-Archilla and Titi first compute up,(T) by (2.1)
in the finite element space Sy, then replace u:(T) by up(7T) and solve (or, in practice,
approximate) the following linear elliptic problem: find 4(7") € D(A), such that,

(2.4) Au(T) = —ups(T) + F(un(T)),

which is the postprocessing step.
They obtained the following error estimate, with ¢, = 1 + log(T/h?),

(2.5) |a(T) — u(T)|| < C(u)lyh™*?, forr > 4,

where C(u) is some constant depending on u. A similar result holds for r > 3. The proof
is based on superconvergence for elliptic finite element methods in norms of negative order,
which is the reason for the restriction r > 3.

We note that the bound (2.5) is an improvement over the error estimates for the standard
Galerkin method, which is O(h"). In practice 4 can not be computed exactly, since in
general it does not belong to a finite element space. However, one can approximate the
solution @ of (2.4) by some % belonging to a finite element space Sy, of approximation
order r 4 2 as described above. More precisely, we pose the following semidiscrete problem
corresponding to (2.4): find @, € Sy, such that,

(26) Ahﬂ,h(T) = Ph( — uh,t(T) + F(U,h(T))),
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where Ph : Ly — S’h is the Ly projection onto Sh and flh is the discrete analogue of A with
respect to Sy. The standard error estimate reads, see, e.g., Brenner and Scott [3],
(2.7) lan(T) — a(T)|| < C(u)h™2.
Combining (2.5) and (2.7), we have
1@n(T) = uw(T)|| < an(T) — a(T)|| + [|6(T) — w(T)|| < C(u)lph"™?, forr > 4.
Let us now introduce norms of negative order. Consider the stationary problem,
(2.8) Au = f.
The variational form of this problem is to find u € H} = H; (), such that
Au, ¢) = (f,9), V€ Hy.
The standard Galerkin finite element problem is to find u, € Sy, such that,
(29) A(uh7 X) = (f7 X)7 v X € Sh-

Let G : Ly — H} be the exact solution operator of (2.8) and define the approximate
solution operator G, : Ly — S, by Gy f = uy so that u, = Gpf € S} is the solution of
(2.9). We recall that G, is the selfadjoint, positive semidefinite on Ly and positive definite
on Sy. Further we have, see Thomée [21, Chapter 6],

(2.10) 1(Gh — G)fI| < CW||fllr—2, for fe H 2% r>2,
and
(2.11) I(Gr — Gl -2 < CR"™2||f|l; 2, forfe H ™2 r>4.

Here r is the order of the accuracy of the family {S,}, and the negative order norm is
defined by
(v, 9)

I ll-2 = sup § L o€ H?}.

We note that G : Ly, — Hj N H? is the inverse operator of A : Hy N H? — Lo, i.e.,
G = A !, and similarly G), = A;l on Sy, where A is the discrete Laplacian of A defined
by (2.2). Moreover, we will use the following properties, see, Thomée [21, Chapter 2],

(212) GhPh = Gh and Gh = RhG,
where Ry, : Hj — Sy, is the elliptic projection, or Ritz projection, defined by
(2.13) A(Rpu, x) = A(u, x), VY X € Sh.

For our analysis it will be convenient to use instead of the negative order norm introduced
above, such a norm defined by

[v|—s = |G*/%0]| = (G*v,v)Y?, fors >0,

we think of this as a norm in L.
We introduce also a discrete negative order seminorm on L, by

wloon = G o]l = (Gjo, )%, for s > 0;
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it corresponds to the discrete semi-inner product (v, w)_,, = (Gjv,w), V v,w € Ly. Since
G, is positive definite on Sy, |v|_s 5 and (v, w)_, , define a norm and an inner product there.
We also find that the discrete negative order seminorm is equivalent to the corresponding
continuous norm, modulo a small error. More precisely, we have the following bounds, see,
e.g., Thomée [21, Lemma 6.3],

Lemma 2.1. We have, for 0 < s <r,
v|—sp < Col[v|-s + A°[|v]]), and |v|_s < Co([v|-sn + R°||V]]).

We also need Gronwall’s lemma.

Lemma 2.2. If a,b are nonnegative constants and
t
0<u(t) < a+b/ u(s)ds, for0<t<T,
0

then we have
u(t) < ae, for0<t<T.

For the nonlinear operator F', we have the following bounds, see Garcia-Archilla and Titi
[13, Lemma 3|. For the sake of completeness, we include the proof, written in our slightly
simpler form.

Lemma 2.3. Let u € H"(Q) N HY (), 7 > 4, and x € Hj(Q) N L>(Q). Assume that F
is a smooth function. Further assume that d < 3 and ||u — x||L., < K for some positive
number K. Then there is a constant C = C(||ul|,, K) such that

(2.14) [F(u) = FO)I < Cllu—xl,
and
(2.15) P(u) ~ FOO 2 < C(lu— x| 2+ llu— xJ]?).

Proof. By Taylor’s formula, we have, with { = u+0(x —u), 0 <6 <1,

1£(w) = FOOI = [1F() (w =) < [1F(€) | 1w = x1I-

Since F'(z) is bounded in {z : |z| < ||u||r,, + ||x — u||L., }, we have, noting that ||u||., <
Collul|, for r >4, d < 3,

(2.16) IF' )|z < CllullLe, K) < C(|Jull, K),
which shows (2.14).
To prove (2.15), we have, by Taylor’s formula,
1
[F(w) = FOOl2 < [F'@)(w = X)[ 2+ 5 [F"()(u = X)°| 2
We first show
(2.17) [F"(€)(u = x)*|-2 = [[AT F"(§) (u — x)°[| < Cllu— x]I*.
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In fact, by duality, for V ¢ € Ly(92),
[(ATF"(€)(u—x)%0)| = |(F"(€)(u—x)? A )|
SN (Ollzooll( = x)*[| 2, 1A Dl oo

Following (2.16), we have ||[F"(§)||r.. < C(||ull,, K). Further, by Sobolev’s inequality and
elliptic regularity, we have

A7 8llLo, < Coll A gll2 < Collgll, ford < 3.

Thus,
[(ATF"(E)(u = x)% )| < Cllu = x[*ll6ll, ¥ 6 € La(9),

which implies that (2.17) holds.
Now we show

(2.18) [F" (u) (u = x)|-2 = [JATF'(u) (u = x)|| < Clu— x|-2.
In fact, by duality, for V ¢ € Ly(f2), noting that F'(u)A~1¢ € D(A),

(A F'(u)(u —x),¢) = (F'(u)(u—x),A™"¢)
= (A7 (u = x), A(F'(u)A™"9)).
With A = —A, we have
JA(F' (w) A 9)|| = || F'(u)d + 2V F'(u) - V(A™'¢) + (AF'(u)) A"
<NF' (W)llzo 1ol + 2 VE' ()| AT @l + [|AF () |2 1A 4
< CF' () |lwe 1A ¢l < C(|Jull)[18]I-
Thus we get
(AT (u) (u — x), 0)| < O([[ull) 1A (w = )] I,
which implies (2.18).
Together these estimates complete the proof. O

Remark 2.1. In our application of Lemma 2.3, we will choose u to be the solution of (1.2)
and x to be the corresponding finite element approximation solution u,. It is obvious that
up, and v satisfy the assumptions of the Lemma 2.3. For instance ||up — uljoc < K can be
achieved by using the inverse inequality provided we know that the Lo error estimates for
up — u is O(R"), see Thomée [21, Chapter 14].

