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A LAGRANGE MULTIPLIER METHOD FOR THE FINITE ELEMENT

SOLUTION OF ELLIPTIC DOMAIN DECOMPOSITION PROBLEMS

USING NON-MATCHING MESHES

PETER HANSBO, CARLO LOVADINA, ILARIA PERUGIA, AND GIANCARLO SANGALLI

Abstract. In this paper we propose a Lagrange multiplier method for the finite ele-
ment solution of elliptic partial differential equations using domain decomposition with
non-matching meshes. The interface Lagrange multiplier is discretized by means of global
polynomials, in order to avoid the cumbersome integration of products of unrelated mesh
functions. The ideas are illustrated using Poisson’s equation as a model, and the pro-
posed method is shown to be stable and optimally convergent. Numerical experiments
demonstrating the theoretical results are also presented.

1. Introduction

When considering domain decomposition with non-matching meshes using Lagrange
multiplier techniques, two basic problems occur. First and foremost, the relation between
the discrete spaces chosen for the primal variable and the multipliers must be such that
the resulting numerical scheme is stable. Proving stability reduces to proving that the
approximate solution fulfills the inf-sup condition [5]; it then turns out that many natural
choices of approximations do not. Fortunately, this problem can be alleviated by use of
stabilized multiplier methods [9, 11, 1, 4], or by using mesh-dependent penalty methods [2,
3]. The second problem is that products of traces of the primal variable and the multipliers
have to be integrated on the interfaces. For methods known to fulfill the inf-sup condition,
such as the mortar element method (see [12] for an overview of such methods), as well as
most stabilized methods, this will mean integrating products of piecewise polynomials on
unrelated meshes. This is not easily done in practice for problems in R

3 (see, however,
[10]). To mitigate these two problems, we suggest a stabilization method which allows
for global polynomial multipliers on the interfaces. This method is stable and optimally
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convergent, and, moreover, avoids the cumbersome integration of products of unrelated
mesh functions. Only products of global polynomials and local polynomials have to be
considered; this makes the integration problem much simpler in many cases. The method
is presented and analyzed using a two-dimensional Poisson equation as a model with two
subdomains. Form a geometric point of view, two situations can occur: the case where the
intersections of the boundaries of both subdomains with the outer boundary have non-zero
1D measure, and the case where the interface is a closed curve (see Fig. 1 below). We
point out that the stability analysis of the former case, for which similar arguments as
in [1] could be applied, is simpler than that of the latter case. In this paper we present an
analysis that covers both cases.

As a basic motivation for this work, we have in mind the contact problem in elasticity. In
standard commercial codes for computing contact between two elastic bodies, the contact
condition is only checked at the nodes either on one or on both of the bodies. This corre-
sponds to choosing discrete Lagrange multipliers which is not natural from the perspective
of the variational formulation of the problem. The stability and convergence properties of
these approaches are in general not known, and the results have to be carefully interpreted,
which requires some experience. Furthermore, in our experience, plenty of choices have to
be made in discretizing the interface, choosing the master surface, etc. An obvious reason
for choosing discrete multipliers is that it makes the integration problem particularly easy;
as mentioned above this is also the aim of the method to be presented.

One could interpret our approach as covering the contact surface with a polynomial layer
which acts as an intermediate between the two surfaces (which do not have to be known in
advance). Even though this results in a global coupling of all the variables on the contact
surface, the typical contact application has a small zone of contact and the global coupling
will not cause the problem to grow excessively in size.

The outline of the paper is as follows. In Section 2 the interface Lagrange multiplier
method with global polynomial discretization of the multiplier is presented, after intro-
ducing the model problem together with some notation, and discussing the motivation of
the present work. The stability and error analysis of the new method is carried out in
Section 3, and numerical experiments demonstrating the theoretical results are presented
in Section 4. The paper ends with some conclusions in Section 5.

2. Formulation of the method

In this section we introduce a novel interface Lagrange multiplier method for the finite
element discretization of elliptic problems on non-matching grids. Before doing that, we
make precise the model problem we will be working on, together with some notation and
motivation of the present work.

2.1. Model problem. Let Ω be a bounded domain in R
2, with boundary ∂Ω. (The

extension to R
3 is straightforward.) As a model problem, we consider a stationary heat

conduction problem in the case where there is a piecewise smooth internal boundary Γ
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dividing Ω into two subdomains Ω1 and Ω2. Thus, we want to solve for u the problem

(2.1)

−∇ · (κi∇ui) = f in Ωi,
ui = 0 on ∂Ωi ∩ ∂Ω,

u1 − u2 = 0 on Γ,
n1 · κ1∇u1 + n2 · κ2∇u2 = 0 on Γ,

for i = 1, 2, where we have denoted by ui the restriction of u to Ωi. Here f is a given
function, κi, which is assumed to be smooth in Ωi, is the conductivity, and ni is the
outward pointing normal to Ωi at Γ, i = 1, 2. This formulation of the standard Poisson
problem is common in the context of domain decomposition problems, cf. [7].

