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ADAPTIVE FINITE ELEMENT/DIFFERENCE METHOD FOR
INVERSE ELASTIC SCATTERING WAVES

LARISA BEILINA

ABSTRACT. We apply an adaptive finite element/difference method for an inverse prob-
lem for time-dependent scattering of elastic waves in Rd, d = 2,3, where we seek to
identify unknown material coefficients from measured wave-reflection data. Typical ap-
plications concern a large variety of inverse problems occurring in seismic prospectation,
non-destructive testing and medical imaging.

We use an optimal control approach where we seek a density p and Lamé coefficients
A and g which minimize the difference between computed and measured output data in a
discrete Lo norm. We solve the optimization problem by a quasi-Newton method, where
in each step we compute the gradient by solving a forward and an adjoint elastic wave
propagation problem.

For implementation of the inverse problem we use an adaptive hybrid finite ele-
ment/difference method, where we combine the flexibility of finite elements and the effi-
ciency of finite differences. We present computational results for three dimensional inverse
scattering and use an adaptive mesh refinement algorithm based on an a posteriori error
estimate, to improve the accuracy of the identification.

1. INTRODUCTION

This work is devoted to adaptive hybrid finite element /difference methods for an inverse
scattering problem for a time-dependent elastic wave equation in the form of a parameter
identification problem, where we seek to determine unknown material parameters with
variation in space, from measured wave reflection data. Typical applications concern a
large variety of inverse problems occurring in seismic prospectation, non-destructive testing
and medical imaging.

The inverse problem is formulated as an optimal control problem, where we seek the
material parameters for which the corresponding wave equation solution has a best least
squares fit to measured data.

This constrained minimization problem is reformulated as the problem of finding a sta-
tionary point of a Lagrangian involving a forward elastic wave equation (the state equation),
a backward elastic wave equation (the adjoint equation), and an equation expressing that
the gradient with respect to the parameters vanishes. For efficient numerical solution of
the forward and backward elastic wave equation we use the hybrid finite element/difference
method developed in [10].

Date: 9th July 2003.
Larisa Beilina, Department of Mathematics, Chalmers University of Technology, S—412 96 Gdoteborg,
Sweden, email: larisa@math.chalmers.se.
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2 LARISA BEILINA

We prove an a posteriori error estimate for the error in the Lagrangian and present a
corresponding adaptive algorithm for mesh adaption. We demonstrate in several numerical
examples the performance of the inverse solver, involving the solution of the state equation,
an adjoint state equation and computation of the gradient with respect to the parameters.

An outline of this paper is as follows: In Section 2 we present the mathematical model
of the time-dependent wave equation in elastodynamics, in Section 3 we formulate the
inverse scattering problem for the elastic wave equation, in Section 4 we present the finite
element method, in Section 5 we present a fully discrete version, used in the computations.
In Section 6 we prove a posteriori error estimate for the error in the Lagrangian, and in
Section 8 we present computational results for reconstruction of the parameters in three
dimensions.

2. THE WAVE EQUATION IN ELASTODYNAMICS

Wave propagation in a non-homogeneous anisotropic elastic medium occupying a bounded
domain Q C R?, d = 2,3, with boundary T, is described by the linear wave equation:

pw—V’T = f, in QX(O,T),
(2.1) T = Ce in Qx(0,7),
v = 0, % =0, in €

where v(z,t) C R, is the displacement, T is the stress tensor, p(z) is the density of the
material depending on z € €, t is the time variable, T is a final time, and f(z,t) C R, is
a given source function. Further, € is the strain tensor with components

_1 (9’Ui 8’0]'

(2.2) €;j = €ij(v)

coupled to 7 by Hooke’s law

d d
(2.3) Tij = Z Z Cijri €xt,

k=1 I=1
where C' is a cyclic symmetric tensor, satisfying
(2.4) Cijri = Criij = Cjis-

If the constants Cj;i(z) do not depend on z, then the material of the body is said to
be homogeneous. If the constants Cjjx(x) do not depend on the choice of the coordinate
system, then the material of the body is said to be isotropic at the point z.

In the isotropic case C' can be written as

(2_5) Cijkl = )\51']'5]91 + ,U«((sij(sk:l + 6il5jk:)7
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where 6;; is Kronecker symbol, in which case (2.3) takes the form of Hooke’s law:

d
(2.6) Tij = Aij ek + 2pue€ij,

k=1
where A and p are the Lamé coefficients, depending on x, given by

2.7 E__ ) el
(2.7) P+ "~ T+ —-2)

where E(z) > 0 is the modulus of elasticity (Young modulus) and 0 < v < 1/2 is the
Poisson’s ratio of the elastic material. Eliminating the strain tensor using Hooke's law we
can verify the elastic wave equation in terms of v only. In the isotropic case with d = 3
(2.1) then takes the following form:

821]1 81)1 6’1)2 6113
- 2
- 0 (8’1)1 8’02 )
8332 H 8.’132 (9.1’1
0 81)1 0’03 .
B 8.’E3 M(a.’ﬂg 8.731)) fl,
621]2 8’02 8’01 6v3
R e P ety P v
o 8 ( 81)1 8’02
8.5131 H amz 8%1
0 8’02 6’1)3
B 81‘3 'u(a.’llg 6%2)) f2,
(921}3 8’03 8’02 8’()1
- — 2 A A
P o 9, (M + 25 A5~ 4+ A5 )

or in more compact vector form

v

P or
where v = (vy, vg,v3). Inserting a Helmholtz decomposition

v=Vop+V x9

with a scalar potential ¢ and a vector potential ¢ into (2.8), we get

82

Por

(2.8) ~ V- (4V0) = V(A + W)V -v) = f,

(Vo +V xp) = uA(Vo+V x4p) + A+ p)V(V - (Vo +V x 4)),
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which using that
V-(Vg) = Ag,
V-(Vxy) = 0

reduces to 5 52
V(p@ — (A +2p)A) + V x (pW — pAy) =0.
We conclude that if the potentials ¢ and v satisfy the wave equations
5%
— —(A+2uw)h¢p = 0
Pap — A+ 2800 ,

0
PW—Mﬂiﬁ = 0,

then v = V¢ + V x 9 satisfies (2.8). We note that v = V¢ corresponds to a pressure wave
with speed

A+ 2,u>1/2

n=(

and v = V X 1 to a shear wave with speed

i ()"

In a pressure wave the displacement is parallel to the direction of wave propagation, and
in a shear wave, it is orthogonal to the direction of propagation.