3. SEMIDISCRETE APPROXIMATION

In this section we will consider the error estimates for the postprocessed finite element
method for the semilinear parabolic problem (1.2) in the semidiscrete case. The main
theorem in this section is the following:
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Theorem 3.1. Let v > 4 and Sy, and Sy, be the finite element spaces of order v and r + 2,
respectively, as described in Section 1. Let 1y and u be the solutions of (2.6) and (1.2),
respectively. Assume that F satisfies |F(u)||, < Cy in addition to the assumptions in
Lemma 2.3. Let uy, be the solution of (2.1). Assume that v, = Rpv and

sup [lua(s) — u(s)|lL. <K,
s€[0,T]

and

sup ([[u(s)llr + [lue(s)llr + lue(s)ll) < M,
s€[0,T]

for some positive numbers K, M, T. Then there is a constant C = C(K, M, T) such that,
with £, =1+ log(T/h?),

(3.1) in(T) — u(T)|| < CLR™2.

As we mentioned in Section 2, Garcia-Archilla and Titi [13] has proved the similar results:
if %(T) and u are the solutions of (2.4) and (1.2), then

(3.2) |@(T) — u(T)|| < C(u)lyh™*?, forr >4,

where C'(u) is some constant depending on wu.
For the comparison, let us recall the idea of their proof. By (2.4) and (1.2), it follows
that

[a(T) — w(T)|| = |A™ (~une(T) + F(un(T))) = A~ (—us(T) + F(u(T)))]|
< Junt(T) = we(T)| -2 + [F(un(T)) = F(u(T))|-2-
Lemma 2.3 with v = u(T) and x = u,(7T") implies that
|F(un(T)) = F(u(T)|-2 < C(|lulls, K) ([un(T) = u(T)|-2 + [[un(T) — u(T)|]?).
Introducing elliptic projection R; defined by (2.13), it follows that
18(T) — w(T)[| < |pe(T)|-2 + |0:(T)|-2
(3.3) + C(|lullr, K) (|p(T)| =2 + [0(T) =2 + [|o(D)II” + 6(T)II7),

where p = Ryu —u, 0 = up, — Rpu, pr = Rpuy — uy, and 0, = upy — Rpuy.

The desired bounds of |p|_;,I = 0,2, and ||p¢||—2 are well known, see, e.g., Thomée [21,
Chapter 6]. The task is to estimate |#| ; for [ = 0,2, and |0;| 5. To do this, consider the
following equation

(3.4) 0, + Apb = Py(—ps + F(up) — F(u)), with (0) = v, — Rpv = 0.

By Duhamel’s principle, it follows, with Ej(t) = e~

(3.5) O(T) = /0 En(T — s)Py(— pe(T) + F(un(T)) — F(u(T))) ds.
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The desired bounds of ||@||_; for I = 0,2 can be easily proved by using Lemma 2.2 and
the stability of Ej(t). To estimate |6;| o, they note that, by the second part of Lemma 2.1
with s = 2,

10:]—2 = Co(h?||64]] + 18] -,n).

By (3.4), we have

10t —2,n < |01 + [Pa(—pe + F(un) — F(u))|-2n,
and, noting that ||A4,0| < Ch~2]|0)|,

16:1 < [[AnBIl + |1 Ph(=pr + F(un) — F(w))]]

< Ch72(|0|| + (| Pa(=pr + F(up) — F ().
Hence
(3.6) 0] -2 < Coll6]] + Coh®|| Po(—p1 + F(up) — F(u))]|
+ C()|Ph(—,0t + F(Uh) — F(“))‘—Q,h-

The desired bounds for the last two terms in the right hand side of (3.6) follow from
Lemmas 2.1 and 2.3, and the estimates for |p;|—; and |up — u|_;, | = 0,2. Further they
show that € has the superconvergence property, i.e,

10]| < C(u)lph™2, forr > 4.

Together these estimates completes the proof of (3.2).
We note that the logarithmic factor ¢, appears in the superconvergent estimate of 6.
We now return to Theorem 3.1 and state the idea of the proof in present paper. In
Theorem 3.1, we consider the error bounds for %, — ul||, not only for ||& — u||. To prove
Theorem 3.1, it suffices to show the bounds of |up — u|_; and |upy — us|; for I = 0,2. We
first split

(3.7) up —u = (up — p) + (an —u) =1 +e,
where 4, satisfies

(3.8) ne + Anit, = PuF(u),  4(0) = vp.
Since u satisfies

(3.9) u + Au = F(u), u(0)=wv,

the desired bounds of e = 4, — v and e; follow from the error estimates for the linear
parabolic problem because the right hand side of (3.8) is independent of @y,. In other words
we only need to consider the nonlinear term F' when we show the bounds of n = uj, — 4y
and 7;. Note that n satisfies

(3.10) e+ Ann = Py(F(up) — F(u)), n(0) = 0.

By Duhamel’s principle, we have

(3.11) WD) = [ BT = )P (F(un(s) = Pla(s)) ds.
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We obtain the desired bounds for |n| ;I = 0,2, by using Lemmas 2.2 and 2.3 as above
for showing the bounds of |8| ;1 = 0,2, in [13]. For |n:| ;,1 = 0,2, we have two ways to
consider the bounds. One way is to use the superconvergence property of n, which can
be proved as we mentioned above for proving the superconvergence property of 6 in [13].
Another way is to work with the following equality

(3.12) m(T) =Pu(F (un(T)) = F(u(T)))

- / AE(T — )Py (F(un(s)) — Fl(u(s))) ds,

which follows from (3.10) and (3.11).

Below we will use the second way to estimate || ; for | = 0,2. This is the main
difference between our proof and the proof in Garcia-Archilla and Titi [13]. We will extend
this idea to the fully discrete case in Section 4.

We remark that since 7(0) = 0, we don’t need to consider the term Ej(7)n(0) in (3.11).
This observation is very useful in the fully discrete case.

Lemma 3.2. Let up, and u be the solutions of (2.1) and (1.2), respectively. Assume that
F satisfies the assumptions in Lemma 2.3. Further assume that v, = Ryv and

(3.13) sup ||up(s) —u(s)|L., < K,
0<s<T
and
(3.14) sup ([[u(s)llr + [[ue(s)llr) < M,
0<s<T
for some positive numbers K, My, T. Then there is a constant C = C(K, M, T) such that
(3.15) sup |lup(t) —u(t)|| < Ch"  forr > 2,
0<t<T
and
(3.16) sup |up(t) — u(t)|—e < CR™2,  forr > 4.
0<t<T

Proof. The error estimate (3.15) is well known, see Wheeler [23] and Thomée [21], where it
is proved by splitting up —u = 0 + p, where 0 = up, — Ryu, p = Rpu —u. Here we will show
(3.15) by splitting up, — u = n + e, where 7, e are defined by (3.7). We will use this idea in
subsequent lemmas for the proof of the error estimate for time derivative approximation
and later in the proof of the error estimates in fully discrete case.

