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STABILIZED CROUZEIX–RAVIART ELEMENT FOR THE

DARCY–STOKES PROBLEM

ERIK BURMAN AND PETER HANSBO

Abstract. We stabilize the nonconforming Crouzeix-Raviart element for the Darcy-
Stokes problem with terms motivated by a discontinuous Galerkin approach. Convergence
of the method is shown, also the in limit of vanishing viscosity. Finally, some numerical
examples verifying the theoretical predictions are presented.

1. Introduction

The Darcy-Stokes problem is interesting for a variety of reasons. Apart from being a
modeling tool in its own right, it also appears, less obviously, in time-stepping methods for
Stokes and for high Reynolds number flows (where of course the convective term causes
addidtional difficulties). It would thus be advantageous if the same element could be used
in both the Stokes limit and the Darcy limit. One obvious candidate for such an element
is the nonconforming Crouzeix-Raviart (CR) element, which has several nice properties:
in combination with piecewise constant pressures it satisfies the inf-sup condition and is
elementwise mass conserving; it is also easy to implement. However, in a recent paper by
Mardal, Tai, and Winther [8] it is shown that the CR element does not converge when
applied to the Darcy problem (or the Darcy-Stokes problem with vanishing viscosity). It
is also well known that the CR element does not fulfill a discrete Korn’s inequality which
precludes the use of the physically more realistic form of the Stokes operator. Stabilization
sufficient for fulfilling the Korn’s inequality was introduced by Hansbo and Larson [7] for
the elasticity operator. In this paper we also show that a similar stabilization for a mixed
finite element method, with piecewise constant pressure, for the Darcy-Stokes problem will
ensure convergence in the Darcy limit.

For the Darcy problem, it turns out that our method yields a better convergence nu-
merically, O(h2), for the velocities than is to be expected from our analysis, which gives
errors of O(h) (here h is the mesh size parameter). The reason we cannot obtain sec-
ond order convergence in the analysis is that the error in the divergence term appears in
the form of the nonconformity in the normal jump emanating from the Crouzeix-Raviart
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approximation. Thus the error in divergence is still present which allows pollution from
the poor approximation of the pressure. In H(div) conforming methods there is no such
term, and the problem is instead to obtain the full polynomial approximation necessary
for the analysis in the Stokes case. Examples of elements with normal continuity and full
polynomial approximation include the BDM element [2], which however is nonconforming
in the Stokes case, and the construction in [8]. We remark that a drawback of such approx-
imations is that they are geometry-dependent and cannot be constructed on a reference
element, unlike the CR element.

2. Problem statement

In this paper we will consider a Darcy-Stokes problem of the following type

(2.1)
σu − 2µ∇ · ε(u) + ∇p = f in Ω,

∇ · u = g in Ω

Here Ω is an open subset of R
d, d = 2 or d = 3, with outward pointing normal n, u is the

velocity vector, p is the pressure, ε (u) = [εij(u)]di,j=1 is the symmetric part of the velocity
gradient tensor with components

εij(u) =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

,

∇ · ε =
[

∑d
j=1 ∂εij/∂xj

]d

i=1
, I = [δij]

2
i,j=1 with δij = 1 if i = j and δij = 0 if i 6= j,

tr ε(u) =
∑

k εkk(u) = ∇ · u, and f and g are given force terms. Furthermore, µ ≥ 0 is
the viscosity constant and σ ≥ 0 is a permeability constant. We assume that either σ ≥ 1
or µ ≥ 1. For simplicity we assume Dirichlet conditions on the boundary, that is, u = 0
on ∂Ω for Stokes and u · n = 0 on ∂Ω in the limit case µ = 0, i.e., Darcy flow.

The main difference between Stokes and Darcy’s equations, from the point of view of
analysis, is that in Stokes the velocities are [H1(Ω)]d whereas in the case of Darcy they
are only in H(div; Ω). This loss of regularity must be accounted for in the analysis, and
this is the main reason why the stabilized mixed nonconforming CR element combined
with piecewise constant pressures is an ideal candidate for the problem: since the incom-
pressibility condition is tested with constants the solution satisfies the incompressibility
condition exactly on each element.