3. THE INVERSE SCATTERING PROBLEM

We consider the elastic wave equation in a non-homogeneous isotropic medium in a
bounded domain Q C R?, d = 2,3, with boundary T

2
p%—pAv—(A—i—u)V(V-v):f in Qx(0,7),
(3.1) v=0 on T x(0,T),
v(z,0) = 0, 8”5,;’ 0 _0 o

with homogeneous boundary and initial data.
We formulate the inverse scattering problem for (3.1) as follows: Find the parameters
p(z), u(z) and A(z), which minimize the quantity

1 /T
E(v,p,\,p) = 5/ /(v—f;)zéobs dzxdt
o Ja
1

1 1
(3.2) + —’yl/p2 dzr + —72/u2 dzr + —73/ 2\ dz,
2 Ja 27 Ja 2" Ja

where ¥ is observed time-data at a finite set of observation points z.,, v satisfies (3.1) and
thus depends on p, u and A, §ops = D 0(Zops) is a sum of multiples of delta-functions §(eps)
corresponding to the observation points, and ;, ¢ = 1,2, 3 are regularization parameters.
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To approach this minimization problem, we introduce the Lagrangian

T
(3.3) L(u) :E(v,p,)\,,u)—i-/ / p?;:gt +uVaVv+(A+p)V-v V-a— fa) dzdt,
0o Jo

where u = (v, o, p, 1, \), and search for a stationary point u satisfying for all
(3.4) L'(u; @) =0,

where L'(u;-) is the Jacobian of L, and we assume that a(-,7) = @&(-,7) = 0 and v(-,0) =
o(-,0) = 0.
The equation (3.4) expresses that for all u,

0a 0v
_ ! _
(3.5) 0 = L(uya) / / o 6t—|—,uVonv
+ A+pV-v V-a-— fa) dzdt,
T
(3.6) 0 = L(wv)= / / (0—15) 0 Oy dudt

T
+ / / 0000 | VaVi+(\+p)V -5 V-a dudt,
0

ot ot
(3.7)
(3.8) 0 = Li(u;p)= //aa“a”“) dzdt
+ 71/ppdwa:€§2,
Q
T
(3.9) 0 = L;(u;ﬂ):/ /(Vonv—i—V-UV-a)ﬂ dxdt
o Jo
+ ’yg/pﬂda:xefl,
Q
(3.10) 0 = L\(u;\) = //V vV-a X dxdt

+ 73/)\/\dxx6§2.
Q

The equation (3.5) is a weak form of the state equation (3.1), the equation (3.6) is a
weak form of the adjoint state equation for the costate a:

62
pa—;—ﬂAa—(/\-i—u)V(V-a) = —(v=0)0ps, z€N 0<t<T,
LT
(3.11) al,T) = —80‘22 )0 ma

a = 0 on I'"x(0,7),



6 LARISA BEILINA

and (3.8) - (3.10) expresses stationarity with respect to (p, y, A).

To solve the minimization problem we use a discrete form of the following steepest
descent or gradient method starting from an initial guess (p°, u° \°) and computing a
sequence (p", ™, A™) in the following steps:

(1) Compute the solutions v™ of the forward problem (3.1) and compute the solution
a” of the adjoint problem (3.12) with (p, i, A) = (p™, ™, A™).
(2) Update the (p, 1, A) according to
T
n n . oa"(x,t) ov™(z,t n
B12) @) = ) - (- [ ORI ))

0

T
W) = we) = B( [ Ve VY (o),
0

A () = )\"(x)—ﬁg(/o V0"V - a" 4+ A\ (z)),

where the step lengths 5" are computed using the one-dimensional search algorithm given
in [30]. More precisely, we use consider a quasi-Newton method with limited storage with
the gradient method being a special case.

4. FINITE ELEMENT DISCRETIZATION

We now formulate a finite element method for the inverse problem (3.4) based on using
continuous piecewise linear functions in space and time for the state and the costate, and
piecewise constants in space for the parameters. We discretize Q x (0,7) in the usual way
denoting by K} = {K} a partition of the domain Q into elements K (triangles in R? and
tetrahedra in R®) with A = h(z) being a mesh function representing the local diameter of
the elements), and we let J. = {J} be a partition of the time interval I = (0,7") into time
intervals J = (tx_1,tx| of uniform length 7 = ¢t} — tx_;. In fully discrete form the resulting
method corresponds to a centered finite difference approximation for the second order time
derivative and a usual finite element approximation in space.

We introduce the finite element spaces V},, W} and Wy defined by :

(4.1) Vi = {veLy):ve P(K),VK € K},

(4.2) W® = {we [H'(Qx D]’ :w(-,0)=0,w|p =0},

(4.3) we = {we [H(Qx D]’ w(,T) =wlp =0},

(4.4) WP = {weW":wlgxs € [P(K) x P(J)]} VK € Ky,VJ € J.},
(4.5) W2 = {weW*:w|kxs € [PL(K) x Py(J)]?, VK € K;,VJ € J,},

where P;(K) and P;(J) are the set of linear functions on K and J, respectively. We finally
define U, = Wy x W x V;2. The finite element method for (3.4) can now be formulated
as follows: Find u, € Uy such that

(46) L'(uh;ﬂ) =0 Yu e U,
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5. FULLY DISCRETE SCHEME

Expanding v, & in terms of the standard continuous piecewise linear functions ¢;(z) in
space and v;(t) in time and substituting this into (3.5 - 3.6), the following system of linear
equations is obtained:

MVH —ovk v = 2Rk TzK(éVk_l + %vk + %vk“)
(5.1) — 72DvF,
M(a**! — 2o + @by = —r25% TQK(%ak—l n ;ak + éak-l—l)
(5.2) — 12Dak,
with initial conditions :
(5.3) v(0) =0, v(0) =0,
(5.4) a(T) =0, &(T) =~ 0.

Here, M is the mass matrix in space, K is the stiffness matrix, D is the divergence matrice,
k =1,2,3... denotes the time level, F*, S* are the load vectors, v is the nodal values of
v, a is the nodal values of « and 7 is the time step.

The explicit formulas for the entries in system (5.1 - 5.2) at the element level can be
given as:

(5.5) M = (ppi, ©5)es

(5.6) Ki; = (Vi Vj)e,

(5.7) Di; = (A+wV -9, V- pj)e,
(5.8) Fin = (f,0%m)exa,

(5.9) Sim = (V= 0,0%m)exs,

where (.,.). denotes the Ly(e) scalar product. The matrix M€ is the contribution from
element e to the global assembled matrix in space M, K* is the contribution from element
e to the global assembled matrix K, D¢ is the contribution from element e to the global
assembled matrix D, F° and S°¢ are the contributions from element e to the assembled
source vectors F' and in (3.1) and (3.12), respectively.