For e = 1, — u, we have, by the standard error estimates for linear parabolic problem in
semidiscrete case, see, e.g., Thomée [21, Lemma 1.3],

t
(317) el < llan(0) = u()]| + Coh ([[v]» + / el ds ), for 7> 2.
0

Note that @,(0) = v, = Rpv = Ruu(0), we therefore have
(3.18) lle(®)|| < C(My,T)h", forr>2,0<t<T.
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For n = uj, — 4y, we have, by (3.11) and the stability of Ej(t),

Il < / 1 (un(s)) — F(u(s))]] ds.

By Lemma 2.3, we have

(o) < €600 [ o = ulas < ot ) ([ plas+ [ felas),

Further, by Lemma 2.2 and (3.18),
t

(3.19) In(t)| < C(K, Ml)/ lle|| ds < C(K, My, T)h", forr>2,0<t<T,
0

which shows (3.15).
Now we turn to (3.16). By Thomée [21, Theorem 6.2], we have, since v, = Rpv,

t
(3.20) ()2 < Co™ o, +/ ol ds), forr >
0

To estimate |n|_o, we first note that, by Lemma 2.1,
(3.21) nl—2 < Co(R*[Inll + [nl-2,4) = Co(h*|lnl| + |Gunl]).
Here G),n satisfies, by (3.10),
Gumy + AnGrn = GpPy(F(un) — F(u)),  Gan(0) =0,
which implies, by Duhamel’s principle,

Gpn(t) = /Ot Ey(t — 8)GrpPy(F (up) — F(u)) ds.
Note that, by Lemmas 2.1 and 2.3, and (3.15), (3.20),
|GhPo(F (un) — F(u))l| = [F(un) — F(u)| -2
< Co(R*(|1F(un) = F(u)|| + |F(un) = F(u)|-2)
< Cllullr, K) (h*lun — ull + llun — wll® + |un — ul-2)
< CO(K, My, T) (W% + |n|-2).
Hence, by stability of E}(t),

t
Gl < C(K. M T) (177 + [l 2 ds).
0

Combining this with (3.21), (3.19), and using Lemma 2.2, we get
(3.22) n(t)|—o < C(K, M, T)h"™*?, for0<t<T.
Together these estimates complete the proof.

Next lemma is the error estimates for time derivative of the solution of (1.2).
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Lemma 3.3. Let u, and u be the solutions of (2.1) and (1.2), respectively. Assume that
F' satisfies the assumptions in Lemma 2.3. Further assume that v, = Ryv and

(3.23) sup ||up(s) —u(s)|r., < K,
0<s<T
and
(3.24) sup ([[u(s)llr + llue(s)llr + luw(s)llr) < My,
0<s<T

for some positive numbers K, My, T. Then there is a constant C = C(K, My, T) such that,
with £, = 1+ log(T/h?),

(3.25) sup ||lun(t) —ue(t)|| < CORT,
0<t<T
and
(3.26) sup |up¢(t) — ug(t)|_2 < ClH" T2
0<t<T

Proof. We write

Uht — Ut = (Upy — Up) + (Gng — ut) = M1 + €1
Following the proofs of Theorems 1.3 and 6.2 in Thomée [21] for the error estimate |e|_;, | =
0,2, we can show the following error estimates for |e;| ;, [ = 0,2, that is,

JedO)] < i) = w0 + o (Juale + [ el ds),

and .
ett) -2 < [ia0) = (0} -2+ Col™* (Ol + [ el ds).

We observe that, by (3.8), and noting that u,(0) = Ru(0),

Ut (0) = —Aptp(0) + P F(u(0)) = —ApRpu(0) + Py F(u(0))

= P, (Au(0) + F(u(0))) = Pyu(0).
We therefore have, by the error bounds for the Ly projection,
[[un,t(0) = ue(0)[| = [|(Pn — Due(0)[| < Coh"[|ue(0)]]r,

and
114(0) = 1(0)] 2 < Cob™* (O]
Thus, we get
t
(3.27) lex(® < ot ()l + [ Nl ds) < €04z, T,
0

and, similarly,

(3.28) le,()|—2 < O(Ma, T)R™*2.
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We now turn to || 4, I = 0,2. Using the fact ||AyEp(t)]| < Co(t + h?)™', see Schatz,
Thomée, and Wahlbin [20], we have

(329) /t ||AhEh(t — 8)” ds S 00(1 + log(T/hZ)) S Cogh.

Thus, by (3.12), (3.15), and Lemma 2.3,

[ < ([ Pa(F (un(t)) — F(u(®))]] +/O | AnEn(t — s)Py(F (un(s)) — F(u(s)))|| ds
< C(K, My, T)(1+£y) sup ||un(s) —u(s)|| < C(K, My, T)eLAT,

0<s<T

For |n,(t)|_2, we have, by (3.12),
7e(8)| -2 < |Pa(F (un(t)) — F(u(t)))]-2
/ (AWEn(t — 3)Pu(F(un(t)) — F(u()))| , ds.
Here, by Lemmas 2.1 and 2.3, and (3.15), (3.16),
| Pu(F (up) = F(u))| -2 < Co(h?|| Pu(F (up) — F(u))[| + [|GpPa(F (un) — F(u))]])
< C(llullr, K) (R[lun — ull + lun — ull + un — u|-2),
< C(K, My, T)h" 2.
Thus, by (3.29),
|77t(t)|_2 S C(K, MQ, T)Ehhr—”.
Together these estimates complete the proof. ]
Proof of Theorem 8.1. Combining (2.3) and (2.4), we have, with G}, = fl;l,
’l],h(T) - U(T) = G’hph(—uh,t + F(’U,h)) — G(—Ut + F(’U,))
= (thh — G)( — Upz + F(uh) + Uy — F(u))
— (GrPy — G)(uy — F(u))
+ G(—unys + F(up) + ue — F(u))

Thus, by Lemmas 2.3, 3.2 and 3.3, we get, noting that ||(GLP, — G)f|| < Ch*||f||s—2 for
0<s<r+2,

1an(T) = u(T)| < Coh®(|lung — will + |1 F'(un) = F(u)]])
+ Coh™ (Jlwellr + 1 F'(w)]l;)
+ |uny — | 2 + [F(up) — F(u)| 2
< O(K, M, T)t,h" 2.
The proof is complete. [l
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4. COMPLETELY DISCRETE APPROXIMATION

In this section we will consider the postprocessed finite element method for (1.2) in the
fully discrete case.

We use the similar technique developed in Section 3 to derive the error estimates in fully
discrete case. Let t,, = nk, k time step. We define the following backward Euler method,
with U™ = (U™ — U™ 1) /k,

(4.1) oU"™ + AU" = P,F(U™), n>1, withU°’ =y,

It is natural to approximate uy (T), T = t, in (2.4) by OU" for fixed n. The postpro-
cessing step in the fully discrete case is to find @(7") € D(A), such that

(4.2) A(T) = —=0U™ + F(U™).
The semidiscrete problem of (4.2) is to find @, (T) € Sh, such that,
(4.3) Ay (T) = Py(—0U™ + F(U™)).