Define

V = {v : vi ∈ H1(Ωi), vi = 0 on ∂Ωi \ Γ, i = 1, 2}
and

Λ =
(

H
1/2
00 (Γ)

)′
,

the dual space of H
1/2
00 (Γ) (see, e.g., [8]). Notice that, whenever Γ ∩ ∂Ω = ∅ (see Fig. 1,

right), H
1/2
00 (Γ) coincides with H1/2(Γ) and Λ = H−1/2(Γ).

A weak form of (2.1) using the Lagrange multiplier approach is as follows:
Find (u, λ) ∈ V × Λ such that

(2.2)

∑

i

∫

Ωi

κi∇ui · ∇vi dx +

∫

Γ

λ [v] ds =
∑

i

∫

Ωi

f vi dx ∀v ∈ V,

∫

Γ

[u] µ ds = 0 ∀µ ∈ Λ,

where [v] := (v1 − v2)|Γ is the jump of v across Γ. Notice that

λ = −κ1∇u1 · n1 = κ2∇u2 · n2 on Γ.

2.2. Notation. We introduce the necessary notation for the definition of the method we
are going to present and its subsequent analysis, focusing, for simplicity, on the case of
triangular elements. Therefore, we assume that we are given a triangular mesh T h

i of
the domain Ωi, i = 1, 2. We denote by hi the meshsize of T h

i . Obviously, T h = T h
1 ∪ T h

2

provides a mesh for Ω, whose meshsize is h = max{h1, h2}. We introduce the finite element
space

V h = {v ∈ V : v|K ∈ P k(K), ∀K ∈ T h},
where P k(K) denotes the space of polynomials of degree at most k on K, with k ≥ 1.

The interface Γ is decomposed as the union Γ =
⋃

Γj of nΓ smooth components Γj of
length `j (see Fig. 1). We associate with each Γj the non-negative integer pj and define for
later use p := [p1, . . . , pnΓ

]. On Γ, we introduce the space

Λp = {µ ∈ Λ : µ|Γj
∈ P pj(Γj), j = 1, . . . , nΓ},

where P pj(Γj) denotes the space of polynomials of degree at most pj on Γj, with respect to
a local coordinate. Notice that the elements of Λp can be discontinuous at the endpoints
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of the Γj’s. We also remark that two different situations can occur from a geometric point
of view:

(1) both ∂Ω1 ∩ ∂Ω and ∂Ω2 ∩ ∂Ω have nonzero 1-D measure (see Fig. 1, left);
(2) either ∂Ω1 ∩ ∂Ω or ∂Ω2 ∩ ∂Ω has zero 1-D measure (see Fig. 1, right).

As we will see in the next section, the stability analysis is more difficult for the second
case.

Ω Ω

Ω

Ω Γ

Γ

Γ

Γ

Γ

1

1

22

1

1
2

24

Γ3

ΩΩ

Figure 1. Two different geometric situations.

2.3. Background. A standard penalty method for domain decomposition problems is the
following (cf. [2]):
Find uh ∈ V h such that

(2.3)
∑

i

∫

Ωi

κi∇uh
i · ∇vi dx +

∫

Γ

γ [uh] [v] ds =
∑

i

∫

Ωi

f vi dx ∀v ∈ V h.

There is a consistency error present in (2.3), but by letting γ depend inversely on the
meshsize, i.e., γ = Ch−α, for suitable values of α this consistency error will not dominate
the discretization error in energy-like norms (see [3] for an extensive investigation).

The main problem of implementation of (2.3) is how to evaluate integrals of the type
∫

Γ

uh
i vj ds, i 6= j,

especially in three dimensions. If quadrature is used, we have an expensive search problem
in locating elements in the mesh on Ωi containing quadrature points in the elements of the
mesh on Ωj . Exact integration is within reach; Priestley [10] has made an implementation
of exact quadrature in the case of triangular surface meshes with common boundary. Here
we take an alternative route which greatly simplifies the implementation, by introducing a
suitable multiplier on the interface Γ.