To obtain an explicit scheme we approximate M with the lumped mass matrix MZ~,
the diagonal approximation obtained by taking the row sum of M, see e.g. [18]. By
multiplying (5.1) - (5.2) with (M%)~ and replacing the terms gv¥ + 2vF + LvFt! and
%ak_l + %ak+ %ak“ by v* and a*, respectively, we obtain an efficient explicit formulation:

(5.10) v = (M) TR 4 avk — (M) TRV
P2(ML) 1Dvk — vk L
(5.11) af !l = (MY S* 4+ 208 — P(ME) ' Ka®
— 72 ML)—lDak — okt
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The discrete version of the parameter gradient equations take the form:

T Oah 6vh
12 = L, 1) = — __ - "3
(5.12) 0= L,(u; p) /0 /Q 5 o P dedt
+ ’Yl/Ph/_? dz,Vp € Vh,
Q
T
(5.13) 0=L,(u;p) = / /(Vathh +V-v, V-ap)p dzdt
o Ja
+ 72/ prf dz Vi € Vy,
Q
— T —
(5.14) 0=Li(u;\) = / / Vv, Veoay A dzdt
0o Ja

+ ’)/3/ )\hj\ dl’, Vj\ e V.
Q

6. AN A POSTERIORI ERROR ESTIMATE FOR THE LAGRANGIAN AND AN ADAPTIVE
ALGORITHM

We now prove an a posteriori error estimate for the Lagrangian. We start by writing an
equation for the error e in the Lagrangian as

e = L(u) — L(uy) = /0 %L(eu + (1= )up)de
— /01 L'(eu+ (1 — €)up;u — up)de

= L'(up;u—up) + R,

where R is a second order remainder term. Using the Galerkin orthogonality (4.6) and the
splitting v — up, = (u — ul) + (v} — up), where u} denotes an interpolant of u € Uy, and
neglecting the term R, we get:

(61) emL'(uh)(u—ui) :II+I2+I3+I4+157
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where

—af)d
(6.2) I, = // —Ph Ola tah)%+ pnV (o — af) Vo

+ M+ ) (V- V- (a—a})) — fla—at)) drdt,

(6.3) I, = / /vh—v (v —}) 6ops dxdt

day, (v — vi) 7
+ /0 /Q Ph 5 5 + pnVaprV(v — vy)

+ M+ p)V-(v=0)V-ay dedt,

Oap(z,t) Ovp(z,t
(64) I = / / MED L) () pt) dadt + /Q on (o — pL) da,

(6.5) I = / /(Vathh+V-th-ah) (— 13, dxdt+/,uh (p— pf) dz,
o Ja Q

(6.6) Is = /(]T/Q(v-vhv.ah)(A—A,{) dmdt—i-/n)\h (A= \) dz.

To estimate (6.3) we integrate by parts in the first, second and third terms to get (neglecting
terms with derivatives on the coefficients):

(6.7) |L| = |/ /ph at2 —al) — ppAvp(a — o)

— Mt un) V(V-up)(a—af) — fla—al) dedt

+ Z/ /az(uhan (o — o) dsdt
81}
_ Z/ph Ion — ol)(ty) dal,

where g:}”( results from the integration by parts in space and denotes the derivative of vy,

in the outward normal direction ng of the boundary K of element K, and [‘%h} denoting
the jump in time of agt” results from integration by parts in time. In the second term of
the (6.7) we sum over the element boundaries, and each internal side S € Sj, occurs twice.
Denoting by 0,v, the derivative of a function v, in one of the normal directions of each

side S, we can write
8’1);, I I
(6.8) Z/BK uhanK —aqp) ds= ;/guh [0svn] (o — ) ds,

where [9,vp] is jump in the derivative v, computed from the two triangles sharing S.
We distribute each jump equally to the two sharing triangles and return to a sum over
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elements edges 0K :
(6.9) Z/uh[avh (a—af) dS—Z —hg / pin [Osvr] (o — ) hye ds.

We formally set dr = hxds and replace the integrals over the element boundaries 0K by
integrals over the elements K, to get:

(6.10) <C’maxh /uh|[asvh]||(a—a£)| dz,

Z —hy /,uhavh](a—ah)h;( ds

where [6svh] | x = MaXscok [0svh] | 5 Here and below by C' we denote various positive
constants of moderate size.
In a similar way we can estimate the third term in (6.7):

‘2 oG] @ - abyiw) ae

where

(6.11) [Ovhs,] = max({a;:(tk)}, {aaz;h(tkﬂ)]),

(6.12) [OVhy] = [OVhy,] on J;.



ADAPTIVE FEM/FDM METHODS FOR INVERSE ELASTIC SCATTERING 11

Substituting both above expressions for the second and third terms in (6.7), we get:

‘11| < / /|Ph 52 — urAvy

— (b +M)V(V-on) = f| - [(@ — ap)| dzdt

T
+ / max k" - |[Oson]] - [(a — of)| dzdt
Q

SCOK

+ ph/ / avht |(a—a£)| dxdt

SC//p—h—uAv
; Q|h8t2 YA

— (pn +M)V(V-vp) — f| - < |8t2|+h2|D2a|> dxdt

T
+cph/ max ' |[03vh]|-<

q SCOK
82

(6.13) + C’ph/ / | [Ovnd] | <2 e

0%
ot2

+ h2|D2a|> dzdt

+ h2|D2a|> dxdt,

where we used standard interpolation estimates for o — o}, and C denotes interpolation

constants. Next, the terms Do Avp, V(V - vy) disappear in the first integral in (6.13)

ot2
da da
(v, is continuous piecewise linear function). We estimate 2 atg R~ @ and D2 ~ @
to get:
(5] (5]

(6.14) || < C/ / |f] - +h2 " dadt

+ C / max hy 1| [O5v ]| 72 —[6‘%] + h? —[%‘h] dzdt

a o JaqSCoK T h
[%2] (5]
+ C ph/ / c%ht 72 ‘j_t + h? aT" dxdt.
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We estimate I, similarly:

IN

IN

IN

[ [t - moanto o)
A+ pn)V(V-an) (v —v}) + (v — 0)(v —v})| dzdt

T
C’,uh/ max h; ' |[8 ah” . |(v—v,{)| dxdt

q SCOK

C’ph/ / |[Oons] | - |(v — vp)| dadt
/ /|Ph 5 " mnDay,

()\h + Un V(V Olh) (’Uh — ’lN))| . |(’U — ’U}Il)| dzdt

T
C uh/ max hy ' | [Osan] |- |(v—v})| dadt
0

q SCOK

C ph/ / 3aht (v — ol | dzdt

c / / | (5t~ inan = O+ ) V(9 ) + (=) ) |
2 2
( |8t2 | + h*|D; ’Ul) dxdt

T
Cuh/ max h ‘[8 ah” <7’

q SCOK

0%v
o2

+ h? ‘D2v|> dxdt

62
Cph// | [Dond]| ( 5 +h2|D2v|) dedt
| B e | (5]
! S]] 2| [52]
Cuh/ Q;Ié%ﬁh |0sah”-<7 . +h i: ) dxdt
[th 0_
C’ph// 8at (T + h? a};’ ) dzdt.
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To estimate I3, Iy, I5 we use a standard interpolation estimate of the form p — p! =~
hDyp, A — X = hD A\, u — ul ~ hD,p, to get:

(6.15)

(6.16)

(6.17)

| 55|

| 24|

| 15|

<

+

IN

8ah (z,t) Oun(z,1)
ot

I

/|ph|-h- |sz| dzx

‘~h- |D.p| dzdt

804;, (z,t) Oun(,?) [or]
/ / L L
0/|ph|-h-|[”—"| o
8ah (z,t) Oun(z,1)
/ L1 0| || dodt

c [ |ph|-|[ph1| d.
Q
T
/ /|Vathh+(V-ah)(V-vh)|-h-|Dwu‘ dadt
0 Q
/|,uh|-h-‘Dz,u| dzx
Q
T
C/ /|Vathh+V-ahV-vh|-h-|[M—}:]| dadt
0 Q
C [ ml-ne (B
Q
T
C’/ /|Vathh+V-ahV-vh|-|[,uh]| dzdt
0 Q
¢ [ -l e
T
/ /|V-ahV-fuh|-h-|Dw)\| dadt
0 Q
/|)\h|-h-|Dz)\| d
//|Vathh|h| |ddt
C/|)\h|-h-|)\7h]| dz
Q
T
C/ /|V-ahV-vh|-H)\h]| dxdt
0 Q
c /|)‘h|'|[/\h]| dzx
Q
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Defining the residuals

Ry = |f|, RBo="5" max h'|[n]|, Ru =577 [00n]),

Ry = [n =], By = 5 mae 13| [0in]], By = | O]
Oay, 0

Rpl = |%%|7 p2:|ph|a

Rul = |VOéhV’Uh+V‘04hV'Uh|, Ru2:|:uh|7

Ry, = |V'ahV'Uh|, R)\2:|)‘h|7

(6.18)

and interpolation errors in the form

- o =[5 |ee[5]]
oo o]z
(6.21) 0, = Cllpall, ou=Cllml], ox=C[N]]

we obtain finally the following a posteriori estimate for the error in the Lagrangian

T T T
(6.22) |e| < / / R,,0, dzdt+ / / R,,04 dzdt+ / / R,,0, dxdt
o Jo o Ja o Ja
T T T
/ /Ralav dxdt-l—/ /Ra20v dxdt—i—/ /Rasav dxdt
o Jo o Jo o Jao
T T
/ /Rmap dwdt+/Rp20p dx+/ /Rmaﬂ dzdt
o Jo Q o Ja
T
+ /RMJ” dm—l—/ /R)\IU)\ dwdt—i—/R)\zJ)\ dzx.
Q o Ja Q

In the computations below we use the following variant of the gradient method with
adaptive mesh selection:

1. Choose an initial mesh K} and an initial time partition J, of the time interval
(0,7).

2. Compute the solution v™ on K}, and J, of the forward problem (3.1) with (p, u, ) =
(p™, " A™).

3. Compute the solution o™ of the adjoint problem (3.12) on K} and J;.
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4. Update the (p, u, A) according to

62) ) = s [ PRI ),

T
(6.24) " z) = pt(z) — 53(/ Va"Vo" + V - 0"V - " + pp™(z)),
0

(625)  A(2) = A(z) - B /0 Vo'V - a4 s\ (a).

Make the steps 1 — 4 as long the gradient quickly decreases.

5. Refine all elements, where (R,, + R,,)0, + (Ru, + Ry,)0, + (Ry, + Ry, )on > tol
and construct a new mesh K} and a new time partition J,.. Here tol is a tolerance
chosen by the user. Return to 1.

7. AN A PRIORI ERROR ESTIMATE FOR THE ELASTIC WAVE EQUATION

In this section we prove an a priori error estimate for the following finite element method
for (2.8) with A = = p = 1: Find v} =€ V4, for n =1, ..., N such that forn =1,..., N,

(7.1) (OFv},u) + (Vui, Vu) + (V- 02V - u) = (f*,u) Yu € Vi,
where
UZH 2up + UZ_I

T2

(7.2) Ofvy =

and v) = 0,v} =0, and
Via:={v € Hy : v € [P(K)]?,VK € K3}

For simplicity we assume here that A is constant.
For w € [Hy(9)]® we define the elliptic projection 7w € Vi1 by

(7.3) (Vrw, Vo) + (V- 7w,V - v) = (Vw, Vu) + (V- w,V -v) Yo e Vj;.

We shall now estimate the difference between the discrete solution vy € Vj; and the
elliptic projection 7v"™ € V}, 1, and we define ©™

(7.4) O" = vy — TU,.
Using the definition (7.3) and (2.8)), we obtain:
(02 (mv™),u) + (V(7v™),Vu) + (V70" V- u)
(0F (mv™),u) + (Vo™, Vu) + (V- v™, V - u)
(7.5) = (p"u)+ (f"u) Yu € Viy,
(-

where p" = 02(mv") — %(tn) and v" = v(.,t,).
Subtracting (7.5) from (7.1) and using (7.4), we get the following error equation:

(7.6) (870™,u) + (VO™, Vu) + (V- 0",V -u) = —(p",u) Yu € Vi,
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where
(7.7) 10™]] < C(T|[(Dfv)"|| + h*|| (D2 D)™ ]).-
We now choose
1 (_)n+1 —or o" — @n—l 1 n+1 n—1
and use the fact that
o ®n+1 — 20" + @nfl 1 <C,_,)n+l —en e — @nl)
o2e" = - == - ,
T T T T
to get
i @n—l—l _ @n B @n _ @n—l @n—l—l _ @n N @n _ @n—l
2T T T ’ T T
+ —T(VQ” V(e —erl))
1
+ —T(v ", V. (em! —er )
o 1 n+l _ Qn-—1

which reduces to
||®n+1_@n||2 ||@n_@n71||2
T2 B

T2

+ (Ver,v(ert —er )
+ (V- v (em! — o)
(7 9) _ (pn @n—l—l _ @n—l)

Summing over n in the first term of (7.9), we get assuming ©! = % = 0,

O 1< < | RN (<=
(7.10) ( - - = ) = o ,
n=1
and in the second and third terms of (7.9) :
N-1
Y (ver,v(ertt —er ) = (veV,veN),
n=1
N-1
(7.11) d(v-en,v-(ertt—er ) = (v-eN,v.eN),
n=1
and thus we have:
oY — V1)

= + (ver,ver

z

-1
(7.12) + (V.o v.-eN ) =) (pr,ertt —emh).

1

3
Il
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Using an inverse estimate with a constant ¢ and assuming 5~ < 1, we have

(veh,veN 1) = (ver,ver) - (veN-eV 1), ver)

\V/ @N_@N—l
> e - o YOO e
cr, (N — N1
> ver - =) ver)
1 1 (6N —eN-1
> Lverp - 1@ e
(v-eV,v.eN ) = (v.-eV,v.eY) —(v.-(eVN -V ), v.e)
V' @N_@N—l
> |Iv-eNp - o Y )| v e
@N 1
> |v-ee - <))& || v - o]
1 1.(© —@N—l
> §||v-@N||2—§||¥||2.
We conclude that
@N_@N—l 2
n+1 n—1
(7.13) < QTZ <p ,u> .
Using the definition of p and (7.7), we get:
— A AN = 201/ 4 201( M2 N2
(7.14) Z(p",T) ~ Y (7|[(Dfv)"|| + B?||(D2D}v)"||)9,©
n=1 n=1

We substitute this expression into (7.13) to get:
12:0[1* +[[ver||* + |[v-em|?

T T
< o (7 [ oty 17 [ 10203 ) - max 07
0 0 "

which gives the following a priori estimate for ©:

(7.15) max (| 2+ |V - @"||2> < O(T* + h).
Using the fact that
(7.16) max(||9,(v — mv)*|[ + |[V(v = 70)"|]) + ||V - (v = 70)*[[) < Ci(7 + h),

we get finally the following error estimate
(7.17) max(||0,(v — vn)"|| + ||V (v = wa)"[[) + ||V - (v = wa)"[[) < Ca(7 + h).
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No. of | No. of Forward problem Adjoint problem
nodes | elements | relat.time | time, sec | relat.time | time, sec
2783 13200 | 5.5530e-05 | 77.27 | 1.2392e-04 | 172.43
3603 17198 | 5.6375e-05 | 101.56 | 1.2524e-04 | 225.62
6898 | 36890 | 5.8518e-05| 201.83 | 1.3064e-04 | 450.58
TABLE 1. Performance in the relative time (at the left column) and in the
total time (at the right column) for the Forward and the Adjoint problems
for Example 1.

8. NUMERICAL EXAMPLES

In this section we present computational results for our adaptive method for inverse
elastic scattering in three dimensions with identification of the parameters p, A and p in
(3.1). The computational domain is Q = [0, 5.0] x [0, 2.5] x [0, 2.5], which is split into a finite
element domain Qpgy = [0.3,4.7] x [0.3,2.3] x [0.3,2.3] with a nonstructured mesh, and
a surrounding domain Qppy, with a structured mesh. The space mesh in Qpgy, consists
of tetrahedra and in Qpp,s of hexahedra with mesh size h = 0.2. We apply the hybrid
finite element /difference method presented in [8] with finite elements in Qrgys and finite
differences in Q2pp,r with absorbing boundary conditions on the boundary of €.

We present some examples with spherical pulses, generated at different points in Qppay,
which are given by the source function

[ 10%sin’7t if0<t<0.1and |z —x0| <,
(8.1) hi(z,z0) = { 0 otherwise;

In all the computational tests we chose a time step to respect the CFL criterion:

[ p
2 < .
(8.2) Tsh A+ 3p

First, we present examples of reconstructing the density p and the Lamé coefficients
A, i, without adding noise to exact solution at the observation points. Then we present
computational tests with adding 10% and 20% noise to solution at the observation points.

In all the examples we apply the quasi-Newton method and adaptive mesh refinement
algorithm described in [9].

8.1. Example 1. In the first example we reconstruct the parameters p, A and u for the
geometry presented in Fig. 1. We perform experiments with 4 spherical pulses, initialized
in Qppy. In Fig. 4 we present the computed exact solution on the coarse mesh of the
problem (3.1) in Qrpys and the corresponding solution in Qggyy , using absorbing boundary
conditions on the outer boundaries of Qrpas.

Appropriate initial values of the parameters in our experiments in the one dimensional
optimization algorithm are o = 1.0 and 8 = 1.0. We place the observation points at the
surface of the QQrppys such that the observation points are located at the opposite side to
the initialized pulses. We use a total of 22 observation points for this experiment.
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2783 nodes

5426 nodes

7062 nodes

10951

0.00757337
0.00635677
0.00225678
0.00237844

0.00741713
0.00648679
0.00236001
0.00234848
0.00204324
0.00178178

0.00759996
0.00631633
0.00148713
0.00762883

0.00788409
0.00656045
0.00186424
0.0016515
0.0014904
0.0013101
0.00122315

0.00757337
0.00697671
0.00181184
0.00168949

0.00741713
0.00699295
0.00197857
0.00186646
0.00221419

0.00759996
0.00724637
0.00199707

0.00788409
0.00749204
0.00144807
0.00120483

0.00757337
0.00697671
0.00181184
0.00179391

0.00741713
0.00699295
0.00197857
0.00203611

0.00759996
0.00724637
0.00199707
0.00208897

0.00788409
0.00749204
0.00144807
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0.00208727
TABLE 2. Ls norm of computed g—fg for number of stored corrections m =
1,3,5 on adaptively refined meshes for example 1.

To get data at the observation points we solve the elastic wave equation with 4 pulses,
initialized as described above, with the exact value of the parameters p = 9 and Lamé
coefficients A\ = 1.2,u = 1.0 inside the domain, forming a pyramid (see Fig. 1), and
p=1,A=0.7, 4= 0.5 in the rest of the domain.