Let U™ be the solution of
(4.4) U™ + AU = P, F(u™), n>1, withU°® = v,
We have the following theorem.

Theorem 4.1. Let r > 4 and Sy, and S), be the finite element spaces of order r and r + 2,
respectively, as described in Section 1. Let 1y, and u be the solutions of (4.3) and (1.2),
respectively. Assume that F' satisfies |[|[F'(u™)||, < Co in addition to the assumptions in
Lemma 2.3. Let T = t, be a fized time. Let U™ be the solution of (4.1). Assume that
vy, = Rpv and

sup | U™ = u(ty). < K,
0<t, <T

and
(4.5) Sup () e + llue(s)llr + Nuwe ()] + [un(s) -2 + [|Aun(s)]]) < M,
for some positive numbers K, M, T. Then there is a constant C = C(K, M, T) such that,
with £, =1 +1og(T/k),
|%n(T) = w(T)|| < Co([10U" = wy(tr)l| + 100" = wy(tr)| ) + CLu(h™** + k).

We now state a lemma for the error estimate of the approximation U™ of u(t,) in the Lo
norm.

Lemma 4.2. Let U™ and u be the solutions of (4.1) and (1.2), respectively. Assume that
F satisfies the assumptions in Lemma 2.5. Further assume that v, = Rpv, and

(4.6) sup ||U™ — u(ty)||r, < K,
0<tn <T
and
(4.7) sup ([|u(s)llr + [lue(s)llr + luee(s) || + |ue(s)|-2) < Ms,

0<s<T
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for some positive numbers K, Ms,T. Then there is a constant C = C(K, M3, T) such that

(4.8) sup [|[U" —u(t,)|| < C(h" + k),
0<t, <T
and
(4.9) sup |U" —u(t,)| 2 < C(h"2 + k).
0<t, <T

Proof. We split

U™ —u(ty,) = (U = U") — (U — u(ty) = 0" + €",

where U" is defined by (4.4).

For e" = U™ — u(t,), we have, by the standard error estimates for linear parabolic
problems, see, e.g., Thomée [21, Theorem 1.5],

tn tn
(4.10) le™]| < Col||Rpv — v|| + CohT(||v||r +/ ||| ds) + C’Ok/ |luse ()] ds
0 0
< C(Ms3, T)(h" + k).
For n* = U™ — U™, noting that, by (4.4) and (4.1),

on™ n — ny _ n >
(4.11) { 5(7)7 +0Ahn P,(F(U™) — F(u™)), forn >1,
n’ =0,

we have, by Lemma 2.3, with 7(\) = 1/(1 + \),

"Il < kY (kAT | Pa(F(U7) — F ()]

j=1
< Cok SOIIFW?) = P(u)|| < OO, My) (kD [+ £ D e’ )
Jj=1 j=1 j=1

Further, by the discrete Gronwall’s lemma, and (4.10), we have
which shows (4.8).
Now we turn to (4.9). Following the proof of (4.10), we can show that,

t
(4.12) €"] 5 < ColRuv = ]+ Col*([jo] +/ el ds )
0

tn
+ Cok/ |ug(s)| 2 ds
0
< C(Ms, T)(h™? + k).
To estimate ™| o, we first note that, by Lemma 2.1,

(4.13) "2 < Co(R*[In" | + 1Gun™|))-
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Here G,n™ satisfies, by (4.11),

(4.14) { 3§th") + An(Gan") = G PW(F(U) = F(u™)), forn 21,
77 = 7

which implies

Gun" =k _r(kAy)" THGLP(F(U7) — F(u)).

j=1
Note that, by Lemmas 2.1 and 2.3,
|GLPy(F(U7) = F(u))[| = [F(U7) = F(w?)| 21
< C(l[ully, B) (|07 = || + (|07 = & ||* + U7 = u’| ).
Hence, by the stability of (),

IGurll < CU M) (K i+ 12 S U7 = wd |+ B (107 = w2 + el ).
7j=1 7j=1

=1

Combining this with (4.13) and using the discrete Gronwall’s lemma, we get, by (4.8) and
(4.12),

(4.15) n"|_2 < C(K, M3, T)(h"? + k).
Together these estimates complete the proof. O

We also need the following lemma for the error estimate of the approximation U™ of
ug(tn)-
Lemma 4.3. Let U™ and u be the solutions of (4.1) and (1.2), respectively. Assume that
F satisfies the assumptions in Lemma 2.3. Further assume that v, = Ryv and

(4.16) sup [|[U" —u(tn)||z., < K,
0<tn<T
and
(4.17) S (les()lr + Nue()llr + N (s)llr + ue ()] + A (s)]]) < My,

for some positive numbers K, My, T. Then there is a constant C = C(K, My, T) such that,
with ¢ =1+ 1og(T/k),

(4.18) sup [|0U™ — uy(ty)|| < Col|0U" — wy(t1)|| + Cli (W + k),
k<t,<T

and

(419) sup ‘gU" _ ut(tn)|72 < Co|5f]1 _ Ut(t1)|,2 + Cgk(hr-m + k‘)

E<t, <T
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Proof. We use the same notation as in Lemma 4.2 and write
QU™ — uy(t,) = (AU™ — AU™) 4 (AU™ — uy(ty))
= 0" + (OU™ — wy(ty)).
We first show

tn
@20) (00"~ wlta)l| < GoIAT" = e} + Colt () + [ el ds)
0

tn
+ Cok/ | Aua(s)]| ds
0

< Col|dU* = wy(ty)|| + C(My, T)(h" + k).
To show (4.20), we write
U™ — uy(t,) = (OU™ — Rpuy(ty)) + (Ruug(tn) — ue(t,)) = 0™ + p™.
In the standard way p” is bounded as desired, and it remains to consider ™ € S;. We have
00" + A" = P, forn > 2,
where
wh = (Rp — I)0uy(t,) + A(Ou™ —uy) = o™ + 7",
By stability estimate, see, e.g., Thomée [21, Theorem 10.2],

(4.21) 107 < Coll6"[| + Cok Y _ llo?|| + Cok Y (17|, forn > 2.

j=2 j=2
We have
tn
kWWSQMflmmm,

tn—l

and

tn
kllT" < Cokl|A(Ou" — uf)|| < Cok/ [[Auy(s)]| ds.
tn—l

Together with [|6*]] < [|OU —u} ||+ ||p*||, with the obvious bounds for ||p*||, this completes
the proof of (4.20).
For ||0n™||, we have, by (4.11),

(4.23) on" = P,(F(U") — F(u")) — k ZAhr(kAh)"*jHPh(F(U”) — F(u")).
j=1
Using the following smoothing property

(4.24) kY A (EAR)™ | < Col,

=1
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which follows from

/-cz | Apr (kAR < C thn L =Co(1+ Ztn 1)

7j=1

tn 1
< 00(1 n / ~ds) < Col1 + log(ta/K) < Col,

t1
we have, by Lemma 2.3, and (4.8),

9" || < C(K, Ma) (U™ = || + & poax [[U7 = w']])
(4.25) < C(K, My, T) (R + k).

