CHALMERS

FINITE ELEMENT CENTER

PREPRINT 2003-07

The finite element method for a linear stochastic
parabolic partial differential equation driven by
additive noise

Yubin Yan

- . Chalmers Finite Element Center
<« p CHALMERS UNIVERSITY OF TECHNOLOGY
- Goteborg Sweden 2003






CHALMERS FINITE ELEMENT CENTER

Preprint 2003-07

The finite element method for a linear stochastic
parabolic partial differential equation driven by
additive noise

Yubin Yan

CHALMERS

Chalmers Finite Element Center
Chalmers University of Technology
SE—412 96 Goteborg Sweden
Goteborg, March 2003



The finite element method for a linear stochastic parabolic partial differential equa-
tion driven by additive noise

Yubin Yan

NO 2003-07

ISSN 1404-4382

Chalmers Finite Element Center
Chalmers University of Technology
SE—412 96 Goteborg

Sweden

Telephone: +46 (0)31 772 1000

Fax: +46 (0)31 772 3595

www.phi.chalmers.se

Printed in Sweden
Chalmers University of Technology
Goteborg, Sweden 2003



THE FINITE ELEMENT METHOD FOR A LINEAR STOCHASTIC
PARABOLIC PARTIAL DIFFERENTIAL EQUATION DRIVEN BY
ADDITIVE NOISE

YUBIN YAN

ABSTRACT. In this paper we consider the finite element method for a stochastic para-
bolic partial differential equation forced by additive space-time white noise in the multi-
dimensional case. Optimal strong convergence error estimates in the Lo and H~' norms
with respect to spatial variable have been obtained. The proof is based on appropriate
nonsmooth data error estimates for the corresponding deterministic parabolic problem.

1. INTRODUCTION

In this paper we will study the finite element approximation of the linear stochastic
parabolic partial differential equation

(1.1) du+ Audt =dW, for0<t<T, withu(0)= u,

in a Hilbert space H with inner product (-,-) and norm || - ||, where u(t) is an H-valued
random process, A is a linear, selfadjoint, positive definite, not necessarily bounded opera-
tor with a compact inverse, densely defined in D(A) C H, where W (t) is a Wiener process
defined on a probability space (2, F,P) and ug € H.

For the sake of simplicity, we shall concentrate on the case A = —A, where A stands
for the Laplacian operator subject to homogeneous Dirichlet boundary conditions, and
H = Ly(D), where D is a bounded domain in R% d = 1,2, 3, with a sufficiently smooth
boundary 0D.

Such equations are common in applications. Many mathematics models in physics,
chemistry, biology, population dynamics, neurophysiology, etc., are described by stochastic
partial differential equations, see, Da Prato and Zabczyk [5], Walsh [18], etc. The existence,
uniqueness, and properties of the solutions of such equations have been well studied, see
Curtain and Falb [2], Da Prato [3], Da Prato and Lunardi [4], Da Prato and Zabczyk
[5], Dawson [7], Gozzi [9], Peszat and Zabczyk [14], Walsh [18], etc. However, numerical
approximation of such equations has not been studied thoroughly.

Date: March 29, 2003.
Key words and phrases. stochastic parabolic partial differential equations, finite element method, back-
ward Euler method, additive noise, Hilbert space.
Yubin Yan, Department of Mathematics, Chalmers University of Technology, SE-412 96 Gd&teborg,
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2 YUBIN YAN

The equation (1.1) can be written formly as

aw
(1.2) up + Au = r for0 <t <T, withu(0) = u,
where the derivative % (noise) does not exist as a function of ¢ in the usual sense. Thus
the equation (1.2) is understood in the integral form.
Let E(t) = e7'4, t > 0. Then (1.2) admits a unique mild solution, see Da Prato and
Zabczyk [5, Theorem 5.2, 5.4],

(1.3) u(t) = E(t)ug + /Ot E(t—s)dW(s) for0<t<T,

where the integral is understood in It0 sense.

We assume that W (t) is a Wiener process with covariance operator (). This process may
be considered in terms of its Fourier series. Suppose that ) has eigenvalues vy, > 0 and
corresponding eigenfunctions e;. Then

W(t) = Z%mﬁl/@(t)a
=1

where (35, | = 1,2,---, is a sequence of real-valued independent identically distributed
Brownian motions.

If @ is in trace class, then W(t) is an H-valued process. If @ is not in trace class, for
example Q = I, then W (t) does not belong to H, which is called a cylindrical Wiener pro-
cess, but stochastic integral can be defined with respect to W, when the integral smoothes
the noise process sufficiently.

Let LY = HS(Q'/?(H), H) denote the space of Hilbert-Schmidt operators from Q'/?(H)
to H, i.e.,

1 ={y e L(H): Y} [4Q"al? < oo},
=1

1/2
with norm |[¢[| g = (Zle ||1/JQ1/2el||2> , where L(H) is the space of bounded operator

from H to H.
Let E denote the expectation. The It0 isometry for a Wiener process of covariance
operator () states that, for an integrand ¢ € L3,

B [ avi)| = [ el

Let S, be a family of finite element spaces, where S, consists of continuous piecewise
polynomials of degree < 1 with respect to the triangulation 7 of 2. For simplicity, we
always assume that {S,} C H} = Hy(D) = {v € Ly(D),Vv € Ly(D),v|sp = 0}. The
semidiscrete problem of (1.1) is to find the process uy(t) = up(-,t) € Sy, such that

(1.4) dup, + Apup dt = P, dW, for 0 <t <7T, with uh(O) = Pyuy,
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where P, denotes the Ly-projection onto Sy, and A, : S, — Sj, is the discrete analogue of
A, defined by

