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A FINITE ELEMENT METHOD FOR A NONLINEAR STOCHASTIC
PARABOLIC EQUATION

YUBIN YAN

ABSTRACT. In this paper we consider the finite element method for a stochastic para-
bolic partial differential equation forced by additive space-time white noise in the multi-
dimensional case. Optimal strong convergence error estimates in the L, and H~! norms
with respect to spatial variable have been obtained. The proof is based on appropriate
nonsmooth data error estimates for the corresponding deterministic parabolic problem.

1. INTRODUCTION

In this paper we study the finite element approximation of the nonlinear stochastic
parabolic partial differential equation

(1.1) du+ Audt = o(u)dW, for0<t<T, withu(0)= u,

in a Hilbert space H, with inner product (-,-) and norm || - ||, where u(t) is an H-valued
random process, A is a linear, selfadjoint, positive definite, not necessarily bounded opera-
tor with a compact inverse, densely defined in D(A) C H, o is a nonlinear operator-valued
function defined on H which we will specify later. Here W (t) is a Wiener process defined
on a filtered probability space (2, F, P, {F;}i>0) and ug € H.

For the sake of simplicity, we shall concentrate on the case A = —A, where A stands
for the Laplacian operator subject to homogeneous Dirichlet boundary conditions, and
H = L,4(D), where D is a bounded domain in R% d = 1,2, 3, with a sufficiently smooth
boundary 0D.

Such equations are common in applications. Many mathematics models in physics,
chemistry, biology, population dynamics, neurophysiology, etc., are described by stochastic
partial differential equations, see, Da Prato and Zabczyk [5], Walsh [17], etc. The existence,
uniqueness, and properties of the solutions of such equations have been well studied, see
Curtain and Falb [1], [2], Da Prato [3], Da Prato and Lunardi [4], Da Prato and Zabczyk
[5], Dawson [7], Gozzi [8], Peszat and Zabczyk [13], Walsh [17], etc. However, numerical
approximation of such equations has not been studied thoroughly.

This paper is closely related to [18], where we consider the finite element method for a
linear stochastic parabolic partial differential equation. Asin [18], we assume that W (t) isa
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2 YUBIN YAN

Wiener process with covariance operator (). This process may be considered in terms of its
Fourier series. Suppose that () is a bounded, linear, selfadjoint, positive definite operator
on H, with eigenvalues 7, > 0 and corresponding eigenfunctions e;. Let 5, [ = 1,2, -,
be a sequence of real-valued independently and identically distributed Brownian motions.

Then .
W(t) = 2711/26151(75)
=1

is a Wiener process with covariance operator Q).

If @ is in trace class, then W (t) is an H-valued process. If @ is not in trace class, for
example, @) = I, then W (t) does not belong to H, in which case W (t) is called a cylindrical
Wiener process.

Let LY = HS(Q'?(H), H) denote the space of Hilbert-Schmidt operators from Q/?(H)
to H, i.e.,

={v e L(H) : 3 W@ el < o,
=1

1/2
with norm [|4||,9 = (2?21 ||¢Q1/Qel||2) , where L(H) is the space of bounded linear

operators from H to H.
Let E denote the expectation. Let 1 € L. Then fo s) dW (s) can be defined and have
the isometry

(1.2) | / b(s) AW (s / IE(s)|12, ds.

Following Da Prato and Zabczyk [5, Chapter 7], we assume that o : H — LY satisfies
the following global Lipschitz and growth condltlons

(1) llo(@) —oWlg < Cllz—yll, Vz,y € H,

(i) [lo(@)llg < Cllzll, Vo€ H.

Then (1.1) admits a unique mild solution which has the form,

(1.3) u(t) = E(t)ug + /0 E(t — s)o(u(s)) dW (s),

where E(t) = e~* is the analytic semigroup generated by —A. Moreover
sup Eju(t)[|* < C(1 + Elfug|).
t€[0,T]

Note that if Tr(Q) < oo, then the identity mapping o(u) = I does not satisfy the
condition (7). In order to cover this important case, we introduce a modified version of
(i4), i.e.,

(i) [[A¥=D2o(z)|[ g < Cllz|l, for some § € [0,1], Vx € H.