Together these estimates complete the proof of (4.18).
Now we turn to estimate (4.19). Following the proof of (4.20), we can show

tn
(426) 100" ~ w(ta)| 2 < ColdU" — wltr)]  + Coh™2 (s 0)]], + / el ds)
0

tn
+ C’ok/ |luse(s)]| ds,
0
< ColoU" — uy(ty)| -2 + C(My, T) (W™ + k).
For |0n"|_s, we have, using (4.23), and by Lemmas 2.1 and 2.3,
O™ _y < C(K, My, T) max (R U7 = || + U7 = ||” + U7 = u|_s).
<j<n

Thus, by (4.8) and (4.9),
(4.27) |0n"|_y < C(K, My, T)lp (P2 + k).
Together these estimates complete the proof. [l
Proof of Theorem 4.1. Combining (2.3) and (4.3), we have, with G), = A4, *,
in(T) = u(T) = GpPu(=0U" + F(U™)) = G(—uy(tn) + F(u"))
= (GpPy — G) (= OU™ + F(U™) + wy(tn) — F(u™))
— (GhP, - G) (ut(tn) — F(u”))
+G(—=0U" + F(U") + wy(tn) — F(u™)).
Thus, we get, noting that ||(GyPy — G)f|| < Ch®||f]|s—z for 0 < s <7+ 2,
1@n(T) — u(T)|| < Coh®(||OU™ — uy(ta)|| + |F(U™) = F(u™)])
+ Coh™?|lus(tn) — F (u")l,
+ 10U — uy(ty)| 2 + |[F(U™) — F(u™)| 5.
Combining this with Lemmas 2.3, 4.2, and 4.3, we complete the proof. [l
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5. ERROR ESTIMATE FOR STARTING APPROXIMATION OF TIME DERIVATIVE

In this section we will consider the error estimate for starting approximation of time
derivative |0U" —uy(t1)| 5, s = 0,2, which appears in Theorem 4.1, where v and U satisfy

(5.1) up + Au = F(u), with u(0) = v,

and

(5.2) oU" + A,U' = P,F(u'), with U° = v, = Ry,
respectively.

The semidiscrete problem of (5.1) is to find 4, € Sy, such that,
(53) ﬁ'h,t + Ahﬁ,h = PhF(U,), with ﬁ,h(O) = Rh?}.

We observe that we use F(u!) in (5.2), thus [0U" — uy(t1)|—s, s = 0,2, can be bounded
by the standard technique for nonhomogeneous linear parabolic problems. We have the
following theorem:

Theorem 5.1. Let U' and u be the solutions of (5.2) and (5.1), respectively. Assume that
F' is continuously differentiable and

[ Ay (0)]] + [lue (0) - + max ([[F(u(r))ue(r)Il + lluwe (7)) < Mo,

0<r<k

for some positive number My. Then there is a constant C' = C(My) such that

(5.4) 100" — uy(t1)|| < C(A" + k),
and
(5.5) 10U — uy(t1)| o < C(W™+2 + k).

Proof. We first show (5.4). We write
501 — Ut(tl) = (5[71 — ﬁh7t(t1)) -+ (ﬁh,t(tl) — ut(tl))
By (3.27), we have

(5.6) lin (1) = we(t)l < Cob” ([lua(0) 1 + / ()1l ds).

For dU" — iy 4(t1), we have, by (5.2) and (5.3),

DU — tipy(tr) = An(U" — ).
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Here, by Taylor’s formula, with r(\) = 1/(1 + A), Ej(t) = e~t4n,
U' — iy, =(r(kAn) — En(t)) Ryv + kr(kAy) Py F (ub)
_ /0 " Bty — $)PuF(u(s)) ds
—(r(kAp) — En(t1)) Rpv
+ kr(kAy) (P, F (u(0)) + /0 k Py F (u(7))uy(7) dr)
—k /0 09 (P F(u(0)) + /0 " P (u(r) () ) ds
=(r(kAn) — En(t1)) Rov + kbo(kAp) PoF (u(0)) + kR(F),
where
bo(\) = r(\) — /0 1 e =9 s,

and
R(F) = r(kAp) /0 PuF" (u(r) ug(7) dr
—/0 e_(l_s)kAh/O SPhF'(u(T))ut(T) dr ds.

Thus, we have

801 — ah,t(tl) Z(T(kAh) — Eh(tl))Ath’U
+ kApbo(kAR) Py F (u(0)) + kAR R(F).

Noting that AyRy, = P,A and Abo(A) = —(r(A) — e ), we get

(5.7) U — tip4(t) = (r(kAn) — Ex(t1)) Pu(Av — F(u(0))) + kAL R(F)
= (r(kAn) — Ep(t1)) Pous(0) + kA, R(F)
=1+11.

For I, we have, by the error estimate for homogeneous parabolic problems,

11| < || (r(kAR) — En(t1)) (Pn — Ru)ue(0)|| + || (7 (kAR) — En(t:) Raue(0) ||

< [[(Ph — Bn)ur(0)]| + Cokl| AnRpu,(0)|
< Coh" [|ur (0) I + Cok| Aur (0)]]-

19
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For I, we write
k
II = kAhT(kAh)/ PhF,(U/(T))ut(T) dT
0

1 ks
kA, / e~ (1-s)k, / PuF (u(r))us(r) dr ds
0 0
- Ill + _[12

We have, noting that |Ar(\)| <1, ||Py| < 1,

15| < ||/’fx4h?“(/~ff1h)||/0 [ PAE" (u(T))ue(7) || d

< k max ||F" (u(7))u(7)]l,

0<7<k

and, by exchanging the integral order and noting that fel e (=92 ds < 1, for 0 < e <1,

k 1

11| = HkAh/ PhF'(u(T))ut(T)/ e~ (1=9)kAn dsdTH
0 T/k
1
! —(1-s)kA
< k gua, | (u(r) )l o4 [ L
!
< s [ (u(r)un(r)
Together these estimates show
(5-8) 100" — din g (Dl < Co (R llup(O)ll- + k| Aup(0) || + k max |[F'(u(r))uy(r)]]).

Combining this with (5.6) shows (5.4).
We now turn to (5.5). We again write

U — uy(t) = (U — tip4(t1)) + (tins(tr) — us(te)).

The desired bound for |Gy (1) — ui(t1)|—2 follows from (3.28).
For OU" — iy 4(t1), we have, by Lemma 2.1,

10U — i 4(t1)|—2 < Co (R|OU" — tipy(t1)]| + 00" — i y(t1)] 2n)-
Thus, by (5.7),
00" — e (t1)|—op < [I|—2p + [11]|—op.