(15) (AhwaX) = A(wa X)’ V%X € Sh-

Here A(-,-) is the bilinear form on Hj (D) obtained from the operator A in (1.1).
With Ej(t) = e7™», ¢ > 0, then (1.4) admits a unique mild solution

uh(t) = Eh(t)PhU,O + /t Eh(t — S)Ph dW(S)

Let H® = H*(D) = D(A*/?) for any s € R and denote the norm by |- |, = [|A*/?- ||. For
any Hilbert space Hy, we denote Lo(2; Hy) by

L@ H) = {v: By, = [ (@), dP(w) < o0},

with the norm ||v||,0;m,) = (E||v||%{1)1/2.
Under the condition ||A(*3_1)/2||Lg < oo for some 3 € [0, 1], we show in Lemma 2.4 that

W(t) € HP~' ¢ H™', so that P,W(t) is well defined, and we obtain, in Theorems 3.2, 3.3,
the error estimates in semidiscrete case,

(1.6) lun(®) = w(®)llzatosny < OB (uoll sy + 1477215 )
and, with £, = log(T/h?),
1) lun®) = w®) iy < O (ol agginy + allAC 21155

We also consider the error estimates in the fully discrete case . Let k£ be a time step and
t, = nk with n > 1. We use the backward Euler scheme to approximate u(t,),

Ur — Un—l 1 tn
(1.8) S = [T Rawe), nx1 U= P

k k
With 7(\) = (1 + A) !, we can rewrite (1.8) in the form

tn—1

tn
(1.9) U = r(k AU + / r(kA) Py AW (s), n>1, U°= Pyug.
th—1

Under the condition [|A®~Y/2||;, < oo for some 3 € [0,1], we obtain, in Theorems 4.2,
4.3, the error estimates in the fully discrete case,

(110) U~ ut)llaany < OO+ 1) (ol gy + 149~ 13).
and, with ¢, = log(t,/k),
(111) 0" =ty < CRC2 4 1) ([l sy + AP 13).

We briefly recall some previous works on the numerical approximation for (1.1). Allen,
Novosel, and Zhang [1] consider both finite element and finite difference methods of (1.1)
in the one-dimensional case and in the cylindrical Wiener process case with Q = I and
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H = Ly(0,1), A = —3% with Dirichlet boundary condition. Shardlow [16] also considers
the finite difference approximation of (1.1) in the one-dimensional case. Du and Zhang
[8] consider the numerical approximation for (1.1) but with some special additive noises.
Printems [15] considers the time discretization in more general case in abstract framework
based on the f-method. For the numerical approximation of nonlinear evolution partial
differential equation, we mention Davie and Gaines [6], Gyongy [10], [11], Hausenblas [12],
etc.

This paper is organized as follows. In Section 2, we consider the regularity of the solution
of (1.1). In Section 3, we consider the error estimates in semidiscrete case. In Section 4,
we consider the error estimates in the fully discrete case. Finally in Section 5, we consider
how to compute the approximate solution U™ numerically.

By C and ¢ we denote large and small positive constants independent of the functions
and parameters concerned, but not necessarily the same at different occurrences. When
necessary for clarity we distinguish constants by subscripts.

2. REGULARITY OF THE MILD SOLUTION

In this section we will consider the regularity of the mild solution of (1.1). We have

Theorem 2.1. Let u(t) be the mild solution (1.3) of (1.1). If ||A(’3_1)/2||L(2J < 0o for some
B €[0,1]. Then we have, for fized t € [0,T],

(2.1) ||u(t)||L2(Q;Hﬂ) < C(”“O”Lz(n;Hﬂ) + ||A(/371)/2||L3)5 forug € Lo (S H’B)

In particular, if W (t) is an H-valued Wiener process with covariance operator @, Tr(Q) <
o0, then we have

(2.2) ||u(t)||L2(Q;H1) < C<||u0||L2(Q;H1) + TT(Q)1/2>7 forug € La(2; Hl)

To prove this theorem, we need some regularity results which are related to the fact that
E(t) = e7* is an analytic semigroup on H. For later use, we collect some results in the
next two lemmas, see Thomée [17] or Pazy [13].

Lemma 2.2. Let o, € R and let | > 0 be any integer. We have

(2.3) IDIE(t)v|g < Ot~ =92y, fort >0, 20+8>a,

and

(2.4) /t 3"‘|D§E(8)v|§ ds < Clv[3,p_q_q, fort>0, a>0.
0

Lemma 2.3. For arbitrary o > 0, 0 < B < 1, we have

(2.5) |A*Et)|| < Ct™®, fort >0,

and

(2.6) |AP(I = BE@®))]| < Ct°,  fort>0.
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PROOF OF THEOREM 2.1. Since the mild solution has the form
t
u(t) = E(t)ug + / E(t — s)dW (s).
0

Thus, for arbitrary § > 0, using stability property of E(t) and isometry property,

2

(2.7) B(|u(t)[2) g2E(|E(t)u0|g)+2EH/O AP 5)diW(s)

t
= 2B (juof3) + 2E/ |AP2E(t — 5)|2, ds.
0

With {e;}{°, an arbitrary orthonormal basis on H, we have, using Lemma 2.2,

t 0 t
[ 1a07E - 9l =3 [ 14 EE - QP ds
0 j=1"0

0 t 00
= Z/O [E()Q"eljds <C Y 1Q e}, = C| AP V2|3,
j=1 j=1

Together with (2.7) this shows (2.1).
In particular, if W(t¢) is an H-valued Wiener process with Tr(Q)) < oo, then we can
choose 3 = 1 because

115 = D10 %e51I* =Y v = Tr(Q).
j=1 j=1

Corollary 2.1. Let u(t) be the solution of (1.1) and A = —63—;2 with D(A) = H(0,1) N
H?(0,1). Assume that W (t) is a cylindrical Wiener process with @ = I. Then we have,
for every 8 € [0,1/2),

[w()|yasrisy < C(L+ lluoll yquiey),  for uo € La(€ HP).