We see that (i7) is the special case f = 1 of (i7'). If o(-) = I, the condition (4i') reduces to
|AC=D72]| £y < C which is the condition used in [18] for the numerical approximation for
linear stochastic parabolic partial differential equation.
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Numerical methods for equations of the form (1.1), with various assumptions on the
nonlinearity o and the Wiener process W (t), have been studied, for example, by Davie and
Gaines [6], Gyongy [9], [10], Hausenblas [11], Shardlow [15], etc. Our approach is similar
to Printems [14], who considers the time discretization in an abstract framework.

In this paper we will consider error estimates for approximations of (1.1) based on the
finite element method in space and the backward Euler method in time.

Let S, be a family of finite element spaces, where S, consists of continuous piecewise
polynomials of degree < 1 with respect to the triangulation 7, of €2. For simplicity, we
always assume that {Sy} C Hy = Hj(D) = {v € Ly(D),Vv € Ly(D),v|sp = 0}. The
semidiscrete problem of (1.1) is to find the process uy(t) = up(-,t) € Sy, such that

(14) duh + Ahuh dt = PhO'(Uh) dVV, for0 <t S T, with uh(O) = Phuo,

where P, denotes the Ly-projection onto Sy, and A, : S, — Sj, is the discrete analogue of
A, defined by

(15) (Ahw: X) = A(wa X)’ Vw,X € Sh-

Here A(-,+) = (V-, V+) is the bilinear form on H}(D) obtained from the operator A.
Let Ep(t) = e *4» ¢ > 0. Then (1.2) admits a unique mild solution

un(t) = Ep(t) Patty + /0 Eu(t — 5)Pac(un(s)) dW (s).

Let H® = H*(D) = D(A*?) with norm |v|, = ||A*/?v|| for any s € R. For any Hilbert
space H, we denote

La(6 H) = {v: Blolly = [ (@)l dP(w) < oo},

with norm ||v||p,0m) = (Ellv]|3)"2.

Under the assumptions (i) and (ii'), we show, in Theorem 3.2, the following error esti-
mates for ¢ € [0, 7],

Jua (6) = w(®) s < CO ([l iy + 59 Blu(s) loaaim).

We also consider error estimates in the fully discrete case. Let k be a time step and
t, = nk with n > 1. We define the backward Euler method U",

Ur — Unfl 1 tn
— AU = E/ Poo(U")dW(s), n>1, U°= Pyu.

With 7(\) = (1 + A)~', we can rewrite (1.5) in the form

(1.7)

tn—1

tn
(1.8) U™ = r(kA,) U™ +/ r(kAp)Pro(U™)dW (s), n>1,
. tn—1

UO = Ph’U,Q.
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Under the assumptions (i) and (#7’), in Theorem 4.2, we have, for 0 < v < 8 < 1,
t, € (0,77,

(1.9) U™ = uta)l|naosmy < C(T) (R + 1P (||u0||L2(Q;,-,B) + sup ||u(s)||L2m;H>)-

This paper is organized as follows. In Section 2, we consider the regularity of the solution
of (1.1). In Section 3, we consider error estimate in semidiscrete case. In Section 4, we
consider error estimate in the fully discrete case.

2. REGULARITY OF THE MILD SOLUTION

In this section we will consider the regularity of the mild solution of (1.1). We have the
following theorem.

Theorem 2.1. Assume that o satisfies (i) and (ii'). Let u(t) be the mild solution (??) of
(1.1). Then we have, for ug € Ly(2; HP),

(21) 18 iy < C (ol zoqauirey + 50D [u(3) o))
0<s<t
In particular, if o satisfies (i) and (ii), then we have, for uy € Ly(; Hl),
(22) ) qenirny < C (ol yqauiry + 590 () zogezm)-
0<s<t
To prove this theorem, we need some regularity results which are related to the fact that

E(t) = e * is an analytic semigroup on H. For later use, we collect some results in the
next two lemmas, see Thomée [16] or Pazy [12].

Lemma 2.2. For any pu,v € R and [ > 0, there is C' > 0 such that

(2.3) IDLE(t)v|, < Ct W2y, fort >0, 20+v >y,
and
t
(2.4) / s*|DLE(s)v|2ds < Cloloiiy_p—r, fort>0, p>0.
0
Lemma 2.3. For any p >0, 0 <v <1, there is C' > 0 such that
(2.5) |A*E@®)|| < Ct*, fort>0,
and
(2.6) |A™(I - E@)|| < Ct",  fort>0.

PROOF OF THEOREM 2.1. Recall that the mild solution has the form

u(t) = B(t)uo + /0 Bt — $)o(u(s)) dW(s).



