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Sweden
Telephone: +46 (0)31 772 1000
Fax: +46 (0)31 772 3595
www.phi.chalmers.se

Printed in Sweden
Chalmers University of Technology
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NITSCHE’S METHOD COMBINED WITH SPACE–TIME FINITE

ELEMENTS FOR ALE FLUID–STRUCTURE INTERACTION

PROBLEMS

PETER HANSBO, JOAKIM HERMANSSON, AND THOMAS SVEDBERG

Abstract. We propose a weak method for handling the fluid-structure interface in finite
element fluid-structure interaction based on Nitsche’s method [14]. We assume transient
incompressible Newtonian flow and, for the structure, undamped linear elasticity. For
the time-discretization, we use the time-continuous (energy conserving) Galerkin method
for the structure, and for the fluid we employ the time-discontinuous Galerkin method.
This means that the velocity becomes piecewise constant on each timestep for the fluid,
matching the time-derivative of the displacements in the solid which is also piecewise
constant over a time step. We formulate the method and report some numerical examples
using space-time oriented elements for the fluid in order to mimic Lagrangian or ALE-type
simulations.

1. Introduction

In the simulation of Fluid-Structure Interaction (FSI), the coupling between the fluid
and the structure is usually handled using partitioned methods, where different codes are
used for the different physical domains, see, e.g., [5, 13, 15]. There are advantages to this
approach, most prominently that different codes can be used for the different problems
of solid and fluid modeling. On the other hand, since the solution procedure basically
becomes a fixed point iteration scheme, the overall efficiency may not be the best [12]. In
any case, the problem of how to couple motion and ensure equilibrium across the interface
between the fluid and solid domains has to be addressed. This can be done by interpolating
quantities from one mesh to the other as in [5], which is easiest if the approach is viewed
as partitioned already at the outset, or by matching unknowns at the interface [12], which
requires matching meshes, or, perhaps most conveniently, by means of Lagrange multiplier
techniques [1, 4, 15]. It is, however, well known that Lagrange multipliers may be unstable
if the relation between the discretization of the continua and the discretization of the
multipliers is not chosen correctly, cf. [3]. Thus, it is not clear how to formulate a general
Lagrange multiplier approach, in particular in view of the fact that the fluid mesh typically
must be allowed to move relative to the structure mesh.
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The aim of this paper is to propose a general, globally coupled, approach by means
of the consistent weak coupling method originally proposed by Nitsche [14] for handling
Dirichlet boundary conditions. This method is optimally convergent, stable, and can handle
non-matching meshes, as was shown by Becker, Hansbo & Stenberg [2], where the case of
coupling non-matching meshes for the solution of Poisson’s equation was considered. Other
recent applications of this approach include the elasticity problem with imperfect bonding
on the interface [6], and the acoustic FSI problem [10].

In standard ALE formulations, the velocities are approximated using fixed (time-inde-
pendent) basis functions. The ALE equations are then solved in a fixed domain at a
given time, say the end of a given timestep. The mesh and velocities are updated in
an iterative loop. In contrast, the space–time finite element method we use implies that
the velocities are approximated using time-dependent basis functions, and the equations,
which are retained in their Eulerian form, are integrated over the whole of the timestep (as
opposed to a fixed time). We believe that this approach is conceptually much simpler: it is
the space–time that is meshed and the ALE effect is achieved simply by the inclination of
the elements in space–time. A particular feature of our approach is that the mesh geometry
is tied to the approximation. This can be understood from the following argument. In a
purely Lagrangian approach, the nodes will follow the path given by the computed velocity
field. In the present paper, we will use a piecewise constant temporal approximation (along
the paths), though higher order elements are of course possible. The relation between the
velocity vF and the Lagrangian particle paths x(t) is given by the ODE vF = dx/dt, and
thus it is natural that the geometry should vary linearly in time whenever the velocity
is constant. Thus our approach relies heavily on finite element technology: isoparametric
maps in space and a superparametric map in time from a reference element. In a standard
ALE formulation the particle paths are typically approximated by solving the ODE using
finite difference technology. Some benefits of using the space–time approach are:

• Clear conservation properties due to the variational framework (cf. [18])
• Conceptual simplicity; finite element techology is used both in space and time
• Streamline diffusion stabilization in space–time allows for simple finite element

combinations for velocity and pressure

The main drawback is the restriction to finite elements in time. Two basic possibilities
exist: discontinuous Galerkin, (used for the fluid in the current work) and time-continuous
Galerkin methods (used for the structure in the current work). Here, a standard ALE
implementation has a larger freedom of choice, which however comes at a price considering
possible stability issues.