PROOF. By (2.1), it suffices to check that in what case ||A(ﬁ*1)/2||Lg < oo. It is well
known that A has eigenvalues \; = j?7%,j = 1,2,---, and corresponding eigenfunctions
¢; = /2sin jrz,j = 1,2, -+, which form an orthonormal basis in H = Ly(0,1). Thus, we
have

o0 o0
AV, = ST AG-D/2g 2 = $7 20,

which is convergent if 5 € [0,1/2). The proof is complete.

We note that in Theorem 2.1, we require the condition ||A(ﬁ71)/2||Lg < oo for g € [0,1].
The following lemma shows that this condition is equivalent to saying tht W (t) is H?~'-
valued. In particular, W (t) € H ', which is important when applying the finite element
method.
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Lemma 2.4. Assume that W (t) is a Wiener process with covariance operator Q). Assume
that A and Q) have the same eigenvectors. Then the following statements hold.
(¢) If ||A('6_1)/2||L(2) < oo for some € [0,1], then

o0

W(t) = Z Ql/zelﬁl(t)a t Z 07

=1

defines an HP'_yalued Wiener process with covariance operator Q, Tr(@) < o0. In par-

ticular, Q = Q if Tr(Q) < oo; .
(i) If W(t) = Y0, QYV%eBi(t), t > 0, is an HP'-valued Wiener process with the
covariance operator @, Tr(Q) < oo, then

||A(5_1)/2||Lg < oo, for somef € [0,1].
ProOOF. We first prove (7). With {7, ¢;}°, the eigensystem of @) in H, it is easy to
show that g, = QY?%¢; = fyll/Qel is an orthonormal basis of Q/?(H). In fact,
(91, 9) gu2cmy = (@291, QY% gi) = (eu, €x) = Oy
Note that
D lgiliy =D IIAPDEQ 2| = AP D2y < oo,
=1 =1
which means that the embedding of Q'/2(H) into HP-'is Hilbert-Schmidt. By Lemma 4.11
in Da Prato and Zabczyk [5], W (t) defines an H?~'-valued Wiener process with covariance
operator @, Tr(Q) < oo. It is obvious that @ = Q if Tr(Q) < oc. ‘
We now turn to (#7). Since W(t) = 37,2, Ql/zelﬁl(t), t >0, is an H~l-valued Wiener
process with the covariance operator @, Tr(Q) < oo, we have
E[W (t)[3_, < oo.
With {\;, e;}5°, the eigensystem of A in H, we have

2
p—1

EW (@), =E| Y Q" am()|
=1

=EY A w0 = A,

=1

which implies that [|A®~Y/2|| ;4 < oo for § € [0,1]. The proof is complete.

3. ERROR ESTIMATES IN THE SEMIDISCRETE CASE

In this section we will consider the error estimates for stochastic partial differential
equation in semidiscrete case.
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3.1. Error estimates for deterministic problem. In order to prove our error estimates
for stochastic partial differential equation, we need some nonsmooth data error estimates
for homogeneous deterministic parabolic problem.

Let us first consider the stationary problem

(3.1) —Au = finD, withwu=0on 9D,
where f € H L.

The variational form of (3.1) is to find v € H; such that
(3.2) (Vu, Vo) = (f,¢), V¢ € Hy,

where (-, -) denotes the duality pairing between H * and H{.
Let S, C Hy be the finite element space. The semidiscrete problem of (3.2) is to find
up € Sy, such that

(3.3) (Vun, Vx) = (f,x), Vx € Sh.

By Lax-Milgram lemma, there exist unique solutions u € Hy and u; € Sy such that (3.2)
and (3.3) hold. Moreover the following stability result holds:

(3.4) lul < CO|f|-1, VfeH™
The standard error estimates read:
(3.5) lup, — ul| < Ch%luls, s=1,2.

Let G : H™' — H} denote the exact solution operator of (3.1), i.e., u = Gf. We
define the linear operator Gy, : H! = Sy by Gnf = up, so that u, = Gpf € Sy, is the
approximate solution of (3.2). It is easy to see that G}, is selfadjoint, positive semidefinite
on H, and positive definite on Sj. Introducing the elliptic projection Ry, : H} — Sy, by

(VRyv,Vy) = (Vv,Vx), Vv € Hj.

We see that G, = R, G, and Ryv is the finite element approximation of the solution of the
corresponding elliptic problem with exact solution v. By (3.5), we get

|Rrv —v|| < CR%|v|s, s=1,2.

Hence, using (3.4) and the elliptic regularity estimate, we have
(36) (G~ G)f| = lI(Ry — )GII| < OW|Gf|s = Ch*|flsa, fors=1,2,
which we need below.

Let Ej(t) = e % with A, = G}, and let E(t) = e~* with A = G71. We then have
the following error estimates for deterministic parabolic problem.
Lemma 3.1. Let Fy(t) = Ey(t)P, — E(t). Then
(3.7) | Fnvl| o o175y < CHPJ0]g,  forve HP, 0 < B <1,
and

(3.8) |1 ool ooy < CRP|v|g—y, forve HPY 0< B <1,



8 YUBIN YAN

Further, in the weak norm,

(3.9) 1 Fnollyqoryir-1y < ChPlvlg_y, forve HP7' 1< B <2,
and, with £, = log(T/h?),
(3.10) | Fnollz, o m-1) < ChPlylv|p_e, forve HP2 1< B<2.

PROOF. We denote u(t) = E(t)v, up(t) = Ex(t)Pyv, and e(t) = up(t) — u(t) = Fu(t)v.
We first show (3.7). By the stability properties of the Ly projection operator P, and the
solution operators Fjy(t) and E(t), we have

(3.11) lle(®)|| = ||En(t)Prv — E(t)v]| < 2||v||, fort>0, veH.
We will show that
(3.12) le(t)|| < Chlv|y, fort >0, ve H.