For |I|_5p, we have, by the error estimate for homogeneous parabolic problems, see [24],

| —2n = [(r(kAp) — En(t1)) Paus(0)] -2,p < Co (™ [|ue(0) ], + Kl Au, (0)]]).-
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For |I1|_5 5, we have, noting that |[r()\)| <1, fel e~(=ds < 1for 0 <e<1,

(1] -2,h S/O [1&r (AR 120 " (w(7) )ue(7) || d7

1

+ Hk /O ’ P (u(r))ug(r) /

e (1=9)kAn gg dTH
T/k

9 /
<k OrélTaSXkHF(U(T))Ut(T)”'

Hence we get

00" — i (t2) |2 < Co (W™ ur(0) - + K[| Aur (0)| + & max. [|F"(u(r))uy(r)]]).

Combining this with (5.8) shows (5.5).
Together these estimates complete the proof of the theorem. [l

6. HIGH ORDER TIME-STEPPING

The postprocessing requires very accurate time-stepping in order to match the high order
spatial approximation. It would be natural then to use a time-stepping method of higher
order than the backward Euler method of Section 4. However, we have not been able to
analyze such methods except in the case of linear homogeneous problems, where we can
apply the analysis of time derivative approximation from [24].

In this section we consider the linear homogeneous parabolic problem

(6.1) u+Au =0, fort>0, withu(0)=uv.

We define the following time-stepping method

(6.2) U = (kAU U° =up,

where () is a rational function and accurate of order p > 1, i.e.,
r(A) —e =0\, A—=0.

For example, if 7(\) = 1/(1 + )), we have (1 + kA,)U™ = U™, which is the backward
Euler method. If r(A) = (1 — A/2)/(1 + A/2), we have (14 2kA,) U™ = (1 — 3kA,)U™!
which is the Crank-Nicolson method.

Further we define the quotient Q,U" to approximate the time derivative uy(,), with
positive integers mq, mo, and real numbers c,,

ma
(6.3) QU™ = k1 Z e, U™ forn > my,

v=—mi

We assume that the operator (), satisfies, for any smooth function wu,
(6.4) Qru™ — uy(tn) = O(K?), k —0.

For example,

Qkun = aun = (un — ’U/n_l)/k/‘, fOI" n 2 ].,
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and
3 1
Qru" = (Eu” —2u" 4 éu”_l)/k, forn > 2,
satisfy
ou™ —uy(t,) = O(k), k—0,
and
(Bu™ — 20" + U™ Jk — w(t,) = O(K?), k—0,
respectively.
The postprocessing step in fully discrete case is to find 4(T") € Sy, T = t,, such that
(6.5) Au(T) = —QU™.

The ﬁn~ite element solution of the elliptic problem (6.5) with respect to S, is to find
up(T) € Sy, such that,

Our main theorem in this section is the following:

Theorem 6.1. Let r > 4 and Sy, and Sy, be the finite element spaces of order v and v + 2,
respectively, as described in Section 1. Let Uy, and u be the solutions of (6.6) and (6.1),
respectively. Let T' =t, be a fized time. Then we have, if v, = Ryv,

n(T) — u(T)|| < Co(h™2[v]rs2 + B v]agpsry + B2 ue(T)]I,),  forr > 4.

Recalling the proof of Theorem 4.1, we note that Theorem 6.1 follows once we have
proved appropriate estimates of ||QxU"™ — uy(t,)]| and |QrU™ — uy(t,)| 2 which are given in
the following two Lemmas.

Lemma 6.2. Let U™ and u be the solutions of (6.2) and (6.1), respectively. Assume that
Ir(A)| <1 for A > 0. Then, we have, if v, = Rpv,

[QWU™ = wsto)ll < Coll7 [0l + kP[0l
Lemma 6.2 was proved in [24].
Lemma 6.3. Let U™ and u be the solutions of (6.2) and (6.1), respectively. Assume that
|r(A)| < 1 for A > 0. Then, we have, if v, = Ryv,
QkU™ — us(tn)| -2 < Co(R™2[vlrr2 + KP[lapi1))-

Let us first prove the following error estimate for the approximation U™ of u(t,) in
negative order norm. We do not need it here but it serves as a guide for the proof of
Lemma 6.3. We remark that we choose v, = P,v, not Ryv.

Lemma 6.4. Let U™ and u be the solutions of (6.2) and (6.1), respectively. Assume that
Ir(A)| <1 for A > 0. Then, we have, if vy, = Pyv,

U™ — ult) |2 < C(H o], + KPelsy).
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Proof. By Thomée [21, Theorem 6.2], we have

|up(t) — u(t)| 2 < Coh™2|v],.
Therefore it suffices to show
(6.7) U™ — up(tn)|—2 = Co (B2 v, + kP |v]ap),

which we will prove now.
By Lemma 2.1, we have

U™ = up(tn)|-2 < Co(h?[|U™ — un(ta) | + [U™ — un(tn)|-2)-
We first estimate (U™ — up(tn)|—2n = [|GR(U™ — un(t,)]|. We write
U™ — up(tn) = (r(kAp)" — e***) Pyv = F,(kAp) Py,
where Fy,(\) = r(\)" — e ™. We need to show
|GhF, (kAR) Povl] < C(W2|v], + kP|vlap).
To do this we set

Vi = Z (U,Qpl)@l,

kX <1

where ¢; and ); are the eigenfunctions and eigenvalues of the operator A. Then v; € Hs
for each s > 0. Further, by the definition of the norm in H?®, we find easily

(6.8) v — vkl < EP[vl2p,

(69) |Uk|2p < ‘U|2p)

and

(6.10) Vk|rr2; < k70, for0<j<p-—1.

Applying now the identity
p—1

(6.11) v = ZG%(G — Gp) Ay 4+ GP APy, forv € H?, where G) =1,
§=0

to vg, we have, with F,, = F,,(kAy) Py,

p—1
(6.12) GhFave = Y GuFuG(G — Gi) ATy, + G F,Gh APy,

§=0

It is easy to show that, see, e.g., Thomée [21, Lemma 7.2],
(6.13) | F (kAR PyGi|| < Cok? for 0 < j < p, n > 0.
Thus, by (6.9) and noting the boundedness of Gy,
|GhELGE AP | < |FRGRAT | < Cok?]| AP,
S C()kp|’0k‘2p S Cokp|’l)|2p.
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Further, by (6.10), (6.13), and using (2.11), and noting that Pthl = G{l, with0 < j <p-—1,
|GLE,Gi (G — Gp) AT || < Cok?||Gh(G — Gp) AT |
< C’ijh2}‘(G — Gh)(Aijk)H + C’ij‘(G — Gh)(Aj+lvk)|
< Cok? 2| A7 g ||,—2 < Cok? ™2 ug|pi9; < Coh™2|vl,.
Together these estimates imply
|GrFavll < Co(R2|vl, + kP |vlap).
Since obviously, by (6.8), the boundedness of G}, and stability, we get
|GrEn(v = vp) || < [[Fn(v —ve) || < 2[[(v = vp)l] < Cok?[v]ayp,

-2

so that
|Gh(U™ = un(tn))|| = |GrFwv|| < Co(R™?[v]r + KP|v]op)-
By Thomée [21, Theorem 7 .8], we have

U™ — un(t,)]| < Co(R"|v], + kPlvlap),  tn > 0.

