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Göteborg, August 2003



A reduced P 1–discontinuous Galerkin method

R. Becker, E. Burman, P. Hansbo and M. G. Larson
NO 2003–13
ISSN 1404–4382

Chalmers Finite Element Center
Chalmers University of Technology
SE–412 96 Göteborg
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A REDUCED P 1–DISCONTINUOUS GALERKIN METHOD

ROLAND BECKER, ERIK BURMAN, PETER HANSBO, AND MATS G. LARSON

Abstract. We propose a reduced linear discontinuous finite element method, with ap-
plications to convection–diffusion and Stokes’ problem. We show stability and optimal a
priori error estimates of the resulting schemes. We also discuss formulations for explicit
time-stepping and give some numerical examples.

1. Introduction

Standard continuous Galerkin-based finite element methods have poor stability proper-
ties when applied to convection-dominated flow problems, and require delicate balancing of
approximations when applied to incompressible problems. In contrast, the Discontinuous
Galerkin (DG) method is known to have good stability properties when applied to first
order hyperbolic problems, see, e.g., Lesaint & Raviart [13] and Johnson & Pitkäranta [11].
It also alleviates locking in (near) incompressible elasticity, cf. Hansbo & Larson [9].

In fluid mechanics applications, there are several other possibilities to stabilize the dis-
crete problem resulting from a finite element discretization. One well known example
is the Streamline Diffusion (SD) method and its relatives (e.g., Galerkin/least-squares).
Nevertheless, the DG method has two important advantages over the SD method:

(1) Most importantly, the SD method is not well suited for explicit time stepping
schemes in that the mass matrix cannot easily be lumped. Instead the SD method
for time-dependent problems is usually formulated as an implicit space–time finite
element method with space–time stabilization, cf. Hansbo [7]. It should be noted
that it is not straightforward to use lumped mass with the approximation presented
here; we show that it is nevertheless possible to obtain diagonal mass matrices
suitable for explicit sovers (cf. Section 5.2 below).

(2) The choice of the free streamline diffusion parameter is not always clear cut, espe-
cially for non-diagonalizable convective systems (e.g., compressible flow, cf. [7]).

Unfortunately, the number of degrees of freedom in the DG method is much larger than
in an SD method of the same accuracy. For this reason, we propose a combination of
continuous and discontinuous elements, with the discontinuous component overlaying the
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continuous one. A typical reduction of the number of degrees of freedom is as follows: for
a scalar problem in three dimensions, where a standard trilinear finite element method has
O(N) unknowns and the corresponding DG method has O(8N) unknowns, the proposed
method has O(2N) unknowns. This paper aims to show that we retain the crucial advan-
tages of the DG method for convection-dominated problems, and for avoiding locking, in
spite of the considerable reduction in the number of unknowns.

2. Formulation of the method

To define the method we introduce a partition T = {T} of Ω into simplices T satisfying
the minimal angle condition. Further, we let the mesh function h : Ω → (0,∞) be defined
by h|T = hT = diam(T ). We let

P k(T ) = {v : v is a polynomial of degree ≤ k on T},

and define the continuous discrete space

Vh = {v : v|T ∈ P 1(T ), ∀T ∈ T, v ∈ C0(Ω), v = 0 on ∂Ω}.

We shall seek approximation in the discontinuous space

Wh = Vh ⊕ {v ∈ L2(Ω) : v|T ∈ P 0(T ), ∀T ∈ T},

i.e., the approximation is built from a piecewise linear, continuous, component and a
piecewise constant component. This has the advantage of including the piecewise constants
into the test space (which turns out to be crucial for stability) while keeping the number of
degrees of freedom lower than in the full DG method with a discontinuous piecewise linear
approximation.

We suppose that the computational mesh satisfies the following two regularity conditions.
If h and h̃ are the diameters of two neighboring elements then κ−1h ≤ h̃ ≤ κh, and if hT

is the element diameter and hmin
∂T the length of the shortest element side then hT < Chmin

∂T ,
where C and κ will be specified later.