Combining this with interpolation theory, we get (3.7).
To show (3.12), let us consider the error equation

(3.13) Gres +e = p,
where p = (G, — G)u;. We note that Gre(0) = 0 for
(3.14) (Gre(0),w) = (Pyv —v,Gpw) =0, forw € H,

since Gpw € Sj,.
By the energy method, we can show, see Thomée [17, Lemma 3.3],

le(@)]l < Csup (slleu(s)ll +lo(s)l1), > 0.

Obviously, by (3.6) and Lemma 2.2,
o)l = (Gr = G)uel| < Chlug|—1 < Chlvls,
and
sllpe(s)ll < Chsluy(s)l < Chlvls.

Hence (3.12) follows and therefore we get (3.7).
We next show (3.8). By interpolation theory, it suffices to show that

(3.15) llel| ooy < Clov|-1,
and
(3.16) lle]] oo,y < Chl|v].

Taking the inner product of (3.13) with e, we get

(Gheta 6) + (6, 6) = (pa 6)-
Integrating with respect to ¢, we get, noting that Gre(0) = 0 and using the inequality
(p,e) < 5(llpll” + llell®),

(3.17) (Gre(T), e(T)) + / lell?dt < / ol .

0 0
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Obviously, by (3.6) and Lemma 2.2,

T T T
B18) [ llPde< [ G- Gl < or [ ud < Crol?
0 0

0
which implies that (3.16) holds.
To show (3.15), we note that, by Lemma 2.2 and its discrete counterpart,

T T
(3.19) el <2 [l + ) de < 207+ 200,
0 0
where |v|_1 is a discrete seminorm defined by
[v-1n = (Grv, )72 = 1G]
Since |v[_; = sup{(v,w)/|w|: : w € H'}, see Thomée [17, Chapter 6], we thus have, with
w=Gp, ve H,

(v,Gpv) _ (v,Gho)

o1 = sup ) _ .
|Gholy (v, Gpv)1/? ’

weH! |w|1

Y4

since
|Gh’0|% = (AGhU, Gh’U) = A(G}ﬂ), GhU) = (AhGh’U, Ghv) = (U, GhU),
where A, = G, '. Hence by (3.19), we get fOT lle||? dt < 4|v|?,, which implies that (3.15)
holds.
We now turn to (3.9). It suffices to show that

(3.21) le(t)[-1 < Chljvll,
and
(3.22) le(t)|_1 < Ch?vl;.
By (3.17) and (3.18), we have
(3.23) (Ghe, €) = lel2y ), < Ch?|v]]".
Using
(3.24) e[ 1 < lel—1n + Chlle],

which follows from, by (3.6),
le[?1 = (Gre,e) + ((G = Gh)e,e) < lef? 1, + CR?[le]|*.

We obtain, by (3.11)
le[ -1 < le[-1,n + Chlle] < Chljv]l,
which is (3.21).
By (3.17) and (3.6), we obtain

1 1 t
O 1= Gae(t)e(t) < 5 [ NolP ds < O [ juf*ds < Chpo:

Combining this with (3.12) and (3.24), we get (3.22).
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It remains to show (3 10) Integrating (3.13) with respect to ¢, we have, with é(t)

f e(s)ds, p(t fo
(3.25) Gre+é=p, &(0)=0.
Taking the inner product of (3.25) with e, we get, since e = é;,

1d d

(Grese) + 5l = (7.¢) = =(5,0) = (4, 0).

After integration, we have, noting that ¢(0) = 0,

ATkPmds+%WUUW:iA2@@d8:[@jﬂ:_[fwjﬁk

<UD +( [ ol ds) sup (5]

T
<2( [ lolds) sup (o)
0 0<s<T

By a kick-back argument, we obtain

T T 9
[ letas<c( [ lollas)”
0 0
T h2 T
/nww=/|ww+/nmm
0 0 h?

h? T
< 0/ 8_1/2|U|_1d8+0/ hluli ds < Chép|v|_1,
0 h2

T h? T
[ elids= [ lelias+ [ olas
0 0 h?

T
< Ch?||v|| +C’h2/ luly ds
h2

Noting that

and, similarly,

< CR?||v]| + Ch* log(T/h?)|v|| < CR*y]lv]],
we therefore get
T
|16 pds < crGlol
0

and

T
|16 s < CHGlIP.
0
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By (3.18), (3.19) and (3.24), we obtain

T T T
el>,ds < C | |e|*,,ds+Ch? e||? ds
0 0 o 0

< Ch?Gylol2, + CR?|o|2, < Ch*Glof2y,
and .
/ le21 ds < Ch*G||v]|* + Cho]* < Ch G |v|”.
0
Now (3.10) follows from the interpolation theory. The proof is complete.

3.2. Strong norm convergence. In this subsection, we will consider the error estimate
for (1.1) in semidiscrete case with respect to strong norm. We have

Theorem 3.2. Let uy, and u be the solutions of (1.4) and (1.1). If [|A¥"D/2|| 4 < oo for
some B € [0,1], then we have, fort > 0 and ug € Lo($2; H/B),

(3.26) lun(®) = w(®)llracesmy < OB ([uoll sy + 1AP"2] 55 ).

In particular, if W (t) is an H-valued Wiener process with Tr(Q) < oo, then we have, for
t >0 and uy € Ly(Q; HY),

(3.27) lun(®) = w@®llzaoim < Ch(ltoll iy + Tr(@)M2).