We start the optimization algorithm with p = 1.0, A = 0.7, x = 0.5 at the points of the
computational domain. We choose T' = 2.4. The computations were performed on three
times adaptively refined meshes. The numbers of the nodes and elements in these meshes
are presented in the Table 8. The relative time 7,.; in the table is computed as

t
(83) Trel - g . ’)’I,,
where t is the total time, S is number of the time steps, n is number of the nodes in
computational mesh. The experiments where performed with numbers of the timesteps
S = 500.

After each optimization iteration we perform a smoothing procedure. The values of the
parameters are smoothed by local averaging over neighboring elements.

In Tables 2, 4, 3 we present computed L, norms of g—i, ‘g—f, g—ﬁ on different adaptively
refined meshes. Computed Ly norms of v — v, are presented in Table 5. The computed
results are presented in the tables as long as the Ly norm of v — v, decreases. For example,
as follows from Table 5, we perform 5 optimization iterations for a one times refined mesh,

consisting of 5426 nodes. Note, that computed gradients are not always decreasing.
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2783 nodes

5426 nodes

7062 nodes

10951

0.000149256
0.000135338
2.94165e-06
3.45666e-06

0.000133998
0.000130628
4.27581e-06
3.99716e-06
3.44076e-06
5.10362e-06

0.0001397

0.000131215
2.05726e-05
7.59000e-06

0.000143417
0.000118576
8.05369e-05
5.99590e-05
4.57060e-05
4.46198e-05

0.000149256
0.000143729
7.22935e-06
3.82620e-06
3.64912e-06

0.000133998
2.11378e-05
3.99766e-06
3.87200e-06
3.40289e-06

0.000139700
0.000142738
1.02584e-05

0.000143417
4.55883e-05
6.67478e-05
2.92434e-05

0.000149256
0.000143729
7.22935e-06
3.88045e-06
3.75613e-06
3.14287e-06

0.000133998
0.000134093
2.11378e-05
7.83398e-05
3.99766e-06

0.000139700
0.000142738
1.02584e-05
2.22772e-05
1.81725e-05

0.000143417
4.55883e-05
2.92434e-05

TABLE 3. Ls norm of computed g—ﬁ for number of stored corrections m =
1,3,5 on adaptively refined meshes for example 1

2783 nodes

5426 nodes

7062 nodes

10951

4.43669e-05
4.28028e-05
1.14407e-06
2.02356e-06
1.42240e-06

4.23986e-05
4.19256e-05
1.61033e-06
1.53588e-06
1.33757e-06

4.7745e-05

4.66106e-05
8.42204e-06
3.71544e-06

5.26378e-05
5.57142e-05
3.74848e-05
2.75300e-05
2.17506e-05

4.43669¢-05
4.41308e-05
2.82406e-06
1.40884e-06

4.23986¢-05
4.27280e-05
9.51082¢-06
1.48928e-06
1.47970e-06

4.77450e-05
4.9111e-05
5.8852e-06

5.26378e-05
5.49515e-05
2.11851e-05
3.08300e-05

4.43669e-05
4.41308e-05
2.82406e-06
1.43332e-06
1.38929¢-06
1.25239e-06

4.23986e-05
4.27280e-05
9.51082e-06
1.48928e-06
1.45147e-06

4.77450e-05
4.9111e-05
5.8852¢-06
1.19441e-05
1.02565e-05

5.26378e-05
5.49515e-05
2.11851e-05

oL
oA

1, 3,5 on adaptively refined meshes for example 1.

TABLE 4. Ly norm of computed Z¢ for number of stored corrections m =
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m | 2783 nodes | 5426 nodes | 7062 nodes | 10951

1 |0.0477582 | 0.0446024 | 0.0440170 | 0.0451579
0.0462955 | 0.0435771 | 0.0420571 | 0.0434939
0.0145835 | 0.0162211 | 0.0150877 | 0.0151879
0.0137544 | 0.0158132 | 0.0148014 | 0.0128771
0.0139463
3 1 0.0477582 | 0.0446024 | 0.0440170 | 0.0451579
0.0473327 | 0.0443000 | 0.0438192 | 0.0450454
0.0206492 | 0.0236196 | 0.0142122 | 0.0153117
0.0168969 0.0143382
0.0142188
5 10.0477582 | 0.0446024 | 0.0440170 | 0.0451579
0.0473327 | 0.0443000 | 0.0438192 | 0.0450454
0.0206492 | 0.0236196 | 0.0142122 | 0.0153117
0.0163788 | 0.0132180 | 0.0141148
0.0162989 0.013564

0.0157247
TABLE 5. Ly norm of computed v — v, for number of stored corrections
m =1, 3,5 on adaptively refined meshes for example 1.

The computed parameters p, A and u on adaptively refined meshes are shown in Fig. 5 -
10.

8.2. Example 2. In this example experiments are performed with 6 spherical pulses, ini-
tialized in Qppys at the points with coordinates (0.45,2.2,1.25), (1.25,2.2,1.25), (2.05,2.2,1.25),
(2.95,2.2,1.25), (3.75,2.2,1.25) and (4.55,2.2,1.25), using absorbing boundary conditions
on the outer boundary of Qrpys. In Fig. 2 we present the computed exact solution of the
problem (3.1) inside Qrgas-

We use the same observation points as for Example 1. We present in Table 6 computed
Ly norms of %, %, g—’i, respectively, on different adaptively refined meshes. Computed L,
norms of v — vy, are presented in Table 7.

We note that increasing the storage beyond 5 corrections will not have a very big effect:
the time, required to compute the Hessian will increase with no increase in accuracy.

Note that the construction of the grid after each refinement procedure is a quite difficult
task: we should keep two layers of the structured nodes unchanged at the overlapping
boundaries with Qgps, which are involved in the exchange procedure. Only the nodes
from Qg are involved in the adaptive refinement algorithm keeping the structured Qppy,
grid unchanged.