Therefore, starting from (2.3), one could consider the following inconsistent perturbed
Lagrange multiplier method:
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Find (uh, λp) ∈ V h × Λp such that

(2.4)

∑

i

∫

Ωi

κi∇uh
i · ∇vi dx +

∫

Γ

λp [v] ds =
∑

i

∫

Ωi

f vi dx ∀v ∈ V h,

∫

Γ

[uh] µ ds −
∫

Γ

1

γ
λp µ ds = 0 ∀µ ∈ Λp.

Now, as γ → ∞ the problem will be a standard saddle-point problem which requires
balancing between the discrete spaces for λp and uh which have to fulfill a Babus̆ka-Brezzi
condition [5]. Again, we can let γ = Ch−α, so that the problem of balancing Λp and V h is
alleviated. We can thus freely use the rule of thumb that the number of degrees of freedom
of Λp should approximately match the number of degrees of freedom on Γ from the meshes
adjacent to it. Furthermore, the product of basis functions and global polynomials can
easily be integrated exactly, at least for simplicial elements.

On the other hand, due to inconsistency, the formulation (2.4) exhibits a loss of accuracy,
as our numerical results in Section 4 indicate. It also requires coupling the parameter α to
the polynomial degree of approximation, which is detrimental to the conditioning of the
system. In order to overcome these drawbacks, we are going to present a consistent version
of (2.4).

2.4. The consistent method: A Nitsche-type interface condition. The classical
method of Nitsche [9] for handling Dirichlet boundary conditions weakly was extended
to the case of domain decomposition with non-matching meshes by Becker, Hansbo and
Stenberg [4]. The problem of having to integrate products of functions on one side of
the interface with functions on the other side is present also in their method. However,
Nitsche-type methods are consistent and thus optimally convergent with a fixed “penalty”
parameter of O(h−1), which does not destroy the conditioning of the resulting system.
Thus, there could be some advantages to formulating a Nitsche-type interface formulation
using the interjacent polynomial multiplier space. To this end we define n := n1 = −n2

on Γ and

{u} := αu1 + (1 − α)u2,

where 0 ≤ α ≤ 1, and propose the following method:
Find (uh, λp) ∈ V h × Λp such that

(2.5)

∑

i

∫

Ωi

κi∇uh
i · ∇vi dx +

∫

Γ

λp [v] ds =
∑

i

∫

Ωi

f vi dx ∀v ∈ V h,

∫

Γ

[uh] µ ds −
∫

Γ

1

γ

{

n · κ∇uh
}

µ ds −
∫

Γ

1

γ
λp µ ds = 0 ∀µ ∈ Λp.

We note that (2.5) is a consistent method: inserting a sufficiently regular analytical solution
(u, λ) in the place of (uh, λp), since formally λ = −κ1∇u1 · n1 = κ2∇u2 · n2 on Γ, we find
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that
∑

i

∫

Ωi

κi∇(ui − uh
i ) · ∇vi dx +

∫

Γ

(λ − λp) [v] ds = 0,

∫

Γ

[u − uh] µ ds −
∫

Γ

1

γ

{

n · κ∇(u − uh)
}

µ ds −
∫

Γ

1

γ
(λ − λp) µ ds = 0,

for all v ∈ V h and µ ∈ Λp. We rephrase this property in abstract form in the following
lemma, where we set

Bh(w, ν; v, µ) :=
∑

i

∫

Ωi

κi∇wi · ∇vi dx +

∫

Γ

ν [v] ds −
∫

Γ

[w] µ ds

+

∫

Γ

1

γ
{n · κ∇w}µ ds +

∫

Γ

1

γ
ν µ ds.

Lemma 1. The method (2.5) is consistent in the sense that

Bh(u − uh, λ − λp; v, µ) = 0,

for all v ∈ V h and µ ∈ Λp.

Remark 1. A drawback of the method (2.5) is that it is unsymmetric. However, in the
cases of α = 0 and α = 1, it can be symmetrized without introducing integration of cross
terms across the interface and without altering the consistency. The symmetric and con-
sistent formulation reads as follows:

∑

i

∫

Ωi

κi∇uh
i · ∇vi dx +

∫

Γ

λp [v] ds −
∫

Γ

1

γ
λp(nj · κj∇vj) ds

−
∫

Γ

1

γ
(nj · κj∇uh

j )(nj · κj∇vj) ds =
∑

i

∫

Ωi

f vi dx ∀v ∈ V h,

∫

Γ

[uh] µ ds −
∫

Γ

1

γ
(nj · κj∇uh

j )µ ds −
∫

Γ

1

γ
λp µ ds = 0 ∀µ ∈ Λp,

with subscript j = 2 if α = 0, and j = 1 if α = 1. We remark that, as pointed out in the
discussion after Theorem 1 below, α = 0 and α = 1 are reasonable choices and in particular
the sole choices which gives the best convergence results whenever the characteristic mesh-
sizes of the two domains are significantly different from each other. An additional reason
for using the symmetric formulation is its adjoint consistency, which is useful whenever
duality arguments need to be applied.