PROOF. By definition of the mild solution, we have, with E(t) = ™4,

u(t) = E(t)uo + /0 CE(t— 5)dW(s),
and, with Ej(t) = e t4»,
un(t) = Ep(t)Pyug + / "Bt — 5) PadW (5).
Denoting () = un(t) — u(t) and Fy(t) = B, ((;)Ph — B(t), we write

e(t) = B (t) Pyuo — E(t)uo + /0 t (Eh(t _§)Py— E(t — s)) AW (s)

= Fy(t)uo + /t Fo(t—s)dW(s)=1+11I.
0
Thus
le®llaaim < 2(Mllaam + 11T @),
For I, we have, by (3.7) with v = wy,
Ml = B ol < CHPJugls, for0< <1,
which implies that ||1||,;m) < C’hﬁ||u0||L2(Q;H3), for0 < g <1.
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For 11, we have, by the isometry property,
t ) ]
110 o = B [ Fatt =) aw )| = [ 1Ee = o) s
0 0

00t
-y / 1En(t = $)QY2e ] ds,
=1

where {e;} is any orthonormal basis in H.
Using (3.8) with v = Q'/?¢;, we obtain

”II”%Q(Q;H) < CZhZﬁHQl/Qel”%_l _ CZhZBHA(/J’—l)/?Qlﬂel”Z

=1 =1

— CRP||AC-D|2,

which completes the proof of (3.26).
In particular, if W (t) is a Wiener process with Tr(Q) < oo, then we can choose f =1
in (3.26) and obtain (3.27), since ||I||ig =Tr(Q).

Corollary 3.1. Let u;, and u be the solutions of (1.4) and (1.1), respectively. Assume that
A= —2, with D(A) C H{(0,1) N H?(0,1). If W(t) is a cylindrical Wiener process with
Q = I, then we have, for t > 0 and ug € LQ(Q;Hﬂ),

lean(8) = w(®) a0ty < OB (1 + ol yqoyris)). For 0 < 5 < 172

PROOF. The proof is similar to the proof of Corollary 2.1.

3.3. Weak norm convergence. In this subsection we state our weak norm convergence
error estimate.

Theorem 3.3. Let uy, and u be the solutions of (1.4) and (1.1). If ||A¥"D/2|| 4 < oo for
some B € [0,1], then we have, for 0 <t < T and ug € Lo(Q; HP), with £, = log(T/h?),

(3:28)  llun(t) = u(®)ll pyqai—ry < O (Il yqainy + EallAC 21155

In particular, if W(t) is an H-valued Wiener process with Tr(Q) < oo, then we have, for
0<t<T anduy € Ly(Q; H'),

(3.29) lun(®) = w(O) paqai—sy < OB (ol yqaory + € TH(Q)M2).
PROOF. Using the same notation as in Theorem 3.2, we have, by (3.9),

||I||L2(Q;H—1) < Ch’ﬂ—i—l”uO”Lz(Q;Hﬁ)a for 0 < g <1
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For I1, we have, by the isometry property, and (3.10) with v = Q/2¢,,

2

t 9 t
nnﬁm£g=mwéEﬁ—@ﬂﬂ@_;ﬂwéferu—@MWQ

t
= [147 2R = 93y ds
0

< OWPE Y (|APIPQ e P < CREFDE | ACD2|,,
=1
which completes the proof of (3.28).
In particular, if W (t) is a Wiener process on H with Tr(Q)) < oo, then we can choose
f =11in (3.28) and obtain (3.29).
Corollary 3.2. Let uy, and u be the solutions of (1.4) and (1.1), respectively. Assume that
A= -2 and D(A) = H}(0,1) N H?(0,1). If W(t) is a cylindrical Wiener process with
Q = I, then we have, for 0 < ¢t < T and ug € Ly(Q; H?), with £, = log(T/h?),

lun(t) = w(®)l| oy-y < CH* (L + Calluollpyigyzs)),  for 0 < 8 < 1/2.

4. ERROR ESTIMATES IN THE FULLY DISCRETE CASE

In this section we will consider the error estimates for (1.1) in the fully discrete case.

4.1. Error estimates for deterministic problem. As in the semidiscrete case, in order
to prove error estimates for the stochastic partial differential equation in the fully discrete
case, we need some error estimates for deterministic parabolic problem.

Let Ey, = r(kAy) and E(t,) = e7™4, where r()\) = 1/(1+ ) is introduced in (1.9). We
have

Lemma 4.1. Let F,, = E}, P, — E(t,,). Then

(4.1) || Ev| SC’(k’B/2+h’3)|v\ﬂ, forvEH’B, 0<pB<1,
and
(4.2) (kz | F5v]] ) C(KP2 + hP)|v|s_1, forve H ', 0<pB<1.

Further, in the weak norm,
(4.3) [Fovl1 < C(KPP + BP)vls_y, forve HP7', 1< B <2,
and, with ¢y = log(T/k) where T = t,,

(4.4) (kz |Fjv| ) C(KP? + WPty |v|p_s, forve HP 2 1< <2
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Proor. We denote u(t,) = u" = E(t,)v, U" = E}, Py, and e" = F,v. We first
show (4.1). By the stability properties of the L, projection operator P, and the solution
operators Fyy(t) and E(t), we have

(4.5) le™]| = || EgnPrv — E(tn)v|| < 2||v||, fort>0, ve H.
We will show that
(4.6) le"|| < C(kY? + h)|v|y, forve H.

Combining this with interpolation theory, we get (4.1).
To show (4.6), let us consider the error equation, with 9;e™ = (e" — ") /k,
(4.7) Groe" + e = p" + Gy1",

where p" = (G, — G)uy(t,) and 7" = uy(t,) — Opu™.
By the energy method, we have

n
tallell® < tall 12+ 5 3 (16712 + 2110 |2 + 1Gar 12 + 201771,
7j=1

Here, by (3.6) and Lemma 2.2, we have
1771l = 1(Gh = G)ue(ty) || < Chlu(t;)| -1 < Chloly,

and

, 1[4 1[4
ol =5 [ vemras] <[5 [ sm s
k tj—l k tj—l
< sup ||sp(s)|| < Ch sup |suy(s)]y < Chlv|;.
0<s<ty, 0<s<ty
Further, we write . ' .
1Gr7’ || = [(Gh — G)T' || + [|GTI,
where, using (3.6) and Lemma 2.2,
1(Gh — G)7?|| < Ch|r?| 1 < Ch sup |uy(s)| 1 < Chlvl;.