Thus,
0" = ltn)|_y < G = GO = )| + [ Gr(U™ = un(t))]
< o1+ Kl
Together these estimates complete the proof. O

Now we turn to the proof of Lemma 6.3. The idea of the proof is similar to the one used
in Lemma 6.4

Proof of Lemma 6.3. By Thomée [21, Theorem 6.4], we have

| 2 = < Ch’r+2‘v|1”+2

‘Uh,,t(t) — U't
Therefore it suffices to show
(6.14) |QkU™ — upa(tn)|_, < C(R 2 0lsa + KP0]apa1y)

which we will prove now.
We first estimate |QkU" - uh,t(t”)|_2 .- Noting that, with v, = Ryv = G Av,

QuU™ — upy(t ( Z e, U™ — (—Ap)e —"kAh)GhAu

v=—mi
= k_lgn(kAh)GhAv,
where g,(A) =02 (A" — (—=X)e™™, we need to show
HGh(k_lgn(kAh)GhAv) H < Co(W?|]rya + kP |V]2gps1)) -
As in the proof of Lemma 6.4, we introduce v, which satisfies:

(6.15) [A(v — o) || < KP[vl2p e,
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(6.16) Wk l2p+1) < |Vl2p41),
and
(6.17) [Uk|rso12 < K7 vlppe, for0<I<p-—1.
Applying now the identity (6.11) to v = Awvg, we get
p—1
thn(kAh)GhA’Uk = Zgn(k/‘Ah)G?—l (Gh(G — Gh)Al+2’l}k)
1=0

+ Grgn(kAR)Gh T APy,
It is easy to show that, see, e.g., [24, Lemma 3.9],
(6.18) 1gn (kAR GE || < Cok!tt, for 0 <1< p, n>0.
Thus, by (6.16) and noting the boundedness of Gy,
1Ghgn (kAR GRT AP || < lgn(kAR)GR T AP g
< CokPTH| AP || < CokP ™ uglagprty < CokP vl
Further, by (6.17), (6.18), and using (2.11), we have, with 0 <[ <p—1,
|9 (kAR GHT (GR(G — Gr) AP0y || < Cok'Y|GR(G — Ga) A 0|
< Cok™R2||(G — Ga)(A*20,)|| + Cok™ 1 AT+2] A+ 20,
< Cok T R || A 20 || p—o < Cok! TP A" 2 |ug|pyorre < Cokh™ 2 |vl,4o.
Together these estimates imply
1G9 (kAR)GrAvg|| < Cok(R™ 2|04z + K |v|2(41))-
Since obviously, by (6.15), the boundedness of G}, and stability, we get
|G rgn(kAR)GRA(V — vg)[| < ||lgn (KAR)GRA(V — vg)|]
< Cokl|A(v — vg)|| < CokP™ [ulagp41),
we conclude that
|GR(QKU™ — uni(ta))l| = &~ ||Grgn (kAR GrAY|
< Co(h 2 [vlrro + kP vlagpe1y)-
By [24, Theorem 3.8|, we have
1QLU™ = una(ta)l < ColA [0l + [olzp)
Thus
QrU™ = uni(tn)|—2 < (G = Gr)(QrU™ — una(tn))l
+ [|Gh(QeU™ — uni(tn))]
< Co(h™ 2042 + KP|v]opt1))-

Together these estimates complete the proof.
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After the preparations above we now come to the proof of Theorem 6.1.
Proof of Theorem 6.1. Combining (6.6) and (6.1), we get, with G, = A",
in(T) — u(T) = GpPy(—QrU™) — G(—uy)
= (GrPy — G)(—QuU™ + wy(tn))
— (GhPy — G)us(tn) + G(QrU™ — uy).

Thus, by Lemmas 6.2 and 6.3, and noting that |[(GrPy — G)f|| < Ch¥||f||s—2, for 0 < s <
r + 2, we have

1@ (T) — u(T)|| < Coh?||QkU™ — uy(t) |
+ Coh"?[lug(ta) I + [( QU™ — we(tn))| -
<Gy (hr+2‘v‘r+2 + kP vlopt1) + hr+2||ut(tn)”7")'
Together these estimates complete the proof. [l

Acknowledgement. I wish to express my sincere gratitude to my supervisor Dr. Stig
Larsson, who suggested the topic of this paper, for his support and valuable criticism.

REFERENCES

1. G. Akrivis, M. Crouzeix, and C. Makridakis, Implicit-explicit multistep finite element methods for
nonlinear parabolic problems, Math. Comp. 67 (1998), 457-477.
, Implicit-explicit multistep methods for quasilinear parabolic equations, Numer. Math. 82
(1999), 521-541.
3. S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag,
New York, 1994.
4. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics,
Springer Series in Computational Physics, Springer-Verlag, New York, 1988.
5. M. Crouzeix, V. Thomée, and L. B. Wahlbin, Error estimates for spatially discrete approximations of
semilinear parabolic equations with initial data of low regularity, Math. Comp. 53 (1989), 25-41.
6. J. de Frutos, B. Garcia-Archilla, and J. Novo, A postprocessed Galerkin method with Chebyshev or
Legendre polynomials, Numer. Math. 86 (2000), 419-442.
7. J. de Frutos and J. Novo, A postprocess based improvement of the spectral element method, Appl.
Numer. Math. 33 (2000), 217-223.
, Postprocessing the linear finite element method, SIAM J. Numer. Anal. 40 (2000), 805-819.
, A spectral element method for the Navier-Stokes equations with improved accuracy, STAM J.
Numer. Anal. 38 (2000), 799-819.
10. C. M. Elliott and S. Larsson, Error estimates with smooth and nonsmooth data for a finite element
method for the Cahn-Hilliard equation, Math. Comp. 58 (1992), 603-630.
, A finite element model for the time-dependent Joule heating problem, Math. Comp. 64 (1995),
1433-1453.
12. C. M. Elliott and A. M. Stuart, The global dynamics of discrete semilinear parabolic equations, STAM
J. Numer. Anal. 30 (1993), 1622-1663.
13. B. Garcia-Archilla and E. S. Titi, Postprocessing the Galerkin method: the finite-element case, STAM
J. Numer. Anal. 37 (2000), 470-499.
14. H. P. Helfrich, Error estimates for semidiscrete Galerkin type approzimations to semilinear evolution
equations with nonsmooth initial data, Numer. Math. 51 (1987), 559-569.

11.




15

16.

17.

18.

19.

20.

21.
22.

23.

24.

POSTPROCESSING THE FINITE ELEMENT METHOD 27

. C. Johnson, S. Larsson, V. Thomée, and L. B. Wahlbin, Error estimates for spatially discrete ap-
prozimations of semilinear parabolic equations with nonsmooth initial data, Math. Comp. 49 (1987),
331-357.

S. Larsson, Nonsmooth data error estimates with applications to the study of the long-time behavior
of finite element solutions of semilinear parabolic problems, Preprint 1992-36, Department of Mathe-
matics, Chalmers University of Technology.

, The long-time behavior of finite-element approximations of solutions to semilinear parabolic
problems, STAM J. Numer. Anal. 26 (1989), 348-365.