3. Analysis of the method

In this section we develop stability analysis and derive error estimates of method (2.5).
The analysis will show that, in the particular case of quasi-uniform meshes T h of size h,
the choice of the polynomial approximation orders for λ that give the best error estimate
is pj ≈ `j/h, j = 1, . . . , nΓ. In correspondence to that, and for γ of the order of h−1,
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for analytical solutions in Hs+1(Ωi) for each subdomain Ωi, we obtain the optimal error
estimate

|‖(u − uh, λ − λp)‖| ≤ Chmin{k,s}
∑

i

|ui|Hs+1(Ωi),

where |‖ · ‖| is an energy-like norm, and C is a positive constant independent of h. More
in general, the estimates we will derive take into account the local meshsize and material
properties. This provides criteria on how to select the parameter γ and the polynomial
approximation degrees pj , j = 1, . . . , nΓ, in the most advantageous way, also in the case of
meshes of different sizes in the different subdomains Ωi.

3.1. Stability. Defining the (weighted) broken H1–norm

‖w‖V =
(

∑

i

‖κ1/2
i ∇wi‖2

L2(Ωi)
+ ‖aw‖2

L2(Ω)

)1/2

,

with a = κ1/2/diam(Ω), we introduce the norm

|‖(w, ν)‖| :=
(

‖w‖2
V + ‖γ−1/2ν‖2

L2(Γ)

)1/2
,

where γ is the function of L∞(Γ) defined as follows. Denote by NΓ the set of nodes of
T h

1 and T h
2 lying on Γ. Fix a point x on Γ \ NΓ and let K1 and K2 be the two elements

of T h
1 and T h

2 , respectively, such that the interior of ∂K1 ∩ ∂K2 ∩ Γ is non empty and
x ∈ ∂K1 ∩ ∂K2 ∩Γ. Denote by hK1

and hK2
the diameters of K1 and K2, respectively. For

x ∈ Γ \ NΓ, we define

γ(x) = γ0 max{ακ1(x)h−1
K1

, (1 − α)κ2(x)h−1
K2
},

with γ0 constant independent on the meshsize and the material properties. Restrictions
on γ0 will be made precise later on. Notice that γ is defined almost everywhere on Γ.

Define the constant k as the mean value of the function κ on Ω and b :=
(

k/diam(Ω)
)1/2

.
On the interface Γ, we will use the norm

beϕbe1/2,Γ :=
(

‖bϕ‖2
L2(Γ) + |k1/2ϕ|2

H
1/2

00
(Γ)

)1/2

,

together with its dual denoted by be·be−1/2,Γ. We recall that, whenever Γ∩∂Ω = ∅, |·|
H

1/2

00
(Γ)

coincides with | · |H1/2(Γ) (see [8]).

Remark 2. The norm be · be1/2,Γ is the natural norm for the traces on Γ of functions
belonging to V , when V is endowed with the ‖ · ‖V –norm.

We proceed by proving continuity and inf-sup properties of the form Bh. In the sequel
C, C1, . . . denote generic strictly positive constants possibly depending on the shape of the
domain, on the shape regularity of the meshes, on the quantity max κ/ min κ, and on the
polynomial approximation degrees of V h, but independent of the meshsize and of p.

Proposition 1. For all w, v ∈ V , ν, µ ∈ Λ we have

(3.1) Bh(w, ν; v, µ) ≤ C
(

|‖(w, ν)‖|+ ‖γ1/2[w]‖L2(Γ) + beνbe−1/2,Γ

)

|‖(v, µ)‖|.
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Proof. The bound follows from the Cauchy-Schwarz inequality and from

be[w]be1/2,Γ ≤ bew1be1/2,Γ + bew2be1/2,Γ ≤ C‖w‖V

(see Remark 1). �

Proposition 2. Provided that γ0 is large enough (see Remark 2 below), for all (w, ν) ∈
V h × Λp there is (v, µ) ∈ V h × Λp such that

|‖(v, µ)‖| ≤ C1|‖(w, ν)‖|,
Bh(w, ν; v, µ) ≥ C2|‖(w, ν)‖|2,

Proof. Define P 0(Γ) as the space of constants on the whole interface Γ. Let (w, ν) ∈ V h×Λp