NONLINEAR STOCHASTIC PARABOLIC EQUATION

Thus, for any 8 > 0, using the stability of F(¢) and the isometry (??),

2

Efu(t)[} §2E|E(t)uo\%+2EH/0 AP2E(t — 5) o(u(s))dW (s)

t
— 9B Juyf} + 2B / JAP2E(t = $)o(u(s)) |12y ds
0

t
= 2B |uo|3 + 2E/ |AY2E(t — S)A(’Bfl)ﬂa(u(s))ﬂig ds.
0
By (i7') and Lemma 2.2, we have

t
E / JAY2E(t — ) AP D20 (u(s)) |2, ds
0

i
< ([ 1B~ s)|P ds) sup Bluts)?
0 0<s<t
< C sup Ellu(s)|*
0<s<t
Thus we get
Elu(t)} < C(Bluof} + sup Elu(s)),

which implies (2.1) by noting that
5\ /2 5\ 1/2
((sup Bllu)I?) < sup (Ellu(s)[2) "~ = sup Elju(s)lram-
0<s<t 0<s<t 0<s<t

In particular, if (i7) holds, then 5 =1 and we get (2.2).

Remark 2.1. In Theorem 2.1, if o(-) = I, the condition (4i') reduces to ||A(/3_1)/2||Lg <C
which is the condition used in [18] for the numerical approximation for linear stochastic

parabolic partial differential equation.

3. ERROR ESTIMATES IN THE SEMIDISCRETE CASE

In this section we consider error estimates for stochastic partial differential equation in
the semidiscrete case. In order to prove our error estimates, we need some nonsmooth data

error estimates for the homogeneous deterministic parabolic problem.

Let E(t) = e ** and E(t) = e~*4. We then have the following error estimates for

deterministic parabolic problem, see [18].
Lemma 3.1. Let Fy(t) = Ey(t)P, — E(t). Then

(3.1) I Fnl| oo o221y < CRPJulg,  forv e HP, 0< B <1,
and
(3.2) |1 ool poqorysmy < CRP|v|g—y, forve HPY 0< B <1,

Our main result in this section is the following.
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Theorem 3.2. Assume that o satisfies (i) and (ii'). Let up and u be the solutions of
(1.2) and (1.1), respectively. Then there is C = C(T) such that, for t € [0,T] and uy €
LZ(Qa H/B)f

(3-3) |un(t) — w(t) ||z, (0m) < Chﬁ(““’O”Lg(Q;Hﬁ) + OiUETE““(S)”M(Q;H))-
In particular, if o satisfies (i) and (i1), then we have
B4 ) = w0l < Oh(allyiny + 510 Eluls)laonn)-

PRrROOF. We have, with E(t) = e~*4,

u(t) = B(t)uo + /0 Bt — $)o(u(s)) dW (s),

and, with Ej,(t) = e 4,

up(t) = En(t) Pug —l—/o En(t —s) Pyo(up(s)) dW (s).

Denoting e(t) = up(t) — u(t) and F,(t) = E,(t) P, — E(t), we write
e(t) = Fy(t)uo + /0 Fiu(t — $)o(u(s)) dW (s)

t
+ / En(t — 5) Py (o(un(s) — o (u(s)) ) dWW (5
0
=T+ II+1I1I.
Thus
e sy < € (1 Nesessy + ey + 1T agoan )
For I, we have, by (3.1) with v = wy,
11| = | ()uoll < ChPJuolg,

which implies that ||7]| L,y < Ch|luollp, g, )-
For I1, we have, by the isometry (??),

11 = B [ Fate = 1ot a9

2

t
= [ EllF e = 9 AP RAC D u() [y ds

< ([ 1t = 94097 ds) sup BIAC 2 otuts)) g

0<s<t
We will show that

t
(3.5) / 1 (t — ) A=C=D12|12 45 < Ch2P.
0
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Assuming this for the moment, we have, by the growth condition (i7'),

1117 05 < OB sup E[[AP~D 20 (u(s))|[7g < Ch* sup Ellu(s)||.
’ 0<s<t 2 0<s<t

For I11, we have, by the isometry property and the Lipschitz condition (7),

2

ds

0
L2

t
11 sy = E
0

Ew(t — )Py (J(uh(s) - o(u(s)))

t
<E / 1Bt — ) Pullllun(s) — u(s)]12y ds
0

t
< / Elle(s)|]? ds.
0

Hence
t
le@I2, () < Chw(\uo@ + oi“%E”“(S)”) + C/O le() 17,05 ds-

Then (3.3) follows from Gronwall’s lemma.