0<s<tn

Hence we obtain
n

e 2 < Ch2lof? + Cht,* 3 (G2 + £y 177]?)
j=1
By Taylor’s formula, we have

. 1 [t
G =6 [ (6= timuas)ds
ti—

1

2

2 1 (%
= HE/ (s—tj_l)ut(s) dS
tj—1
1 t; 2 tj
<[z [ el < [ 6=t
ti—1 j

j—1

tj
<tu [ JuI ds
t

j—1



STOCHASTIC PARABOLIC PARTIAL DIFFERENTIAL EQUATION 15

and

£l =

1 [U 2 ) t )
g [ @ as] < i [T = el ds
ti—1 ti—1
t
Stn/ 5%||uge(s)||* ds.
ti—1
Applying Lemma 2.2, we have
n . n t;
b 8PP < kY [ o) ds
j=1 j=1"ti-1

tn
_ k/ (3|12 ds < CJols,
0

and

n . n t;
bt SBR[ (o) s
o j=1 ti—1

tn
- k/ 2llug(s)[2 ds < Chlvly.
0

Hence (4.6) follows and therefore we get (4.1).
We next show (4.2). By interpolation theory, it suffices to show that

(4.8) (53 El?) < ol
and
(4.9) (kz 1E50?) " < Ok + ).

Taking the inner product of (4.7) with e™, we get
(Groe™, e") + (e, e") = (p", e") + (GpT™, €e™).

By summation on n, using the inequality (p",e") < Z(|[p"||* + ||e"||?), and noting that
Gre® = 0, we have

(4.10) (Ghen, en) + k‘Z lesll* < C’fz llpil* + C/fz 1G] + Ckz (G — &7

Jj=1 j=1 j=1
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Here, using Lemma 2.2, we have, since p/ = p(s) + f p:(7) dT,

(4.11) kZIIp’IIQ - k||p||2+2 / e ds
< kllo|? +2Z [ RR(CCIE [ eyl as
<ol +2 [ ot ||2ds+22 / (=9 [ Intoar) as
< Klj? +2 / (s ||2ds+2k2 / / o) dr

ti—1 Jtjq

tn
<Hlpl?+2 [ (o) ds + 2k / rlon(o)|P dr

t1 t1

tn tn
< Cl-c||u||2+0h2/ |u(s)|§ds+0k/ (P2 dr < Ck + B2) vl
0 0

and, by Taylor’s formula,

kZII Gy — Q)| < CR?|F2, +Ckh22|rﬂ|2

7j=2

ut(k)—%/okut( ydr| +Ckh22‘k/t (s — tjs)un(s) ds|

j—1

= Ckh®

2
< ChQ(k|ut(k)|2,1 +/ lug(7)]? 4 dT) —i-C'hQZ / (s —t; 1) *uy(s) ds
0 j=2 tj—1 -
<Ch2||v||2+0h22/ k(s — ;1) |ua(s)[2, ds
tis

<Ch2||v||2+0h22/ 2l (s)[2, ds < Ch2|Jol]?
ti—1
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and

kZIIGT”IF—kZHk/ tya)u(s) ds||
<kZ/ (5~ tr- )l

ti—1

<0k [ sl ds < Kl
0

We therefore obtain
(4.12) (Gre™,e")'/? + (aneﬂn) CUR2 + Bl

which implies that (4.9) holds.
To show (4.8), we note that,

(4.3 kz e Ckz |+ Ckz Juts) P
Here, we have, following (4.11) with p replaced by u,
tn tn
(414 kZ Jut)IP < MulP+2 [ Juts)Pds+2 [ (o) ds < Clof?,
t1 t1

and, by (3.20),

kYU < Clol2y, < Clol2y,

=1

which imply that (4.8) holds and the proof of (4.2) is complete.
We now turn to (4.3). It suffices to show that

(4.15) "1 < CEY? + h)|lv],
and

(4.16) ey < C(k + h?)|v];.
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Obviously (4.15) follows by (3.11), (3.24), and (4.12). Note that, by Lemma 2.2,

n ot t 2
el <eys [ (I | [ i ar
j=1 j=1vti-1 s
tn no oot
<c / lo()|?ds + 3 / Klpe(r)| dr
0 =1 ti—1

tn tn
< / lo(s)|I? + CF? / oI dr

tn tn
< Ch4/ lul2ds + 018/ w2 ds < C(h* + k) [o[2,
0 0

) ds

and
an (Gh — G)T|? < Ckh“z 1792
j=1
1 [U 2
= Ckh* Z HE / (s —tj_1)uu(s)ds
j=1 tj-1
<Cnty [ (5=t o) P ds
j=1ti-1
tn
< Ch,4/ $%||ug(s)||*ds < Ch*|vl3,
0
and

n n t;
EY NG =k | / (5~ ty-)un(s) ds|
2. 2% ),
<k Z (5=t ds)/ ()2 ds
t

tj—1 j—1
tn
< Ckz/o ||lus(s)|” ds < CE*|wl2.