Remark 1. A special feature of our approximation is that the global constant can be repre-
sented both by the continuous and the discontinuous fields. This can be handled in different
ways; we have chosen what seems to be the simplest approach from an implementation
point of view: the boundary condition is enforced strongly on Vh which is combined with a
weak enforcement of zero boundary conditions on Wh (which is expressed implicitly in the
definition of the method below).

2.1. Model problem. We consider the following linear convection-diffusion problem

β · ∇u + σu − ε∆u = f in Ω

u = 0 on ∂Ω.
(2.1)
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Where β for simplicity is a constant unit vector, and ε and σ are both positive constants.
To continue, let nT denote the outward pointing normal to ∂T , and, for x ∈ ∂T let

(2.2) 〈v〉 :=

{

(v+ + v−)/2 on ∂T \ ∂Ω,

2v+ on ∂T ∩ ∂Ω,

and

(2.3) [v] :=

{

v+ − v− on ∂T \ ∂Ω,

v+ on ∂T ∩ ∂Ω,

where
v± = lim

s↓0
v(x ∓ snT ).

Further, let

∂Tin = {x ∈ ∂T : nT (x) · β(x) < 0}, vu = lim
s↓0

v(x − sβ),

∂Tout = {x ∈ ∂T : nT (x) · β(x) ≥ 0}, vd = lim
s↓0

v(x + sβ).

On each edge E = T+ ∩ T− in the partition E = {E}, the mesh parameter h is defined by

(2.4) h :=
m(T+) + m(T−)

3m(E)
,

where m(·) denotes the appropriate Lebesgue measure. To each edge E, we associate a
fixed normal vector n := nT+ . We seek a function U ∈ Wh such that

(2.5) a(U, v) + Jγ
0 (U, v) = L(v), ∀v ∈ Wh

where, using the notation

(u, v)T =

∫

T

u v dx, (u, v)∂T =

∫

∂T

u v ds,

we define

a(U, v) :=
∑

T∈T

(ε∇U,∇v)T +
∑

T∈T

(β · ∇U + σU, v)T −

1

2

∑

T∈T

(〈εnT · ∇U〉, [v])∂T ±
1

2

∑

T∈T

(〈εnT · ∇v〉, [U ])∂T +

∑

T∈T

(|nT · β| (Ud − Uu), vd)∂Tin
,

and

L(v) :=

∫

Ω

fvdx.

Finally, Jγ
0 is a penalty–like term defined by

Jγ
0 (U, v) :=

1

2

∑

T∈T

(γεh−1[U ], [v])∂T .
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We note the possibility of choice of sign in the bilinear term, corresponding to a symmetric
or antisymmetric diffusion tensor.

Choosing v|T = 1 we immediately find that the numerical scheme satisfies the following
local mass conservation property

∫

T

σU dx −

∫

∂T

(

ε∇U · nT −
γε

h
[U ]
)

ds +

∫

∂T\∂Ω

β · nT U ds =

∫

T

fdx,

in the same way global conservation follows by choosing v|Ω = 1.
By use of Green’s formula we readily establish that the method is consistent in the sense

that

(2.6) a(u − U, v) = 0, ∀v ∈ Wh

and for u a sufficiently regular solution of (2.1).

3. Stability of the method

The difference between the the reduced discontinuous P 1–element and a fully discontin-
uous Galerkin method is that the reduced element does not permit local stability estimates
in the same sense since the P1 contribution is continuous. Therefore we will prove global
stability for the gradients and the jumps and for the streamline derivative when ε < h.
To simplify the analysis below we choose the negative sign in a(U, v). The analysis can be
carried out in either case with only minor modifications.

Lemma 1. The bilinear form a(U, v) satisfies the following stability estimates

(3.1)

a(U, U) + Jγ
0 (U, U) =

∑

T

(

‖ε1/2∇U‖2
T + ‖σ1/2U‖2

T

+

∫

∂Tin

|β · nT |[U ]2 ds
)

+ Jγ
0 (U, U)

≤ C‖f‖2

and if ε < h, h < σ−1,

(3.2)
∑

T

‖C1/2h1/2β · ∇U‖2
T + a(U, U) + Jγ

0 (U, U) ≤ C‖f‖2.