2. Problem formulation

We shall consider the fluid-structure interaction problem described by linear elasticity
coupled with a viscous incompressible fluid; more precisely the case when the fluid is
contained inside the elastic structure, possibly with a free surface. The domain ΩS denotes
the solid domain, with boundary composed of ∂ΩS = Γ ∪ ∂ΩN

S ∪ ∂ΩD
S , where Γ is the

interface separating the solid and fluid domains, ∂ΩN
S is the part of the boundary where
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tractions are prescribed, and ∂ΩD
S is the part of the boundary where displacements are

prescribed. Analogously, we use the notation ΩF and ∂ΩF = Γ ∪ ∂ΩN
F ∪ ∂ΩD

F for the fluid
domain.

Given the body forces fS, fF and densities ρS, ρF, we seek the displacement field uS in
the solid and the velocity field vF and pressure p in the fluid, obeying the relations

ρF
∂vF

∂t
+ ρFvF · ∇vF −∇ · σ(vF, p) = fF in ΩF,(2.1)

∇ · vF = 0 in ΩF,(2.2)

ρS
∂2uS

∂t2
−∇ · σ(uS) = fS in ΩS,(2.3)

n · σ(uS) − n · σ(vF, p) = 0 on Γ,(2.4)

vF −
∂uS

∂t
= 0 on Γ,(2.5)

uS = 0 on ∂ΩD
S(2.6)

vF = 0 on ∂ΩD
F(2.7)

n · σ(uS) = 0 on ∂ΩN
S(2.8)

n · σ(vF, p) = 0 on ∂ΩN
F(2.9)

Here, the components of the stress tensor in the solid are given by

σij = λ δij∇ · uS + 2µ εij (uS) ,

where δij is the Kronecker delta,

εij(u) =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

,

and λ and µ are the Lamé constants. In the fluid, we have

σij = 2µFεij (vF) − pδij .

In case the fluid can slip along Γ, the continuity of the traction on Γ is replaced by
continuity of normal stresses σn := n · (σ · n), and continuity of velocity by continuity of
normal velocity. We have let n denote the outward pointing normal to ΩF on the interface
Γ that separates ΩF from ΩS as well as the outward pointing normal on the traction
boundaries. Equations (2.1)–(2.2) describe the incompressible Navier-Stokes equations;
(2.3) is the vibration problem of linearized elasticity; (2.4) signifies continuity of tractions;
(2.5) continuity of velocity; (2.6)–(2.7) are the displacement/velocity boundary conditons;
(2.8)–(2.9) are the traction-free boundaries.

We emphasize that we assume small deformations in the solid, so we do not make a
distinction between material and spatial time derivatives for the solid.

3. The space-time finite element formulation

In order to define the finite element form of the fluid–structure problem, we first introduce
some notations.
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The time interval 0 ≤ t ≤ T is divided into N intervals Ik as

Ik = (tk, tk+1],

where 0 = t0 < t1 < . . . < tN = T . Let V h
k denote the spatial finite element space

associated with the time interval Ik (possibly different at different intervals) and defined
by

V h
k = {v(x) : v is continuous and linear in x on each triangle} .

We introduce the mesh velocity βk ∈ V h
k and let the mesh alignment lines xk(t) be given

by equation

xk(t) = x(tk) + (t − tk)βk for t ∈ Ik.

Now, for each Ik we define a space-time reference domain Ŝk
F as

Ŝk
F = ΩF(tk) × Ik.

and a map Fk by

(x, t) = Fk(x(tk), t) = (xk(t), t).

The space-time FE spaces on the reference slab Ŝk
F are defined as

V̂ hk(Ŝk
F) = {v̂ : v̂(x(tk), t) = ŵ(xk) ∈ V h

k }

and for each function v̂(x, t) we associate a function v(x, t) by v(x, t) = v̂(x(tk), t) for
(x, t) = Fk(x(tk), t). Then our finite element space can be written

V hk(Sk) = {v : v(x, t) = v̂(x(tk), t) ∈ V̂ hk(Ŝk
F), (x, t) = Fk(x(tk), t)}.