and take (v, µ) ∈ V h × Λp as v = w and µ = µ1 + δµ2, with µ1 = ν and µ2 = −b2Π0[w],
where Π0 is the L2(Γ)–projection operator onto P 0(Γ), and δ is a positive parameter still at

our disposal. From the definition of µ2, the bound bγ−1/2 ≤ Cγ
−1/2
0 , and a trace inequality,

we have

‖γ−1/2µ2‖L2(Γ) = b‖(bγ−1/2)Π0[w]‖L2(Γ) ≤ Cγ
−1/2
0 b‖[w]‖L2(Γ) ≤ Cγ

−1/2
0 ‖w‖V .

The continuity estimate |‖(v, µ)‖| ≤ C1|‖(w, ν)‖| immediately follows.
For the coercivity, we proceed in two steps. First, from the definition of v and µ1 we

have

Bh(w, ν; v, µ1) =
∑

i

‖κ1/2
i ∇wi‖2

L2(Ωi)
+

∫

Γ

1

γ
{n · κ∇w} ν ds + ‖γ−1/2ν‖2

L2(Γ).

By combining a weighted Cauchy-Schwarz inequality with the inverse inequality

(3.2) ‖κ−1/2
i h

1/2
i ni · κi∇wi‖2

L2(Γ) ≤ CI‖κ1/2
i ∇wi‖2

L2(Ωi)
, ∀w ∈ V h

i , i = 1, 2,

provided that γ0 > CI/4, making use of the Young inequality, we obtain

(3.3) Bh(w, ν; v, µ1) ≥ C
(

∑

i

‖κ1/2
i ∇wi‖2

L2(Ωi)
+ ‖γ−1/2ν‖2

L2(Γ)

)

,

where C depends on CI and γ0, but is independent of the meshsize.
For the second step, we can write

Bh(w, ν; 0, µ2) =

∫

Γ

b [w] b Π0[w] ds −
∫

Γ

b2γ−1 {n · κ∇w}Π0[w] ds −
∫

Γ

b2γ−1 ν Π0[w] ds

= ‖b Π0[w]‖2
L2(Γ) −

∫

Γ

b2γ−1 {n · κ∇w}Π0[w] ds −
∫

Γ

b2γ−1 ν Π0[w] ds.

Using suitably weighted Cauchy-Schwarz inequalities for the last two integrals and the
inverse inequality (3.2), we obtain

(3.4) Bh(w, ν; 0, µ2) ≥
1

2
‖b Π0[w]‖2

L2(Γ) −
CCI

γ2
0

∑

i

‖κ1/2
i ∇wi‖2

L2(Ωi)
− C

γ0

‖γ−1/2ν‖2
L2(Γ).
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By adding together (3.3) and (3.4) multiplied by δ, and taking δ small enough (depending
on the constants C, CI and γ0), we obtain

(3.5) Bh(w, ν; v, µ) ≥ C3

(

∑

i

‖κ1/2
i ∇wi‖2

L2(Ωi)
+ ‖b Π0[w]‖2

L2(Γ) + ‖γ−1/2ν‖2
L2(Γ)

)

,

with a positive constant C3 only depending on CI and γ0, therefore independent of the
meshsize.

In order to complete the proof of the proposition, we need to show that

(3.6) ‖aw‖2
L2(Ω) ≤ C

(

∑

i

‖κ1/2
i ∇wi‖2

L2(Ωi)
+ ‖b Π0[w]‖2

L2(Γ)

)

,

with a constant C independent of the meshsize. Then, the coercivity estimate Bh(w, ν; v, µ) ≥
C2|‖(w, ν)‖|2 easily follows. In the case where both ∂Ω1 and ∂Ω2 contain a part of the
Dirichlet boundary with nonzero 1–dimensional measure (see Fig. 1, left), the estimate (3.6)
directly follows from the standard Poincaré’s inequality. On the other hand, if either of
∂Ω1 or ∂Ω2 does not contain a part of the Dirichlet boundary with nonzero 1–dimensional
measure (see Fig. 1, right), we still make use of the Poincaré inequality, but the proof is
not straightforward. We develop this case in detail.

Assume, to fix the ideas, that ∂Ω2 does not intersect ∂Ω. Then, ∂Ω1 contains the
Dirichlet boundary. Therefore, the following Poincaré’s inequality holds true:

(3.7) ‖w1‖L2(Ω1) ≤ C diam(Ω1) ‖∇w1‖L2(Ω1).