Combining these estimates with (4.10), we get (4.16)
It remains to show (4.4). As in the proof of (3.10), it suffices to show

(4.17) (kZ\eJV )" < Gtk + )l
and

(4.18) (kZ\ej\z ) C (K2 + h)ly | 1.
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Let é"=kY 5 e/, & =0,and 06" = (" —&""")/k = " for n > 1. We have the error
equation

(4.19) GroEe™ + " = pn + Gp7", forn > 1,

where 7" = k Z?Zl 77, and p" =k Z]”':1 p’, where 77 and p’ are defined as before.
Taking the inner product of (4.19) with 0,e", we get, since 0,e" = e,

n A o~ o - U . ~
(Ghate”, ate ) + 3t( " n) E(ate" 8te") = (pn’ 3te") + (Ghaﬂ'n, 8t€n)
= 0,(p",€") = (0", &) + 0 (GaT", €") — (B(GHT"), " ).
By summation on n, noting that é° = 0, we have
k ;(Ghatéj ,0,87) + ;(é" &)

<[lg™ Il + & D 1o @] + Gl + & Y- (Gar™, &)

j=1 i=1
< max &) (116" + k343 IGkr ) + IGn7"1)).
J= J=
By a kick-back argument, we obtain
(k Xn:(Ghatéj, 0,8 )1/ < Ck Z 107]| + Ckz 1(Gh — G)r|| + CK||GT].
j=1
Here, with £, = log(T/k) where T = t,,, we have

EY Nl = Ellpll + &) 1A < Chllol| + Ck 57|l
j=1 j=2 j=2
< Ckll|| + Ckt|lv]| < Ckegllv]|,
and

kZH Gp— Q)| < OkhQZ 77| = CkR?||7*|| + CkhZZ [|77]]

Jj=1 Jj=2

tj
= Ckh?||us(k) — Ou’ (s — tj)u(s) dsH

< Ch*([kue(k)]| + [lu(®)[] + llv]]) +0h22/t Isuw(s)| ds

tn
< CR?||v|| + C’h2/ |susu(s)|| ds < CR2||v||,

t1
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and

kY NGT = klIr' | + kY IIGT| < Chtelol

7j=1 7j=2
which imply that (4.17) holds. Similarly we can show (4.18). Hence (4.4) follows.
Together these estimates complete the proof.

4.2. Strong norm convergence. We have the following strong norm convergence result
in the fully discrete case.

Theorem 4.2. Let U™ and u(t,) be the solutions of (1.9) and (1.1), respectively. If
||A(ﬂ_1)/2||Lg < oo for some 3 € [0,1], then we have, for ug € Ly(Q, HP),

(4200 (0" = ulta) s < OO + 1) (It yaaey + 14702 1)

In particular, if W (t) is an H-valued Wiener process with Tr(Q) < oo, then we have, for
Uy € LQ(Q, Hl),

(4.21) 10" = wltn)llsaosm < CEY2 4+ b) (1luoll gy + Te(@)2).

ProOOF. We have, by (1.9), with E}, = r(kA,)",
n tj )
U™ = EpPoug + Y / E} TP, dW (s),
j=17%-1
and, by the definition of the mild solution of (1.1), with E(t) = e74,

w(ty) = Et)uo + /0 " E(t, — s) dW(s).

Denoting e" = U™ — u(t,) and F,, = E}, P, — E(t,,), we write

e" = FLug + Z/ F,_jt1dW(s)
j=17Yti-1

5 / " (Blta - ty-1) — Elta — ) dW(s)

j=1"7t-1

=1+I1I+111.
Thus
e llzatesmy < C (I lzaoim + T |cageum) + 1T laoumn)-
For I, we have, by (4.1) with v = wy,
11l = [ Faoll < COP2 + 1) ),
which implies that [|1]|1,0;m) < C(kP/2 + hP)|luoll 1, (q.0)-
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For 11, we have, by the isometry property,

n tj 2 n tj
VT gy = B D / Fo g dW(s)| =3 / | Pyl ds
j:l tj—l j:l tj—l

=3 (EX 1P 1@ el?),
7j=1

=1 =
where {e;} is any orthonormal basis in H. Using (4.2) with v = Q'/?¢;, we obtain
T3, 05m) < C Y (K + h*)|QYelff_,
1=1

= CY (7 + K ATQ e
=1
= C(K + 1) A2,

For 111, we have, by the isometry property,

n ts
111y =Y [
j=1 “ti-1

Syf

- 1 Ytj-1

2

(E(tn —t; ) — Bty — s)) ds

Ly

2
AP2 (E(s —tj 1) — I) APP2E(t, — s)Ql/QelH ds.

=1 j=

Using (2.6), and (2.4) with v = A®=D/2Q'/2¢; we obtain

[es) tn
(4.22) I < CKF S / A2 E(t, — 5) AB-D2Q12¢||2 ds
1=1 70

<O S [ APDRQ g 2 = CRAYAG-DI22,,
=1
which completes the proof of (4.20).

In particular, if W (t) is a Wiener process with Tr(Q) < oo, then we can choose f =1
in the proof of (3.26) and obtain (3.27) since ||I|| g = Tr(Q).
Corollary 4.1. Let U™ and u(t,) be the solutions of (1.9) and (1.1), respectively. Assume
that A = _aa_;? with D(A) € H{(0,1) N H?(0,1). If W(¢) is a cylindrical Wiener process
with @ = I, then we have, for ug € Lo(£2; Hﬁ),

U™ = u(ta) sy < O + B2 (L + lluoll y0;515)),  for 0 < B <1/2.

4.3. Weak norm convergence. In this subsection we show the weak norm convergence
error estimate.
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Theorem 4.3. Let U™ and u(t,) be the solutions of (1.9) and (1.1), respectively. If
JAB=D2| |1y < oo for some B € [0,1], then we have, for ug € Ly(Q; HP), with £y = log(T'/k)
where T = t,,

(423) U™ = ulta) iy < CHP 4 W) (gl + Gl APD/2] 55 ).