The mesh alignment lines thus define the path a node is traveling in space-time, for instance,
if the mesh is fixed in time then βk = 0 and the path is aligned along the time axis. In
practice, the alignment defined by Fk is handled by standard superparametric mappings
from a reference element, cf. [7]. We also note that the approximation is piecewise constant
in time along the mesh lines. Thus if the mesh is allowed to move according to the computed
velocities (a Lagrangian approach), then there is a perfect match with the linear map Fk

and the convective derivative will vanish exactly. We emphasize that this does not have to
be assumed; it is a consequence of our choice of approximation of the velocities and of the
geometry of space–time.

For the structure part, for which we assume small deformations, the domain is fixed in
space (see, however, Example 4.2) and the space–time domain can be directly divided into
slabs Sk

S = ΩS × Ik. The (fixed) space-time interface can be correspondingly divided into
Sk

I = Γ × Ik. The finite element space we use is defined as

W hk(ΩS, t) = {v(x, t) : v is continuous, piecewise linear in space,

and linear in time on each Sk
S}.

The finite element formulation for the fluid–structure interaction problem can now be
written: Find V F ∈ [V hk]d, d = 2 or d = 3, P ∈ V hk, V S ∈ [W hk]d, and US ∈ [W hk]d such
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that
∫

Sk

F

ρF

(∂V F

∂t
+ V F · ∇V F

)

· ϑF dΩdt −

∫

Sk

F

P ∇ · ϑF dΩdt

+2µ

∫

Sk

F

ε(V F) : ε(ϑF) dΩdt +

∫

Sk

F

∇ · V F q dΩdt + ρF

∫

ΩF(tk)

(V +
F −V −

F ) · ϑ+
F dΩ

+

∫

Sk

F

δ1

[

ρF

(∂V F

∂t
+V F ·∇V F

)

+∇P

]

·

[

ρF

(∂ϑF

∂t
+V F ·∇ϑF

)

+∇q

]

dΩdt

+ρS

∫

Sk

S

V̇ S · ϑ̇S dΩdt +

∫

Sk

S

σ(US) : ε(ϑ̇S) dΩdt

−

∫

Sk

I

t(V F, P, US) · (ϑF − ϑ̇S) dΓdt −

∫

Sk

I

t(ϑF, q, ϑS) · (V F − U̇S) dΓdt

+ γ
∑

E∈Sk

I

∫

E

1

hE
(V F − U̇S) · (ϑF − ϑ̇S)dΓdt

=

∫

Sk

F

fF · ϑF dΩdt +

∫

Sk

F

δ1fF ·

(

ρF

(∂ϑF

∂t
+ V F · ∇ϑF

)

+ ∇q

)

dΩdt

+

∫

Sk

S

fS · ϑ̇S dΩdt

(3.1)

and

(3.2)

∫

Sk

S

(V S − U̇S) · θ̇SdΩdt = 0

for all ϑF ∈ [V hk]d, q ∈ V hk, ϑS ∈ [W hk]d and θS ∈ [W hk]d. At time t = 0, V −

F = vF(x, 0).
Further, the superscribed dot denotes time derivative. The stabilizing parameter δ1 in the
streamline diffusion method is given by δ1 = C1

1
2
h/(1+|V F|), see [7], where C1 is a positive

constant of O(1). Further,

v± = lim
s→0±

v(tk + s).

We note that the method is similar to a penalty-method, but with additional terms
involving the traction vector, t := σ · n, on the interaction interface. This is in order
to create a consistent method, i.e., one that holds with the exact solution inserted. The
traction vector can be chosen as any convex combination of the traction on the fluid side
and on the solid side, cf. [2]. Here, we choose to use the traction from the fluid side,
which is in line with traditional approaches where forces are transferred from the fluid to
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the solid rather than vice versa. The (computable) parameter γ has to be chosen large
enough for stability (obtaining a positive definite stiffness matrix), see [2]. In the numerical
examples below, we have chosen this parameter considerably larger than this limit in order
to avoid computing it and yet be on the safe side. The hE on each interface element, which
constitutes of two neighboring nodes in the interface, is given by hE = max(2KF

hF
, 2KS

hS
),

where KF and KS are the element areas of the adjacent fluid and structural element to the
the interface element, and hF and hS are the length of the fluid and the structural element
sides on the interface.