PROOF. The first stability estimate is a direct consequence of Lemma 9.3 in [10]. The
second estimate follows by choosing v = Chβ · ∇U ∈ Wh and using the fact that ∇v = 0
to obtain

‖C1/2h1/2β · ∇U‖2
T + (σU, Chβ · ∇U)T

+(|β · nT |(Ud − Uu), Chβ · ∇Uu)∂Tin

−
∑

∂T∈T

(〈εnT · ∇U〉, Chβ · ∇U)∂T + Jγ
0 (U, Chβ · ∇U)

=

∫

T

fChβ · ∇Udx
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Using the inverse inequality

(3.3) ‖h1/2∇w‖2
L2(∂T ) ≤ CN‖∇w‖2

L2(T ),

valid for w ∈ Wh, we have

|(|β · nT |(Ud − Uu), Chβ · ∇Uu)∂Tin
| ≤

≤
1

2

∫

∂Tin

|β · nT |[U ]2 ds +
CN

2
‖C|β · nT |

1/2h1/2β · ∇U‖2
T ,

|(εnT · ∇U, Chβ · ∇U)∂T | ≤
CN

2

(

‖ε1/2∇U‖2
T + ‖Cε1/2β · ∇U‖2

T

)

and

Jγ
0 (U, Chβ · ∇U) =

1

2
Jγ

0 (U, U) +
1

2
‖Ch1/2β · ∇U‖2

Recalling that ε < h, h < σ−1 we thus have, for C sufficiently small,

‖C1/2h1/2β · ∇U‖2 ≤ C̃a(U, U) + ‖h1/2f‖2

= C̃(f, U) + ‖h1/2f‖2

and the desired stability estimate follows.

4. Convergence

We define the norm ||| · ||| by

|||U |||2 =
∑

T

(

‖C1/2h1/2β · ∇U‖2
T + ‖ε1/2∇U‖2

T

+‖σ1/2U‖2
T +

∫

∂T

|β · nT |[U ]2 ds
)

+ Jγ
0 (U, U).

By arguing as in the proof of Lemma 1 it is easy to show that there exists constants αi

such that, for ε < h, h < σ−1, and v ∈ Wh, there holds

(4.1) α1|||v|||
2 ≤ a(v, v + Chβ · ∇v) + Jγ

0 (v, v + Chβ · ∇v),

and

(4.2) |||Chβ · ∇v||| ≤ α2|||v|||.

Let now ũ be any P1 ∩C0 interpolant of u with optimal interpolation properties. As an
immediate consequence of standard interpolation theory we have

|||u − ũ||| ≤ C(h3/2 + ε1/2h + σ1/2h2)|u|H2(Ω).

We decompose the error into

|||u − U ||| ≤ |||u − ũ||| + |||U − ũ|||.

For the second part we use (2.6) and (4.1) to obtain, using the notation ẽ = U − ũ
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α1|||ẽ|||
2 ≤ a(ẽ, ẽ + Chβ · ∇ẽ) + Jγ

0 (ẽ, ẽ + Chβ · ∇ẽ)

= a(u − ũ, ẽ + Chβ · ∇ẽ) + Jγ
0 (u − ũ, ẽ + Chβ · ∇ẽ)

=
∑

T

(

(ε∇(u − ũ),∇ẽ)T

+(β · ∇(u − ũ) + σ(u − ũ), ẽ + Chβ · ∇ẽ)T

)

+
1

2

∑

T∈T

(〈εnT · ∇(ũ − u)〉, [ẽ + Chβ · ∇ẽ])∂T

+Jγ
0 (ũ − u, ẽ + Chβ · ∇ẽ).