In particular, if W (t) is an H-valued Wiener process with Tr(Q) < oo, then we have, for
ug € Ly HY),

(424) (U™ = wltn)ll o1y < C Uk + ) (Itollycouery + G TH(@)?).
PROOF. Using the same notation as in Theorem 4.2, we have, by (4.3),
1l 0,-1) < CRPH ol sy, for 0 < B <1

For II, we have, by the isometry property, and (3.10) with v = Q'/?¢,,

1T, —EHZ [ arer v

ti—1

J
=3 [ IR las
j=17ti-1
=3 (KA Eus@ el
=1 Jj=1

< C(KPH! 4 p2BHD) 2 Z |AB-D2Q12¢ |2
=1

< C(KP + h2(ﬂ+1))gi||A(ﬂ—1)/2||ig_

2

For 111, we have, by the isometry property,

11 gy =2 [ 4

2
A-(B+1)/2 (E(s o tj_1) . I)Al/QE(tn _ S)A(ﬂ—1)/2Q1/2elH ds.

2

ds

L§

1/2 E(t, —tj1) — E(ty —3))

Following the proof of (4.22), we get
IIIN; o1y < CkB”A(’g_Z)/QH%g,

which completes the proof of (4.23).

In particular, if W (t) is a Wiener process, then we can choose 5 = 1 in (4.23) and obtain
(4.24).
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Corollary 4.2. Let U™ and u(t,) be the solutions of (1.9) and (1.1), respectively. Assume
that A = —25 and D(A) = H}(0,1) N H?(0,1). If W(#) is a cylindrical Wiener process
with @ = I, then we have, for uy € Ly(Q; H?), with ¢, = log(T/k) where T = t,,,

U™ = w(tn) |y -1y < CRPEDZ 4 BN (1 + Lol uey),  For 0 < B < 1/2.

5. COMPUTATIONAL ANALYSIS

In this section we consider how to compute the approximate solution U™ of the solution
u of (1.1). Recall that the Wiener process W (t) with covariance operator ) has the form,
see Da Prato and Zabczyk [5, Chapter 4],

Z 1/261@

where {v;,€;}52, is eigensystem of (), and {f;(¢)}32, are independently and identically
distributed (iid) real-valued Brownian motions. If Tr(Q) < oo, then W (¢) is an H-valued
process. In fact

E|W (@) = EZWJ = (B51)?) = tTr(Q) < cc.
j=1
If Tr(Q) = oo, for example Q = I, then W (¢) is not H-valued.

Let U™ be the approximation in S, of u(t) at ¢ = ¢, = nk. The backward Euler method
is to find U™ € Sy, s.t., with dU™ = (U™ — U™ V) /k, n > 1, U® = Pyug,

_ 1 [te
(5.1) @U" 0+ ("0 = (5 [ Paws).x), e i
tn—l

where Ay, P, are defined in the introduction.
If W(t) is H-valued, then P,W (¢) is well-defined. We therefore can write

/tn Py dW (s) = Ph(W(t ) — th 1/2 — Bi(tn- 1))

Here
% (ﬁj(tn) - 5j(tn71)) = N(0,1),

where N(0, 1) is the real-valued Gaussian random variable.
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Thus the right hand side of (5.1) can be computed by truncating the following series to
J terms, i.e.,

(5.2) (% /tn Py dW (s ) = (%i}: — Bi(tn-1)), )
%f: ﬁg ) ﬁ]( n— 1))(e],X)

> %Z 772 (Bi(tn) = Bj(tn-1)) (€, %)-

j=1

If W(t) is not H-valued, then we see that, from Lemma 2.4, W (¢ ) is H?~!-valued with
B € [0,1]. In this case we may introduce the H~'-projection P, : H™' — S}, defined by

(thaX):<U:X>a VUEH_laXEShCHla
where (-, -) is the pairing between H~! and H'.
Below we will show that it is sufficient to choose J = N}, in order to achieve the required

convergence order. To see this, let us consider the semidiscrete approximation solution uy
of u of (1.1). Recall that the semidiscrete solution uy satisfies

(5.3) un(t) = En(t) Poio + / "Bt — )Py dW(s)

0 t
= Eh(t)PhU,O + Z/ Eh(t — S)Phej’Y;/Q dﬁj(s)
j=1"0

Truncating the series in the right side of (5.3), we have

(5.4) ul () = Eh(t)Phuo—i—Z / En(t — 5)Paeg? dB; ().

We then have the following lemma with respect to Ly norm in space.

Lemma 5.1. Let u; and uy, be defined by (5.3) and (5.4), respectively. If||A(ﬁ*1)/2||Lg < 00
for some 3 € [0,1]. Assume that {Sy} is defined on a quasi-uniform family of triangulations
and let Ny, be the dimension of Sy. If J > Ny, then we have, fort > 0,

(55) s () = un (20,1 < CHP AP g.
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PRroOF. Using the same notation as in the proof of Theorem 3.2, we have, by isometry
property,

Bl(0) O =8| 3 [ Bt )P a0

j=J+170

o0 t
= 3 o [ 1Bt = )P ds
0

j=J+1

oo t
<23 5 [ IBu=s)e s

j=J+1

o t
#2355 [ 1Bt = s)es|Pds
0

j=J+1
=1+1I.

For I, we have

00 t 0o
1=23 5 [ XM < 30 o

j=J+1 0 j=J+1
o
_ 1 — —
= 3 Ay <L A,
j=J+1

For II, we have, by (3.8),

IT<Ch?P Y vjleily < CRPY T 1QPel5,

j=J+1 j=1
= Ch2ﬂ||A(ﬁ*1)/2||ig.
Thus we get
E|luii(t) — un()[|* < C(AGL, + %) AP~V .

Hence (5.5) follows from the following obvious facts: with some constant C' which may be
different in different inequalities,

AL <ot < on < on?,

where d is the dimension of the spatial domain D.
Under the same assumptions as in Lemma 5.1, we can also show the following results
with respect to weak norm in space,

s (8) = un ()] yq -1y S CHPFHR|| AP D72 .
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