The origins of the terms in (3.1) are as follows. The two first rows represent the left
hand side of the weak form of the momentum equation for the fluid. The last term in the
second row invokes the ‘initial’ velocity condition weakly at the bottom of the space-time
slab, allowing for time–discontinuous fluid velocities. The third row contains the terms
arising from the perturbation of the test functions according to the streamline diffusion
method, as also the term on the right hand side including the parameter δ1. In the fourth
row we have the left hand side of the weak form of the structural momentum equation. The
fluid–structure coupling is represented by the fifth and the sixth row, where the first term
in the fifth row arises when then FE forms of the momentum equations for the fluid and
the structure are added. Further, the second term in the fifth row and the γ-term in the
sixth row are added terms according to Nitsche’s method. The first term is added in order
to symmetrize the approximation (of the viscous part), and the second term (penalty) is
added to make the method stable. Finally, equation (3.2) is present since the structural
momentum equations have been rewritten on first order form.

Choice of basis and test functions. Since the equations that describe the elastic struc-
ture in this work do not dissipate energy, we choose test functions that are of one order
lower in time than the basis functions, corresponding to the time-continuous Galerkin
method [8, 9]. The lowest order time-continuous Galerkin method is related to the Crank–
Nicolson time stepping scheme [8], which is energy conserving (this quality holds also for
higher order versions [9]).

With a piecewise linear approximation in time of the displacement field, the velocity
(more precisely, the time derivative of the approximate displacement) becomes piecewise
constant. This we match on the fluid side by employing the time-discontinuous Galerkin
method for the fluid domain, using a piecewise constant time approximation of the velocity,
which is closely related to backward Euler method. This is not crucial since the interface
conditions are imposed weakly; in principle the discretization of the fluid and solid domains
can be chosen independently in space as well as time.

4. Numerical examples

In the numerical examples the coupling is enforced weakly via the velocities according
to the formulation in (3.1). The method does not, in its current form, take the deforma-
tion of the solid into account, since the elasticity equations are formulated by the small
deformation assumption. The normal vector to the structural domain thus remains con-
stant. However, if the elastic structure undergoes large rigid body translations (but not
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rotations), the geometry changes of the fluid domain can be taken into account also with
this simple model, since the normal vector of the structure does not change during a rigid
body translation. This is demonstrated in the second numerical example.

4.1. A solitary wave encountering an elastic wall. This example treats a solitary
wave encountering an elastic wall, see Figure 1. The fluid is assumed to be inviscid and the
density is given by ρF = 1 kg/m3. Further, the gravity is g = 9.8 m/s2. The undisturbed
domain has the dimensions 160×10 m and the maximum elevation, H , of the starting wave
is 2 m. The (linear) elastic wall has the dimensions 1 × 16 m and the following material
data: E = 107 N/m2, ν = 0.3 and ρS = 10 kg/m3. Moreover, the fluid can slip on the
rigid and elastic boundaries. This means that the coupling terms contain only the normal
component of the traction. Thus the Nitsche terms in the FE formulation (3.1) can be
written as

−

∫

Sk

I

σn(V F, P, US)(ϑF − ϑ̇S)·ndΓdt −

∫

Sk

I

σn(ϑF, q, ϑS)(V F − U̇S)·ndΓdt

+ γ
∑

E∈Sk

I

∫

E

1

hE

(

n · (V F − U̇ S)
)(

(ϑF − ϑ̇S) · n
)

dΓdt.

The starting wave and its velocity field, see Figure 2, is generated using Laitone’s approx-
imation, see, e.g., [16]. The velocities and the elevation, η, are according to Laitone’s
approximation given as

v1 =
√

gd
H

d
sech2

(

(x1 − ct)

√

3H

4d3

)

,

v2 =
√

3gd

(

H

d

)3/2
x2

d
sech2

(

(x1 − ct)

√

3H

4d3

)

tanh

(

(x1 − ct)

√

3H

4d3

)

,

η = Hsech2

(

(x1 − ct)

√

3H

4d3

)

,

where

c =

√

gd

(

1 +
H

d

)

.

In the computations the nodes on the free surface are moved with the particle velocity,
and the interior nodes the are moved using Laplacian smoothing. The coefficient in the
stabilizing parameter in the streamline diffusion method is chosen as C1 = 0.01. Further,
the parameter in the coupling term is set to γ = 104. The fluid mesh contains 2298 elements
and 1286 nodes, and the structural mesh contains 240 elements and 164 nodes. The time
step is 0.02 s. Further, the wall displacement at the initial state, see Figure 5, is computed
using the static pressure.