Using the notation w := ẽ+Chβ ·∇ẽ, we integrate by parts on each element in the second
term on the right hand side and apply the Cauchy-Schwartz inequality to obtain

∑

T

(β · ∇(u − ũ), w)T ≤
∑

T

(

−(β · ∇w, u− ũ)T

+

(
∫

∂Tin

|β · n|[w]2 ds

)1/2

|β · n|1/2‖u − ũ‖∂Tin

)

≤ C|||w|||h−1/2‖u − ũ‖

≤ C|||w|||h3/2|u|H2(Ω)

where we have used

∑

T

|(β · ∇w, u − ũ)T | ≤
∑

T

‖h1/2β · ∇w‖h−1/2‖u − ũ‖T ≤ C|||w|||h3/2|u|H2(Ω)

and

∑

T

|(β · nT (wu − wd), uu − ũu)∂Tin
| ≤

≤

(
∫

∂Tin

|β · n|[w]2 ds

)1/2

|β · n|1/2‖u − ũ‖∂Tin

≤ |||w|||Ch3/2|u|H2(Ω).
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The sum over the element edges is controlled by an application of Cauchy-Schwartz in-
equality and a trace inequality yielding

1

2

∑

T∈T

(〈εnT · ∇(ũ − u)〉, [w])∂T ≤

≤ c

(

∑

T∈T

‖h1/2γ−1/2ε1/2∇(ũ − u)‖2
∂T

)1/2

Jγ
0 (w, w)1/2

≤ c

(

∑

T∈T

‖h1/2γ−1/2ε1/2∇(ũ − u)‖2
∂T

)1/2

|||w|||

≤ c
∑

T∈T

(

h−1‖h1/2γ−1/2ε1/2∇(ũ − u)‖2
T + |hγ−1/2ε1/2u|2H2(T )

)1/2

|||w|||

≤ c ci h ε1/2 γ−1/2 |u|H2(Ω) |||w|||

The remaining terms may be bounded in the following fashion
∑

T

|(ε∇(u− ũ),∇w)T + (σ(u − ũ), w)T | ≤ |||u − ũ||| |||w|||

≤ |||w|||C(ε1/2h + σ1/2h2)|u|H2(Ω)

and Jγ
0 (ũ − u, w) ≤ Jγ

0 (ũ − u, ũ − u)1/2Jγ
0 (w, w)1/2. Hence, by virtue of (4.2), we have

proved the following

Theorem 1. Suppose that the assumptions of Lemma 1 are satisfied; then the solution U
of (2.5) satisfies the following a priori estimate

(4.3) |||u − U ||| ≤ C(ε1/2h + h3/2 + σ1/2h2)|u|H2(Ω)

Remark 2. The next natural step is to consider the case of low Peclet number, which
is easier since the problem can be considered elliptic and we only need the first stability
estimate for the H1 a priori estimate then we get L2 by duality following [16].

4.1. Numerical example. We consider the case of a convection–diffusion–reaction prob-
lem with σ = 1, β = (1, 0) and ε = 10−5, corresponding to the convection dominated
case. We choose Ω = [0, 1] × [0, 1] and use a source terms f corresponding to the exact

solution u = e(−5 (x−0.5)2−15 (y−0.5)2). In Figure 1 we show an elevation of the approximate
solutions, and in Figure 2 we show the convergence in L2. This example gives second order
convergence which is typical for DG methods; a better rate than the theoretical one is
usually obtained on structured meshes.

5. Further developments

5.1. The incompressible Stokes problem. The linear convection–diffusion problem is
of limited engineering interest; a more important class of problems in CFD is described
by the incompressible Navier–Stokes equations. To indicate the usefulness of the proposed
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Figure 1. Elevation of the approximate eolution on the last mesh in the
sequence used to check convergence.
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Figure 2. Second order convergence in L2.

approach method in a more general setting we give a simple stability proof for the in-
compressible Stokes equations using velocities approximated by Wh in combination with
piecewise linear, continuous, pressures.