8.3. Example 3. We performed also experiments with 6 spherical pulses as described in
Example 2 and with adding noise to the data at the observation points. We added 10% and
20% noise to the exact solution on the finest mesh at the observation nodes. In Fig. 12 we
present the solution at one observation point without and with added noise. In Table 12
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Ly norm | opt.it. | 2783 nodes | 5426 nodes | 7062 nodes | 10951

1 0.000782747 | 0.000595812 | 0.00560402 | 0.000555752

2 0.000765166 | 0.000591426 | 0.00058001 | 0.000553765
‘g—’; 3 0.000102281 | 0.000366747 | 0.000351486 | 0.000397794

4 0.000318678 | 0.000310022 | 0.00019666

5 0.000239935

1 6.29329e-06 | 5.32755e-06 | 1.24844e-05 | 2.12138e-05

2 6.22415e-06 | 5.31403e-06 | 1.24828e-05 | 1.41816e-05
g—ﬁ 3 5.88679e-07 | 4.27431e-06 | 8.6882e-06

4 2.91749e-06 | 3.53481e-06 | 5.34646e-06

5 8.9528e-08 5.09221e-06

1 2.51563e-06 | 2.05807-06 | 6.12897e-06 | 9.09655e-06

2 2.48780e-06 | 2.05127e-06 | 5.37243e-06 | 6.24897¢e-06
g—{( 3 3.12468e-07 | 5.18086e-08 | 5.26930e-06

4 3.44241e-07 | 4.51412e-08 | 1.71642e-06

5 7.10301e-08

6 6.60916e-08

oL 9L

TABLE 6. Ly norm of computed 0 on g—ﬁ for number of stored corrections

m = 3 on adaptively refined meshes for example 2.

opt.it. | 2783 nodes | 5426 nodes | 7062 nodes | 10951
1 0.00972044 | 0.00876599 | 0.00847722 | 0.0085713
2 0.00970074 | 0.00876608 | 0.00194653 | 0.0024212
3 0.00266514 | 0.00150852 | 0.00164972
4 0.00205583 | 0.00113243 | 0.00158979
5 0.00196030

TABLE 7. Ly norm of computed v — v for number of stored corrections
m = 3 on adaptively refined meshes for example 2.

No. of | No. of Forward problem Adjoint problem
nodes | elements | relat.time | time, sec | relat.time | time, sec
2783 | 13200 5.6001e-05 | 31.17 1.2192e-04 | 67.860
5426 | 27450 5.6395e-05 | 61.20 1.2816e-04 | 139.08
7062 | 36560 5.5593e-05 | 78.52 1.2983e-04 | 183.36
10951 | 57716 5.6520e-05 | 123.79 1.2921e-04 | 283.1

TABLE 8. Performance in the relative time (at the left column) and in the
total time (at the right column) for the Forward and the Adjoint problems
for Example 2.
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a) coarse mesh b) coarse mesh

‘“ RN
S NSSSo Namast
‘\‘k\
_NNN“§§=‘

B
\k\‘s\‘h\‘h\‘h\h\

c) 3 times refined mesh d) 3 times refined mesh

e) exact object f) exact object, mesh

FIGURE 1. Computational FEM meshes. In a), ¢) we present only boundary
nodes for different types of materials and in b), d) we show all nodes in the
meshes.



24

LARISA BEILINA

Ly norm

opt.it.

2783 nodes

5426 nodes

7062 nodes

10951

oL

—

0.000793030
0.000784028
0.000173019
0.000109423
0.000378875

0.000604759
0.000600191
0.000651657
0.000411288
0.000138286

0.00568072

0.00056560

0.000545401
0.000568119
0.000272153
0.000114470
0.000197248

0.000563051
0.000561018
0.000555309
0.000214045

oL

6.35025¢-06
6.28055e-06
1.50998e-06
8.16513e-07

5.36721e-06
5.35406e-06
5.59563e-06
4.27406e-06
1.44231e-06

1.23378e-05
1.23384e-05
9.14679-06

9.81399¢-06

2.10536e-05
2.11365e-05
2.14829e-05
1.5932e-05

9.29962e-06

SUBR W N RO WN HO0 O W

(@]

2.53522e-06
2.50746e-06
7.40625e-07
2.80418e-07
1.42559e-06

2.07213e-06
2.06548e-06
2.17085e-06
1.62479e-06
4.79122e-07

6.16055e-06
6.17416e-06
5.57219e-06
5.80515e-06
1.08050e-05
4.87839e-06

9.06972e-06
9.10238e-06
9.23918e-06
6.65874e-06
3.93673e-06
2.77268e-06

TABLE 9. Ly norm of computed g—’;, g—{(, g—ﬁ for number of stored corrections
m = 5 on adaptively refined meshes. We add 10% noise to the data at the

observation points.

we present computed Ly norms of v — vy, on different adaptively refined meshes. As we
see from the results, it is possible reconstruct the object with 10% noise. We get a more
nonsmooth solution with 20% noise at the observation points, but a reconstruction is still
possible. The reconstructed parameters A\ and p with added 10% noise to the data at the
observation points are shown in Fig.11.

8.4. Example 4. We now present numerical tests for the reconstruction of a single cube.
We perform similar tests as in the previous examples, but with 7" = 2.6 and 300 time steps.

We start the optimization algorithm with p = 1.0,A = u = 0.5 at all points of the
computational domain. The computations was performed on five times adaptively refined
meshes. In Table 13 we shown computed Ls norms of v — v, on different adaptively
refined meshes, presented in Fig. 13. The computational tests show, that the best results
are obtained on a 4 times adaptively refined mesh. The values of the identified parameters
are very sensitive to the starting values of the parameters in the optimization algorithm and
to the type of regularization of the solution. In this example we have chosen different start
values for these parameters: v, = 1.0,, = 1.0,7, = 0.1. We present the reconstructed
parameters p, A and p on a 4 times adaptively refined mesh — in Fig. 14.
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opt.it. | 2783 nodes | 5426 nodes | 7062 nodes | 10951
1 0.0098186 | 0.00888107 | 0.00859326 | 0.00870716
2 0.00979883 | 0.00888174 | 0.00859704 | 0.00871430
3 0.00456252 | 0.00888583 | 0.00898915 | 0.00875216
4 0.00360370 | 0.00870797 | 0.00914326 | 0.00494146
5 0.00457173 | 0.00659696 | 0.00159288
6 0.00168708 | 0.00381484

25

TABLE 10. Ly norm of computed v — v, for number of stored corrections
m = 3 on the adaptively refined meshes. We add 10% noise to the data at

the observation points.

Lo norm

opt.it.