Write w2 as (w2 −Π0w2|Γ) + Π0w2|Γ , where Π0w2|Γ is the constant function on Ω2 equal to
the mean value of the trace of w2 on Γ. The Poincaré’s inequality

‖w2 − Π0w2|Γ‖L2(Ω2) ≤ C diam(Ω2) ‖∇w2‖L2(Ω2)

follows from Bramble-Hilbert’s lemma applied to the operator π : H1(Ω2) → L2(Ω2) defined
by π(w) = w − Π0w|Γ, which is zero on P 0(Ω2), the space of constants on Ω2. Therefore,

‖w2‖L2(Ω2) ≤ ‖w2 − Π0w2|Γ‖L2(Ω2) + ‖Π0w2|Γ‖L2(Ω2)

≤ C diam(Ω2) ‖∇w2‖L2(Ω2) +
(

|Ω2|/|Γ|
)1/2‖Π0w2‖L2(Γ)

≤ C diam(Ω2)
(

‖∇w2‖L2(Ω2) + ‖Π0w2 − Π0w1‖L2(Γ) + ‖Π0w1‖L2(Γ)

)

≤ C diam(Ω2)
(

‖∇w2‖L2(Ω1) + ‖Π0[w]‖L2(Γ) + ‖∇w1‖L2(Ω1)

)

,

(3.8)

where in the last step we have used a trace theorem and (3.7). Estimates (3.7) and (3.8)
immediately give (3.6). �

Remark 3. From the proof of Proposition 2, it is clear that γ0 in the definition of γ has
to be chosen larger than CI/4, where CI is the inverse inequality constant in (3.2), which
only depends on the shape regularity of the meshes and on the polynomial approximation
degree for the variable u.
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Remark 4. Notice that the proof of the stability result stated in Proposition 2 only requires
that the discretization space Λp contains the globally constant functions on Γ, an assumption
which is obviously fulfilled by every reasonable choice of Λp.

3.2. Error Analysis. We derive error estimates for the method (2.5) in a standard way
from the results proven in Proposition 1 and 2.

Theorem 1. Assume ui ∈ Hs+1(Ωi), i = 1, 2, with s > 1/2. Denote by T h
i , i = 1, 2, the

union of the elements contained in Ωi and having one side on Γ and, for any K ∈ T h
1 ∪T h

2 ,
define γK := max

x∈∂K∩Γ
γ. We have

(3.9)

|‖(u − uh, λ − λp)‖| ≤ C
(

k
∑

K∈T h

h
2min{k,s}
K |u|2Hs+1(K) +

∑

K∈T h
1
∪T h

2

γKh
2min{k,s}+1
K |u|2Hs+1(K)

+
∑

j

(

k−1`2s
j p−2s

j + sup
x∈Γj

γ−1`2s−1
j p

−(2s−1)
j

)

|λ|2Hs−1/2(Γj)

)1/2

,

with a positive constant C independent of the meshsize and of p.

We briefly comment on the result of Theorem 1 before showing its proof.
• Assume that T h is quasi-uniform and denote by h its characteristic meshsize. Then,

from (3.9), it is clear that the optimal choice of the polynomial approximation is pj ≈ `j/h,
j = 1, . . . , nΓ. In this case, estimate (3.9) becomes

|‖(u − uh, λ − λp)‖| ≤ Ck1/2hmin{k,s}
∑

i

|ui|Hs+1(Ωi).

• Assume that T h
1 and T h

2 are quasi-uniform and denote by h1 and h2 their characteristic
meshsizes (here, we are not assuming any bound of h1 and h2 in terms of each other). Then,
from the definition of the parameter γ, it is clear that, if h1 and h2 are very different in
size, estimate (3.9) significantly depends on α. If h1 � h2 (resp. h2 � h1), the best result
is given for α = 0 (resp. α = 1). With the optimal choice of the polynomial approximation
orders, namely pj ≈ `j/ max{h1, h2}, j = 1, . . . , nΓ, estimate (3.9) becomes

|‖(u − uh, λ − λp)‖| ≤ Ck1/2
∑

i

h
min{k,s}
i |ui|Hs+1(Ωi).

Proof of Theorem 1 Let ũh
i ∈ V h

i be the nodal interpolant of ui in Ωi, i = 1, 2, and let λ̃p

denote the L2(Γ)–projection of λ on Λp. We decompose, as usual, the error (u−uh, λ−λp)

as (u− ũh, λ− λ̃p) + (ũh − uh, λ̃p − λp). From triangle inequality, Proposition 2, Lemma 1
and Proposition 1, we obtain
(3.10)

|‖(u − uh, λ − λp)‖| ≤ C
(

|‖(u − ũh, λ − λ̃p)‖| + ‖γ1/2[u − ũh]‖L2(Γ) + beλ − λ̃pbe−1/2,Γ

)

.