S. Larsson and J.-M. Sanz-Serna, The behavior of finite element solutions of semilinear parabolic
problems near stationary points, SIAM J. Numer. Anal. 31 (1994), 1000-1018.

, A shadowing result with applications to finite element approximation of reaction-diffusion
equations, Math. Comp. 68 (1999), 55-72.

A. H. Schatz, V. Thomée, and L. B. Wahlbin, Stability, analyticity, and almost best approximation in
mazimum norm for parabolic finite element equations, Comm. Pure Appl. Math. 51 (1998), 1349-1385.
V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Springer-Verlag, Berlin, 1997.

V. Thomée and L. Wahlbin, On Galerkin methods in semilinear parabolic problems, STAM J. Numer.
Anal. 12 (1975), 378-389.

M. F. Wheeler, A priori Ls error estimates for Galerkin approximations to parabolic partial differential
equations, STAM J. Numer. Anal. 10 (1973), 723-759.

Y. Yan, Approximation of time derivatives for parabolic equations in Banach space: constant time
steps, Preprint 2002-01, Chalmers Finite Element Center, Chalmers University of Technology, to
appear in IMA J. Numer. Anal.







2001-01

2001-02

2001-03

200104

2001-05

2001-06

2001-07

2001-08

2001-09

2001-10

2001-11

2001-12

2001-13

2001-14

2001-15

2001-16

200117

2001-18

2001-19

POSTPROCESSING THE FINITE ELEMENT METHOD 29

Chalmers Finite Element Center Preprints

A simple nonconforming bilinear element for the elasticity problem

Peter Hansbo and Mats G. Larson

The LL* finite element method and multigrid for the magnetostatic problem
Rickard Bergstrom, Mats G. Larson, and Klas Samuelsson

The Fokker-Planck operator as an asymptotic limit in anisotropic media
Mohammad Asadzadeh

A posteriori error estimation of functionals in elliptic problems: experiments
Mats G. Larson and A. Jonas Niklasson

A note on energy conservation for Hamiltonian systems using continuous time
finite elements

Peter Hansbo

Stationary level set method for modelling sharp interfaces in groundwater flow
Nahidh Sharif and Nils-Erik Wiberg

Integration methods for the calculation of the magnetostatic field due to coils
Marzia Fontana

Adaptive finite element computation of 3D magnetostatic problems in potential
formulation

Marzia Fontana

Multi-adaptive galerkin methods for ODEs I: theory & algorithms

Anders Logg

Multi-adaptive galerkin methods for ODEs II: applications

Anders Logg

Energy norm a posteriori error estimation for discontinuous Galerkin methods
Roland Becker, Peter Hansbo, and Mats G. Larson

Analysis of a family of discontinuous Galerkin methods for elliptic problems:
the one dimensional case

Mats G. Larson and A. Jonas Niklasson

Analysis of a nonsymmetric discontinuous Galerkin method for elliptic prob-
lems: stability and energy error estimates

Mats G. Larson and A. Jonas Niklasson

A hybrid method for the wave equation

Larisa Beilina, Klas Samuelsson and Krister Ahlander

A finite element method for domain decomposition with non-matching grids
Roland Becker, Peter Hansbo and Rolf Stenberg

Application of stable FEM-FDTD hybrid to scattering problems

Thomas Rylander and Anders Bondeson

Eddy current computations using adaptive grids and edge elements

Y. Q. Liu, A. Bondeson, R. Bergstrom, C. Johnson, M. G. Larson, and K.
Samuelsson

Adaptive finite element methods for incompressible fluid flow

Johan Hoffman and Claes Johnson

Dynamic subgrid modeling for time dependent convection—diffusion—reaction
equations with fractal solutions

Johan Hoffman



30

2001-20

2001-21

200122

2002-01

2002—-02

2002-03

2002-04

2002-05

200206

2002-07

2002-08

2002-09

2002-10

2002-11

2002-12

2002-13

2002-14

2002-15

2002-16

2002-17

YUBIN YAN

Topics in adaptive computational methods for differential equations

Claes Johnson, Johan Hoffman and Anders Logg

An unfitted finite element method for elliptic interface problems

Anita Hansbo and Peter Hansbo

A P?%-continuous, P'-discontinuous finite element method for the Mindlin-
Reissner plate model

Peter Hansbo and Mats G. Larson

Approximation of time derivatives for parabolic equations in Banach space:
constant time steps

Yubin Yan

Approximation of time derivatives for parabolic equations in Banach space:
variable time steps

Yubin Yan

Stability of explicit-implicit hybrid time-stepping schemes for Maxwell’s equa-
tions

Thomas Rylander and Anders Bondeson

A computational study of transition to turbulence in shear flow

Johan Hoffman and Claes Johnson

Adaptive hybrid FEM/FDM methods for inverse scattering problems

Larisa Beilina

DOLFIN - Dynamic Object oriented Library for FINite element computation
Johan Hoffman and Anders Logg

Ezxplicit time-stepping for stiff ODFEs

Kenneth Eriksson, Claes Johnson and Anders Logg

Adaptive finite element methods for turbulent flow

Johan Hoffman

Adaptive multiscale computational modeling of complex incompressible fluid
flow

Johan Hoffman and Claes Johnson

Least-squares finite element methods with applications in electromagnetics
Rickard Bergstrom

Discontinuous/continuous least-squares finite element methods for elliptic prob-
lems

Rickard Bergstrém and Mats G. Larson

Discontinuous least-squares finite element methods for the Div-Curl problem
Rickard Bergstrém and Mats G. Larson

Object oriented implementation of a general finite element code

Rickard Bergstrom

On adaptive strategies and error control in fracture mechanics

Per Heintz and Klas Samuelsson

A unified stabilized method for Stokes’ and Darcy’s equations

Erik Burman and Peter Hansbo

A finite element method on composite grids based on Nitsche’s method

Anita Hansbo, Peter Hansbo and Mats G. Larson

Edge stabilization for Galerkin approzimations of convection—diffusion prob-
lems

Erik Burman and Peter Hansbo



2002-18

2002-19

2003-01

2003-02

2003-03

2003-04

2003-05

2003-06

Adaptive strategies and error control for computing material forces in fracture
mechanics

Per Heintz, Fredrik Larsson, Peter Hansbo and Kenneth Runesson

A wvariable diffusion method for mesh smoothing

J. Hermansson and P. Hansbo

A hybrid method for elastic waves

L.Beilina

Application of the local nonobtuse tetrahedral refinement techniques near
Fichera-like corners

L.Beilina, S.Korotov and M. Kiizek

Nitsche’s method for coupling non-matching meshes in fluid-structure vibration
problems

Peter Hansbo and Joakim Hermansson

Crouzeiz—Raviart and Raviart—-Thomas elements for acoustic fluid—structure
interaction

Joakim Hermansson

Smoothing properties and approzimation of time derivatives in multistep back-
ward difference methods for linear parabolic equations

Yubin Yan

Postprocessing the finite element method for semilinear parabolic problems
Yubin Yan

These preprints can be obtained from

www.phi.chalmers.se/preprints