The results are presented as follow: Snapshots of the starting wave and the wave when
the wave crest reaches its maximum are depicted in Figure 2. The wave crest height versus
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d

H η(x, t)

Figure 1. Initial computational domain.

time does not differ significantly in the presence of the elastic wall in comparison to a rigid
wall, see Figure 3. The maximal wave heights occur at t = 7.3 s and is 14.60 m for the
rigid wall and 14.56 m for the elastic wall. The maximum pressures occur for both cases
at t = 7.14 s, and are with the elastic wall and the rigid wall 132.8 N/m2 and 132.3 N/m2,
respectively. The results obtained with the rigid wall can be compared with the results
presented in [16], where the maximum wave height was 14.48 m and occured at 7.6 s. In
Figure 4 the horizontal tip displacement and velocity of the elastic wall versus time are
given. A spectral analysis of the tip displacement shows that the superimposed frequency,
shown in Figure 4, is about 1.4 Hz. This value is close to the second eigenfrequency of
the wall, which is 1.29 Hz. To verify that the excitation of the superimposed frequency is
not due to an imbalance in the equilibrium at the interface at the initial state, we added
damping during about a second, and as soon as the damping was released the superimposed
frequency appeared again.

The lowest eigenfrequency of the wall is 0.034 Hz and the third is 9.5 Hz. Further, the wall
displacement at maximum tip displacement is seen in Figure 5. To see how well the normal
velocity coupling works, the normal velocities at the interface are plotted at two different
times, see Figure 6. Note that the structural velocities at the interface are computed as
U̇S = (U k+1

S − U k
S)/(tk+1 − tk), since it is U̇S that is included in the coupling terms, see

(3.1). We conclude that the fluid flow is only marginally influenced by the appearance of
the elastic wall with our choices of input data.

4.2. Flow past a cylinder connected to an elastic spring. In the second example, flow
past a cylinder connected to a vertical elastic spring in a rectangular domain is simulated.
In this example, the displacement of the solid domain is so large that its effect on the fluid
domain has to be taken into account. Note, however, that we still use small deformation
theory in the solid; thus, in all other respects it may still be considered fixed.

The domain has the dimensions 61× 32 m, and the cylinder has the radius r = 1 m and
is positioned at (16, 16). Constraints that hinder the cylinder to move in the x1-direction
are applied on two nodes. The fluid mesh has 3807 elements and 1986 nodes. The cylinder
is modeled using 472 elements and 262 nodes. The structural nodes on the cylinder surface
are positioned such that the structural and the fluid elements match on the interface.
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Figure 2. A solitary wave encountering an elastic wall. Start wave (top)
and a snapshot at t = 7.3 s (bottom). The vertical axis is exaggerated 4
times.
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Figure 3. Wave crest height (measured from the bottom of the domain)
versus time for a rigid and an elastic wall.
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Figure 4. Tip displacement (left) and tip velocity (right) of the elastic wall
versus time.

Figure 5. Wall displacement at initial state (dashed line) and at time t =
7.3 m (solid line). Exaggerated 20 times.

Further, the coefficient in the streamline diffusion method is C1 = 1, and the parameter
in the coupling term is γ = 106. On the inflow boundary (the left) the velocities are
prescribed as {v1, v2} = {1, 0}m/s, and on the outflow boundary a traction-free condition
is imposed. The no-slip condition is applied on the top and the bottom boundaries, and
on the cylinder surface. Further, the coefficient of viscosity is µF = 0.01 kg/(ms) and the

density ρF = 1 kg/m3. The following structural input data are used: ρS = 1 kg/m3, Young’s
modulus E = 2.1·1011 N/m2, Poisson’s ratio ν = 0.3, and the spring stiffness k = 0.86 N/m.
These structural data give an eigenfrequency of 0.083 Hz, which corresponds to a Strouhal
number St = 0.166. Further, plain strain was assumed.

In order to obtain a periodic solution, we first carry out a computation with a fixed
cylinder. The Reynolds number Re = 100 is used, defined as Re := ρFV r/µF, where V
is the inflow velocity. The last part of the periodic results of the lift and drag coefficients
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Figure 6. The normal velocity at the interface at at t = 5.3 s (left) and
t = 7.3 s (right).
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Figure 7. Lift (left) and drag (right) coefficients versus time for the fixed cylinder.

versus time can be seen in Figure 7. Note that the time scales are shifted to zero. The
lift and drag coefficients are defined as CL = FL/(1

2
ρFV 2r) and CD = FD/(1

2
ρFV 2r),

respectively, where FL is the lift force and FD is the drag force. The Strouhal number,
St := 2fr/V , where f is the frequency of the vortices, is calculated to St = 0.158. This
can be compared with St = 0.167 obtained in [17], where twice as many nodes were used.