Consider thus the problem of finding

u ∈ V = {[H1(Ω)]2 : v|∂Ω = 0}

and p ∈ L2(Ω)/R such that

(5.1) a(u, v) + b(p, v) + b(q, u) = L(v), ∀(v, q) ∈ V × L2(Ω)/R,

where

a(u, v) :=

∫

Ω

2µε(u) : ε(v) dx, b(p, v) := −

∫

Ω

p∇ · v dx,
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and

L(v) :=

∫

Ω

f · v dx.

Here, µ is a constant, f is a given body force, the components of the strain tensor ε(u)
are given by

εij =
1

2

(∂ui

∂xj
+

∂uj

∂xi

)

,

and ε : τ =
∑

ij εijτij for tensors ε and τ .
It is well known that standard Galerkin-based continuous finite element methods for

(5.1) are unstable unless and inf-sup condition is satisfied for the discrete spaces. We will
now define a discontinuos/continuous element that is a discontinuous relative of the MINI
element of Arnold, Brezzi, and Fortin [1], and thus is stable.

We shall seek velocities U ∈ [Wh]
2 and pressures P ∈ Qh, where

Qh = {v : v|T ∈ P 1(T ), ∀T ∈ T, v ∈ C0(Ω)},

i.e., the approximation of the pressure is continuous, piecewise linear, and the velocities
have one continuous and one discontinuous component.

Consider now the problem of finding (U , P ) ∈ [Wh]
2 × Qh such that

(5.2) ah(U , v) + bh(P, v) + bh(q, U) = L(v) ∀(v, q) ∈ [Wh]
2 × Qh,

where

ah(U , v) :=
∑

T∈T

(2µε(U), ε(v))T +
1

2

∑

T∈T

(2µ γ h−1[U ], [v])∂T

−
1

2

∑

T∈T

(2µ〈nT · ε(U))〉, [v])∂T

−
1

2

∑

T∈T

(2µ〈nT · ε(v))〉, [U ])∂T ,

bh(P, v) = −
∑

T∈T

(P,∇ · v)T +
1

2

∑

T∈T

(P, [v · n])∂T ,

and

L(v) :=
∑

T∈T

(f , v)T .

We now introduce the energy-like norm

|||v|||2 :=
∑

T∈T

(2µε(v), ε(v))T +
1

2

∑

T∈T

(2µ γ h−1[v], [v])∂T ,

and the quotient norm

‖q‖0 := ‖q‖L2(Ω)\R,
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and recall that a discrete method for Stokes can be stable only if the approximating spaces
fulfill the inf-sup condition, which in this case reads

(5.3) inf
q∈Qh

sup
v∈[Wh]2

bh(q, v)

|||v|||‖q‖0

≥ c0,

where c0 is a fixed positive constant. This condition can be verified by constructing an
interpolant πh : V → [Wh]

2 such that

(5.4) bh(q, v − πhv) = 0 ∀(v, q) ∈ V × Qh,

and

(5.5) |||v||| ≤ c |||πhv||| ∀v ∈ V,

see Brezzi and Fortin [3]. Since the pressure is piecewise linear and continuous, we find,
by integration by parts, that (5.4) can be written

∫

Ω

(v − πhv) · ∇q dx = 0 ∀(v, q) ∈ V × Qh,

which can be written as

(5.6)

∫

T

(v − πhv) dx = 0 ∀v ∈ V, ∀T ∈ T.

This condition can be verified in the same way as for the MINI element [1]: first we
introduce the Clément interpolant πC

h : V → [Wh]
2 satisfying

(5.7)
∑

T∈T

h−2
T ‖πC

h v − v‖2
L2(T ) ≤ C|||v|||2

and

(5.8)
∑

T∈T

h−1
T ‖πC

h v − v‖2
H1(T ) ≤ C|||v|||2.