It remains to show (3.5). In fact, by the definition of the operator norm and the monotone
convergence theorem, we have

/ Bt — ) A~ s = / qup TR = AT
: o o0 [oT?
t —_ —
_ sup Jo IFnlt = 94 O ol ds
vt EkE

Combining this with (3.2), we show (3.5) and therefore (3.3) holds.
In particular, if (i) holds then 8 =1 and we obtain (3.4).

4. ERROR ESTIMATES IN THE FULLY DISCRETE CASE

In this section we will consider the error estimates in the fully discrete case. As in the
semidiscrete case, we need some error estimates for the deterministic parabolic problem.

Let Ey, = r(kAp) and E(t) = e, where 7(\) = 1/(1 + )) is introduced in (1.6). We
have, see [18],

Lemma 4.1. Let F,, = E}, P, — E(t,,). Then

(4.1) |Fol| < C(KP/2 + hP)|v|g, forve HP, 0< B <1,

and
n 1/2 .

(4.2) (kZ ||Fjv||2> < CKP2 4 WP v|g 1, forve HFL 0< B <.
j=1

Our main result in this section is the following.
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Theorem 4.2. Assume that o satisfies (i) and (ii'). Let U™ and u(t,) be the solutions
of (1.6) and (1.1), respectively. Let 0 <y < B. Then there is C = C(T) such that, for
t, € [0,T] and uy € Ly(Q; HP),

(@3) U~ )l < O+ 1) (lluoll iy + sp Nu(o)lliacoim)
In particular, if o satisfies (i) and (i), then we have, for ug € Ly(Q; HY), and 0 < v < 1,
@A) 0= ) < CW ) (ol iy + 510 (6

To prove this theorem we need the following regularity result for the solution of (1.1).

Lemma 4.3. Assume that (ii') holds. Let u be the mild solution of (1.1). Then we have,
for0<~y<p<1,

(4.5) Ellu(ts) — u(t)||* < C(t2 — t1)"Elug?
+C(ty — )" sup ElJu(s)|]
0<s<T

PROOF. The weak solution of (1.1) has the form, with E(t) = e~*4,

u(t) = E(t)ug —i—/o E(t — s)o(u(s)) dW (s).
Thus we have

ults) — u(ty) = (E(tg)uo _ E(tl)uo)

to t1
+ (/ E(ty — s)o(u(s)) dW(s) — / E(t1 — s)o(u(s)) dW(s)),
0 0
=1+1I
and therefore
Elju(ts) — u(ty) |2 < 2B|[1|12 + 2E| 11
For I, we have, by Lemma 2.3, for 0 < v < 2, with ¢; # 0,
(4.6) 11| = |1 E(t) A72(E(ts) — E(t1)) A" ?uq
< Oty — t1)"|ugly,
which implies that E||I]|* < C(ta — t1)"E|ug|?.
For 11, we have

1= /0 ! (Bt — ) = Bty — 5) o (u(s)) dW (s)
+ / " Bt — s)o(u(s)) dW(s)

t1

=11+ 1.
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Using (i7'), isometry, and Lemma 2.3, we have, for 0 < v < g <1,

2

BIn? = B /Otl (B> — 5) — E(ty — 5))o(u(s)) dW (s)

2

ds

0
L2

-/ VB (B - 5) - B(t — ) APRATD 2o (us)

t1 2
g/ |42 (B(t, ~ 5) ~ B~ 5)) || ds sup Bflu(s)]?
0

0<s<t;

t1 2
- / HA“”B)/QHQE(Q—s)A’V/Q(I—E(tQ—tl))H ds sup Elu(s)|?
0

0<s<t;

t1
<t — 1) / (1 — )07 ds) sup Bflu(s)]?
0

0<s<t;

<Oty —t1)” sup Elju(s)]?,
0<s<t;

and
to
EILI7 = [ EIACPPE(l — A% o(u(s) [y ds
t1

t2
<C [ [JAUPE(t, — 5)|* - B[ APV 20 (u(s)) 79 ds

t1

<o [ t-spas) s Bl

t1 t1<s<t2

< Oty —t1)? sup E|u(s)|]?, fors > 0.

t1<s<ta

Hence we get, for 0 < v < <1,

E|11||* < 2B[[1L|* + 2| L||* < C(t: — t1)" sup Eu(s)||".

t1<s<ta

Together these estimates complete the proof.