Then, the error bound (3.9) follows from the approximation estimates of u− ũh and λ− λ̃p.
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In fact, for the terms involving u − ũh, the standard interpolation estimates give

(3.11)
∑

i

‖κ1/2
i ∇(u − ũh)‖2

L2(Ωi)
+ ‖a(u − ũh)‖2

L2(Ω) ≤ Ck
∑

K∈T h

h
2min{k,s}
K |u|2Hs+1(K),

and

‖γ1/2[u − ũh]‖2
L2(Γ) ≤ 2‖γ1/2(u1 − ũh

1)‖2
L2(Γ) + 2‖γ1/2(u2 − ũh

2)‖2
L2(Γ)

≤ 2
∑

K∈T h
1

‖γ1/2
K (u1 − ũh

1)‖2
L2(∂K) + 2

∑

K∈T h
2

‖γ1/2
K (u2 − ũh

2)‖2
L2(∂K)

≤ C
∑

K∈T h
1
∪T h

2

γKh
2min{k,s}+1
K |u|2Hs+1(K).

(3.12)

For the terms with λ − λ̃p, since ‖λ − λ̃p‖L2(Γj) = inf
µp∈Λp

‖λ − µp‖L2(Γj), from standard

hp–approximation estimates we have

(3.13) ‖λ − λ̃p‖L2(Γj) ≤ C`t
jp

−t
j |λ|Ht(Γj), 0 ≤ t ≤ pj + 1,

which immediately gives

(3.14) ‖γ−1/2(λ − λ̃p)‖L2(Γ) ≤ C
(

∑

j

sup
x∈Γj

(γ−1)`2s−1
j p

−(2s−1)
j |λ|2Hs−1/2(Γj)

)1/2

.

It remains to deal with the third term appearing at right-hand side of (3.10). We derive

an estimate of λ− λ̃p in the norm be · be−1/2,Γ by means of interpolation theory (see, e.g., [8,
Theorem 12.2]) between the norms ‖b−1 ·‖L2(Γ) (which is the dual of ‖b·‖L2(Γ)) and be · be−1,Γ,

where be·be−1,Γ denotes the dual norm of
(

‖b · ‖2
L2(Γ) + diam(Ω)1/2|k1/2 · |2

H1
0
(Γ)

)1/2

. We have

beλ − λ̃pbe−1,Γ ≤ sup
µ∈H1

0
(Γ)

(λ − λ̃p, µ)Γ

diam(Ω)1/2|k1/2µ|H1(Γ)

= diam(Ω)−1/2k−1/2 sup
µ∈H1

0
(Γ)

(λ − λ̃p, µ − µ̃p)Γ

|µ|H1(Γ)

,

(3.15)

where µ̃p denotes the L2–projection of µ on Λp, and (·, ·)Γ denotes the usual inner product
of L2(Γ). Furthermore,

(λ − λ̃p, µ − µ̃p)Γ =
∑

j

(λ − λ̃p, µ − µ̃p)Γj
≤
∑

j

||λ − λ̃p||L2(Γj)||µ − µ̃p||L2(Γj)

=
∑

j

`jp
−1
j ||λ − λ̃p||L2(Γj)`

−1
j pj||µ − µ̃p||L2(Γj)

≤
(

∑

j

`2
jp

−2
j ||λ − λ̃p||2L2(Γj)

)1/2(
∑

j

`−2
j p2

j ||µ − µ̃p||2L2(Γj)

)1/2

.

(3.16)
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We exploit the estimate (3.13) with t = s− 1/2 (resp. t = 1) to bound the first (resp. the
second) term at right-hand side of (3.16) and obtain

(λ − λ̃p, µ − µ̃p)Γ ≤ C

(

∑

j

`2s+1
j p

−(2s+1)
j |λ|2Hs−1/2(Γj)

)1/2(
∑

j

|µ|2H1(Γj)

)1/2

≤ C
(

∑

j

`2s+1
j p

−(2s+1)
j |λ|2Hs−1/2(Γj)

)1/2

|µ|H1(Γ).

(3.17)

From (3.15) and (3.17) we easily get

(3.18) beλ − λ̃pbe−1,Γ ≤ C diam(Ω)−1/2k−1/2
(

∑

j

`2s+1
j p

−(2s+1)
j |λ|2Hs−1/2(Γj)

)1/2

.