We next verify (5.6) by writing

πhv := πC
h v + αT , where αT :=

1

m(T )

∫

T

(πC
h v − v) dx

is the mean value over T of the difference between the Clément interpolant of v and v

itself. In order to verify (5.4), we note that, by Hölder’s inequality,

(5.9) |αT | ≤
1

m(T )
‖πC

h v − v‖L1(T ) ≤
C

hT

‖πC
h v − v‖L2(T )



A REDUCED P
1–DISCONTINUOUS GALERKIN METHOD 11

so that

(5.10)

|||πhv|||
2 ≤ |||πC

h v|||2 +
1

2

∑

T∈T

〈2µ γ h−1[αT ], [αT ]〉∂T

≤ |||πC
h v|||2 + C

∑

T∈T

|αT |
2

≤ |||πC
h v|||2 + C

∑

T∈T

h−2
T ‖πC

h v − v‖2
L2(T )

≤ C|||v|||2,

where the last inequality follows from (5.9) and the stability of the Clément operator.

5.1.1. Numerical example. We consider the unit square with exact flow solution (from [15])
given by u = (20 x y3, 5 x4 − 5 y4) and p = 60 x2y − 20 y3 + C. Choosing γ = 10µ and
imposing zero mean pressure (C = −5), we obtain the convergence shown in Figure 3;
second order for the velocity and approximately O(h3/2) for the pressure in L2–norm.

-5 -4 -3 -2 -1
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

log( h)

lo
g(

L
2-e

rr
or

)

Velocity
Pressure

Figure 3. L2-norm convergence of the velocity and of the pressure for Stokes.

Pressure isolines and velocity vectors on the final mesh in the sequence used to obtain
the convergence plot are shown in Figures 4 and 5. Note the oscillations in the pressure
near the boundaries. Our experience is that these cannot be gotten rid of by other choices
of γ.
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Figure 4. Pressure isolines.

Figure 5. Finite element solution for the velocity.

5.2. Explicit time-stepping. We noted in the Introduction that one motivation for the
DG method in general is the ease with which explicit time-stepping algorithms can be
used. Indeed, in a DG method one can use L2−orthogonal bases so that the mass matrix
is diagonal by default (see, e.g., [12]). This is not the case with functions in W h, but there
is a way around this. To illustrate this, we simply consider an L2−projection of a function
g onto W h: Find U ∈ W h such that

∫

Ω

U v dΩ =

∫

Ω

g v dΩ, ∀v ∈ W h.

The case of an explicit time-stepping scheme yields a similiar problem with right-hand side
emanating from the solution at previous time-levels (plus boundary terms which are of no
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consequence for the current discussion). We consider the case when the solution is split
(hierarchically) into two parts, one continuous, Uc, and one discontinuous, Ud. The nodal
values corresponding to the continuous part are denoted uc and the discontinuous part ud,
and thus we have the following linear problem to solve:

[

M c BT

B M d

] [

uc

ud

]

=

[

gc

gd

]

.

Since the constant function can be represented both by the continuous and the discontinu-
ous fields, the problem is in fact underdetermined. In order to settle this problem, we may
(for instance) choose to require that the discontinuous field fulfills

(5.11) BTud = 0.

We lump the matrix M c using row-sum to obtain ML and solve

MLuc = gc

and

M dud = gd − B M−1
L gc,

with both ML and M d diagonal matrices. It is well known (cf. [8]) that the row-sum
lumped mass matrix conserves mass, so we have that

∫

Ω

Uc dΩ =

∫

Ω

g dΩ;

thus the condition (5.11) makes the discontinuous field massless.

5.2.1. Numerical example. We consider the domain (0, 1)× (0, 1) on which we convect the
initial data

u = e−100 ((x−1/2)2+(y−1/4)2),

using the velocity field β = (1/2 − y, x − 1/2). The initial data are interpolated in the
linear part of the approximation and the piecewise constant part is put to zero. In Figures
6 and 7 we give the initial solution and the solution after one full rotation using the ode45

solver in Matlab
r© (without default options). The maximum value after one rotation is

U ≈ 0.8521, a loss of 15%. Finally, In Figure 8, we also show the corresponding results
when instead prescribing the continuous field to have zero mass (which is done analogously).
Then the approximation has better local conservation properties, which may explain that
the maximum value after one rotation is U ≈ 0.9060, a loss of only 9%.
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