PROOF OF THEOREM 4.2. We have, by (1.6), with E, = r(kA,)",

U™ = E" Pyug +Z E" P o (UF) dW (s),

ti—1

and, by the definition of the mild solution of (1.1), with F(t) = e7*4

Y

w(tn) = E(ty)uo + /0 "Bty — s)o(u(s)) dW (s).
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Denoting " = U™ — u(t,) and F, = E&, Py, — E(t,), we write
& = Foug + g /t t r(kAp)" I+ P, <0(Uj) - a(u(tj))> dw (s)
v Z / kA (o) = ofute)) AW (9
+ 2_) / (r (kAR Py = Bt = 11) o (u(s)) dW (5)

n Z/ttj (E(tn —tj 1) — E(t, — 8))0(U(8)) dW (s)

Thus

5
e | oy < C Y Il naesm)-

J=1

For I;, we have, by (4.1) with v = uy,
1111 = | Fnuoll < C(P72 + hP) s,

which implies that || 1],y < C(K*? + hP)||uol| ,0.8)-
For I, we have, by isometry and the stability of 7(\) and the Lipschitz condition (i),

2

1BIE @) = B Z: /'tj r(k AP (0(U7) = o (u(ty)) ) dW (5)

ti—1

—k i EHr(kAh)”’j“Ph <0(Uj) - o(U(tj))) 2

L§

<kY lr(kA) T BP Ello(U7) = o(u(t;) 17

i=1

n n tj .
< CkY E|UT - u(ty)|? = CZ/ Elle’||* ds.
j=1 j=1"%

ti—1
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For I3, we have, by Lemma 4.3, for 0 < v < g <1,

2

ds

0
L2

e = 3 [ Bt 1, (otu() - o(u(5)

ti—1

n t;
<Cy [ Blutt) - ul)| ds

j=1""%

n t;
<C t; —s)7ds) (Eluo|? + E ?
<O(32 [ b= o7 ds) @Il + s, E(F)
< CKk"(Eluo|2 + sup Elju(s)]?).

0<s<T

For I, we have

2

1l =B 3 [ Frsiotu(e) aw (s
=1 Ytj—1
n t;
3 [ BRI A a2y s
j=1vti-1

< C(KYNFACDR) sup Bju(s)]|
j=1 0<s<T
We will show that
(4.7) EY | FACARE < Ok + n%P).
j=1
Assuming this for the moment, we get

allZ 0.0y < C(K” + B*) sup Ellu(s)]]*.
0<s<T

For I5, we have

2

sl = B 3 [ (B =) = Blta = s)r(us) a5
-y / " BBt = tyo1) = Bl — ) A P/AT D25 (u(s)) 2y ds

n tj
<C (Z/ 1Bt = t51) = E(tn — ) AP ds) sup Elfu(s)|]>
j=1ti-1 0<s<T
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Noting that, by Lemmas 2.2 and 2.3,

_Z /t 4]4 [(E(tn = tj—1) — E(tn — ) A" |? ds
= Z/t |AYV2E(t, — s)A™P/2(I — E(s —t;_1))||* ds

<ory [ 1B, - o as
j=1"ti-1

tn
= Ckﬁ/ |AY2E(s)||*ds < CEP,
0

we have
1I5]|7 sy < CKP sup Elfu(s)||*.
0<s<T

It remains to show (4.7). In fact, by (4.2),

" 3 FA(I B)/24
kZHFjA(l ,6)/2“2 kZ(Sup I ||)
2T
— sup ij:1 ||FjA(1 ? /QUH2
v£0 [[v]]”
C(kP + h2P)| ACQ=B)/242
< sup ( ||)?|)||2 |,3 1 < C«(k,ﬁ +h25)_
v#£0

Together these estimates show, for 0 < v < <1,

(4.8) Ele"||” < C(k" + k*)Eluo[} + Ck Y Bl
j=1

+ C(k" + h*) sup Elu(s)|
0<s<T
By the discrete Gronwall lemma, we get
(4.9) Ele"|* < C(k” + h*) (Eluol + sup Ellu(s)|*),
0<s<T
which implies that,
(4.10) " | zoqiiry < C(R? + 1P) (Bluo| 1, g, 0 + sup [l (3) | zo0s01)) -
The proof is now complete.

Acknowledgement. I wish to express my sincere gratitude to my supervisor Dr. Stig
Larsson, who suggested the topic of this paper, for his support and valuable criticism.
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