Finally, from (3.18) and estimate (3.13) with t = s − 1/2, by means of the interpolation
theory between function spaces as we have detailed above, we end up with

(3.19) beλ − λ̃pbe−1/2,Γ ≤ C
(

∑

j

k−1`2s
j p−2s

j |λ|2Hs−1/2(Γj)

)1/2

.

Inserting (3.11), (3.12), (3.14) and (3.19) in (3.10) gives the result. �

4. Numerical examples

4.1. Implementation issues. Some care has to be taken to avoid ill conditioning of the
polynomial approximation on the interface. The mass matrix corresponding to the Taylor
polynomial, for example, is the Vandermonde matrix which is notoriously ill conditioned.
We have chosen to instead work with Legendre polynomials which are orthogonal in the
L2([−1, 1]) product. Instead of programming each Legendre polynomial Pn(x) separately
for n = 0, 1, . . ., we have used the summation formula

Pn(x) =
1

2n

bn/2c
∑

k=0

(−1)k(2n − 2k)!

k! (n − k)! (n − 2 k)!
xn−2 k,

where b·c is the floor function, and integrated (analytically, in advance) products of poly-
nomials and (traces of) test functions, and derivatives thereof, term-wise.

In the examples below, we doubled the polynomial degree for the approximation of λ,
for every doubling of the number of nodes on the interface, starting with pj = 1 on the

coarsest mesh. The parameter γ was chosen as γ|Γj
=

√
3/hmin where hmin denotes the

smallest element size along Γj .

4.2. Interior domain. We considered the domain Ω := (0, 3) × (0, 3) divided into one
interior domain Ω1 := (1, 2)×(1/2, 3/2) and one exterior Ω2 := Ω\Ω1. We set κ1 = κ2 = 1,

f =
2 π2

9
sin (πx/3) sin (πy/3),
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and boundary conditions such that the analytical solution is

u = sin (πx/3) sin (πy/3).

The initial and final meshes, with the elevation of the corresponding approximate solution,
are shown in Fig. 2, and in Fig. 3 we show the corresponding convergence behavior, second
order convergence in L2–norm and first order convergence in broken energy norm.
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Figure 4. Convergence in L2 and in broken energy norm for the inconsistent method.

4.3. The case κ1 6= κ2. Consider solutions to the ordinary differential equation

−
∑

i

d

dx

(

κi
dui

dx

)

= 1; [u(1/2)] = 0; κ1
du1

dx
(1/2) = κ2

du2

dx
(1/2).

The domain is (0, 1), with an interface at x = 1/2. While this is a one-dimensional
problem, we solved it numerically in 2D on the domain (0, 1)× (0, 1), with zero Neumann
boundary conditions at y = 0 and y = 1. The equation has a closed-form solution that,
for homogeneous Dirichlet boundary conditions at x = 0 and x = 1, is given by

u1(x) =
(3 κ1 + κ2) x

4 κ2
1 + 4 κ1 κ2

− x2

2 κ1
, u2(x) =

κ2 − κ1 + (3 κ1 + κ2) x

4 κ2
2 + 4 κ1 κ2

− x2

2 κ2
.

We chose κ1 = 1/2, κ2 = 3.
The initial and final meshes, with the elevation of the corresponding approximate solu-

tion, are shown in Fig. 5, and in Fig. 6 we show the corresponding convergence behavior,
again with second order convergence in L2–norm and first order convergence in broken
energy norm.

5. Concluding remarks

We have introduced and analyzed a new stabilized Lagrange multiplier method for inter-
face problems. The basic idea in this method is to avoid integrating products of piecewise
function from the two trace meshes, and instead use a global polynomial for the multiplier.
It should be pointed out that the stability of our method is not related to the globalness
of the polynomial; if a global polynomial is not feasible, some other simple approximation
on the interface could be chosen (though we have not analyzed the convergence of other
choices). A typical example could be a multiplier space consisting of piecewise constant
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Figure 5. First and last mesh in the sequence corresponding to Fig. 6.
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Figure 6. Convergence in L2 and in broken energy norm.

multipliers on a structured Cartesian grid. The main point is avoiding L2–projections
between unrelated and unstructured meshes.

Future work will focus on elastic contact problems where, typically, discrete Lagrange
multipliers in the nodes of the trace mesh(es) are used. With a distributed multiplier
approach, such as the one suggested here, the need for carefully selecting a master surface
(from the point of view of the discretization of the surfaces) will be alleviated since the
multiplier space will not be tied directly to the discretization of the contact surfaces.
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