2783 nodes

5426 nodes

7062 nodes

10951

1

0.000803408
0.000794023
0.000636853
0.000776814

0.000613880
0.000609121
0.000640811
0.000645965

0.000575969
0.000573435
0.000569044
0.000569602

0.000570631
0.000568556
0.000568038

6.40861e-06
6.33835¢-06
5.05217e-06
6.46414e-06
1.02650e-07

5.40844e-06
5.39568e-06
5.53357e-06
4.93732¢-06
3.8590e-06

1.22147e-05
1.2218e-05
9.30845¢-06

2.0931e-05
2.10118e-05
2.12367e-05

W N RO R WN R WD

ot

2.55542e-06
2.50009e-06
2.33451e-06
2.80418e-07
1.42559¢-06

2.0869¢-06
2.0804e-06
2.14802e-06
1.91414e-06
1.4077e-06

6.20131e-06
6.21642¢-06
5.44857e-06

9.05891e-06
9.091e-06
9.19938e-06

TABLE 11. L3 norm of computed
m = 3 on adaptively refined meshes. We add 20% noise to the data at the

observation points.

0L 0L

oz 9L for number of stored corrections

dp? X B

opt.it. | 2783 nodes | 5426 nodes | 7062 nodes | 10951
1 0.00992072 | 0.00900206 | 0.00871874 | 0.00884980
2 0.00990097 | 0.00900321 | 0.0087228 | 0.008885724
3 0.00917995 | 0.00901267 | 0.00885476 | 0.0089102
4 0.00310553 | 0.00215861 | 0.00279184
5 0.00212623 | 0.00278610

TABLE 12. Ly norm of computed v — v, for number of stored corrections
m = 3 on adaptively refined meshes. We add 20% noise to the data at the
observation points.
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opt.it. | 2783 nodes | 2847 nodes | 3183 nodes | 3771 nodes | 4283 nodes | 6613 nodes
1 0.00522332 | 0.00514721 | 0.00512072 | 0.0049972 | 0.00498482 | 0.00471736
2 0.00508603 | 0.00501885 | 0.00500625 | 0.00489408 | 0.00488648 | 0.00462337
3 0.00453599 | 0.00455756 0.00410481 | 0.00431073 | 0.00433048
4 0.00438557 | 0.00417061 0.00362429 | 0.0034339 | 0.00415263
5 0.00384466 0.00327727 | 0.00331261
6 0.00233499
7 0.00213977

TABLE 13. Reconstruction of a cube. Ls norm of computed v — vy for
number of stored corrections m = 5 on five times adaptively refined meshes.
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FIGURE 2. The exact solution in Qrgps with mesh size h = 0.2. On the
boundary Qgpys we apply absorbing boundary conditions. The exact value
of the parameters are p = 25, u = 1.0, A = 1.0 inside domain, forming a cone
(see Fig. 1), and p = 1,4 = 0.5,A = 0.5 at the rest of the domain. We
present also the location of different isosurfaces.
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t=04 t=12

t=0.6 t=1.6

Fi1GURE 3. The exact solution in Qrgy with mesh size h = 0.1. On the
boundary Qgpys we apply absorbing boundary conditions. The exact value
of the parameters are p = 9, u 1.0, A 1.2 inside domain, forming a
pyramide (see Fig. 1), and p = 1, u = 0.5, X = 0.7 at the rest of the domain.
We present also the location of different isosurfaces.
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FiGURE 4. The exact solution for Example 2. On the boundary Qppys we
apply absorbing boundary conditions. The exact value of the parameters
are p = 9.0, = 1.0,A = 1.2 inside domain, forming a cone ( see Fig. 1
), and p = 1, = 0.5,X = 0.7 at the rest of the domain. In a), b), c) we
present the location of the different isosurfaces in Qppyr and in d), e) , f)
the corresponding solutions are presented in Qpgyy.
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p ~ 1.05, 1 optim. it. W, 1 optim.it.

p ~ 2.7, 2 optim.it. W, 2 optim.it.

p =~ b5, 3 optim.it. W, 3 optim. it.

FIGURE 5. Reconstructed parameters p and p on the coarse mesh after first,
second and third optimization iterations. The value of the isosurface for p is
shown on the reconstruction picture, while the value of the isosurface for
u =~ 0.56.
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A, after 2 optim.it., m=1 A, after 3 optim.it., m=1

FIGURE 6. Reconstructed parameter A on the coarse mesh after first, second
and third optimization iterations. The value of the isosurface is ~ 0.6.
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p ~ 2.23, 2 optim.it. W, 2 optim.it.

p ~ 3, 3 optim.it. W, 3 optim.it.

FIGURE 7. Reconstructed parameters p and p on the one time adaptively
refined mesh after first, second and third optimization iterations. The value
of the isosurface for density is ~ 25 , while the value of the isosurface for

u = 0.8.
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A, after 3 optim. it. A, after 4 optim.it.

F1GURE 8. Reconstructed parameter A on the one time adaptively refined
mesh after first, second and third optimization iterations. The value of the
isosurface is ~ 0.8.
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p, 2 optim.it. W, 2 optim.it.

p, 3 optim.it. W, 3 optim.it.

F1GURE 9. Reconstructed parameters p and p for Example 3 on the two
times adaptively refined mesh after first, second and third optimization iter-
ations. The value of the isosurface for density is ~ 2 , while the value of the
isosurface for p ~ 0.6.
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A, after 1 optim.it w after 3 optim. it.

A, after 2 optim.it. u after 4 optim. it.

A, after 3 optim.it. w after 6 optim. it.

FIGURE 10. Reconstructed parameter A for Example 3 on the two times
adaptively refined mesh after first, second and third optimization iterations.
The values of the isosurfaces are ~ 0.74.
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A = 0.75, after 3 optim.it 1~ 0.55 after 3 optim. it.

A & 0.85, after 4 optim.it. 1~ 0.65 after 4 optim. it.

A = 1.0, after 5 optim.it. @~ 0.87 after 7 optim. it.

FIGURE 11. Reconstructed parameters A and p on the 3 times adaptively
refined mesh with adding 10% noise to the exact data.
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FIGURE 12. Exact solution at the one point (0.5,0.3,1.3). We show three
components of the solution on the different adaptively refined meshes in a),
b), ¢), In d), e) f) we show the solution at the one point on the three times
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f)

adaptively refined mesh without noise and with adding noise.
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a) 2783 nodes, boundary nodes d) 2783 nodes, all nodes

b) 2847 nodes, boundary nodes e) 2847 nodes, all nodes

f) 3183 nodes, all nodes

c) 4283 nodes, boundary nodes f) 4283 nodes, all nodes

FIGURE 13. Adaptively refined grids for reconstruction of a cube.
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c)\ after 5 opt.it. f) X after 7 opt.it.

FIGURE 14. Reconstruction of a cube. We show reconstructed parameters
p and A on four times adaptively refined mesh.
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