In the simulation of the cylinder connected to the vertical spring, the solution from the
fixed cylinder simulation at time t = 0 is used as a start solution, see Figure 10. The
eigenfrequency of the spring mass system is 0.083 Hz, which is close the periodicity of the
lift coefficient, namely 0.079 Hz. The lift coefficient at the initial state is CL = 0.034. The
vertical displacement and velocity of the cylinder versus time are seen in Figure 9, and
the drag and lift coefficients are seen in Figure 8. Snapshots of the velocity field and the
pressure at different times are seen in Figure 10.
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Figure 8. Lift (left) and drag (right) coefficients versus time for the cylinder
connected to a vertical spring.
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Figure 9. The vertical displacement (left) and the vertical velocity (right)
of the cylinder connected to an elastic spring.

In order to retain a valid mesh, mesh smoothing has to be performed. In this example,
standard Laplacian smoothing turned out not to be enough to provide a reasonable mesh
due to crowding of nodes near Γ, see Figure 11. Instead we employed the more elaborate
method proposed by Hermansson & Hansbo [11] (with the parameter p chosen as p = 0.1).

5. Concluding remarks

We have proposed a weak coupling method for solid-fluid interaction based on Nitsche’s
method. Since the coupling conditions are formulated in weak form, the approach can
easily handle the case of non-matching meshes. In this paper, we have solved the problem
globally coupled, but this is not necessary; the approach allows for any of the classical
staggered iterative schemes to be invoked. From our point of view this is simply a question
of efficiently solving the fully coupled problem.

We have merged the Nitsche approach with a space-time finite element method which we
feel is the natural way of defining ALE methods (directly at the discrete level), and which
also yields a simple way of formulating a Nitsche method for fluid-structure interaction.
The space-time approach can be seen as a particular meshing of the space-time domain; it
is the fact that the element sides are aligned with the “mesh velocity” that gives a close
relation to classical ALE methods.
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Figure 10. The velocity field when simulating the fluid-cylinder interac-
tion. The velocity field (left) and the pressure (right). From top to bottom:
Initial state, state when cylinder reaches maximum displacment at t ≈ 294 [s]
and the minimum cylinder displacement at t ≈ 299 [s].

Examples have been given of the interaction between an incompressible fluid and a
linearly elastic structure. Future work will focus on large deformation elasticity, in which
case the fluid domain will change also due to the deformations of the solid domain.
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Figure 11. The mesh at maximum cylinder displacement (t = 36.9 [s]).
The mesh smoothed using Laplacian smoothing (left) and the method pro-
posed in [11] (with p = 0.1) (right).
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2003-03 Nitsche’s method for coupling non-matching meshes in fluid-structure vibration
problems
Peter Hansbo and Joakim Hermansson

2003-04 Crouzeix–Raviart and Raviart–Thomas elements for acoustic fluid–structure
interaction
Joakim Hermansson

2003-05 Smoothing properties and approximation of time derivatives in multistep back-
ward difference methods for linear parabolic equations
Yubin Yan

2003-06 Postprocessing the finite element method for semilinear parabolic problems
Yubin Yan

2003-07 The finite element method for a linear stochastic parabolic partial differential
equation driven by additive noise
Yubin Yan

2003-08 A finite element method for a nonlinear stochastic parabolic equation
Yubin Yan

2003-09 A finite element method for the simulation of strong and weak discontinuities
in elasticity
Anita Hansbo and Peter Hansbo

2003-10 Generalized Green’s functions and the effective domain of influence
Donald Estep, Michael Holst, and Mats G. Larson

2003-11 Adaptive finite element/difference method for inverse elastic scattering waves
L.Beilina

2003-12 A Lagrange multiplier method for the finite element solution of elliptic domain
decomposition problems using non-matching meshes
Peter Hansbo, Carlo Lovadina, Ilaria Perugia, and Giancarlo Sangalli

2003-13 A reduced P
1–discontinuous Galerkin method

Roland Becker, Erik Burman, Peter Hansbo and Mats G. Larson

2003-14 Nitsche’s method combined with space–time finite elements for ALE fluid–
structure interaction problems
Peter Hansbo, Joakim Hermansson, and Thomas Svedberg

These preprints can be obtained from

www.phi.chalmers.se/preprints