In this paper we apply this mixed stabilized method to Stokes’ equations and Darcy’s
equations in a unified manner and prove optimal a priori estimates in the energy norm
applying to both systems. We also give numerical examples showing the performance of
the method on the separate problems.

3. Finite element formulation

In order to formulate our finite element method we first introduce the weak formulation
of problem (2.1). We introduce the Hilbert spaces

W D = {v ∈ Hdiv(Ω) : v · n = 0 on ∂Ω},
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for the case µ = 0,

W S = {v ∈ [H1
0 (Ω)]d},

for µ > c > 0, and

L2
0 = {q ∈ L2(Ω) :

∫

Ω

q dx = 0},

with Ω some open subset of R
d. We denote the product space W X × L2

0 by WX where X
is chosen to D or S depending on the choice of equation. Let

a(u, v) :=

∫

Ω

2 µ ε(u) : ε(v) dΩ +

∫

Ω

σu · v dΩ

and consider the bilinear form

(3.1) B[(u, p), (v, q)] = a(u, v) − (p,∇ · v) + (q,∇ · u).

The weak formulation of (2.1) now takes the form, find (u, p) ∈ WX such that

(3.2) B[(u, p), (v, q)] = (f, v) ∀(v, q) ∈ WX

Let Th be a conforming, shape regular triangulation of Ω and Eh denote the set of all element
sides in the mesh. We introduce the non-conforming Crouzeix-Raviart finite element space
of piecewise linears and piecewise constants

Vh := {v : v|K ∈ [P1(K)]d :

∫

e

[v] ds = 0, ∀e ∈ Eh},

where [v] denotes the jump across the edge for internal edges and [v] = v for e ∩ ∂Ω 6= ∅.
Further,

Qh := {q : q|K ∈ P0(K) :

∫

Ω

q dx = 0}.

We will also use the space

Wh := {v ∈ Vh :
∑

K

∫

K

∇ · v q dx = 0 ∀q ∈ Qh}.

It is well known (see, e.g., [2]) that the spaces Vh, Qh satisfy the inf-sup condition and
hence Wh is non-empty.

We introduce the following bilinear form on which we will base our finite element method

(3.3)
Bh[(u, p), (v, q)] = ah(u, v) − (p,∇ · v)h

+(q,∇ · u)h + Jµ(u, v) + J0(u, v)

where

ah(u, v) =

∫

Ω

σu · v dΩ +
∑

K

∫

K

2 µ ε(u) : ε(v) dx,

(p,∇ · v)h =
∑

K

∫

K

p∇ · v dx,
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Jµ(u, v) =
∑

K

γµ

∫

∂K

µ

hK

[u] · [v]ds,

and

J0(u, v) =
∑

K

γ0

∫

∂K

1

hK
[n · u] [n · v]ds,

where, for definiteness, n is the outward unit normal to K and γµ and γ0 are constants
independent of h. Below, we shall use the shorthand notation

j(u, v) := Jµ(u, v) + J0(u, v).

Remark 1. The point of the jump terms is as follows. In [1] it was shown that Jµ(u, v)
controls the rigid body rotations which cause a lack of coercivity for the Crouzeix-Raviart
approximation when applied to the Stokes problem written in terms of the symmetric part
of the velocity gradient (cf. also [7]). The term J0(u, v) is necessary in the Darcy limit to
control the nonconformity emanating from the pressure term.

Remark 2. The jump terms can be motivated by applying the discontinuous Galerkin
method proposed by Hansbo and Larson [6] for the mixed form of the elasticity equations
to the Crouzeix-Raviart approximation.

We propose the following finite element formulation: find (uh, ph) ∈ V×Qh such that

(3.4) Bh[(uh, ph), (vh, qh)] = (f, vh), ∀(vh, qh) ∈ Vh × Qh.

This finite element formulation is simply the standard Galerkin formulation with the pe-
nalizing terms Jµ(uh, vh) and J0(uh, vh) added.

Lemma 1. For v ∈ Wh, we have ∇ · v|K = 0 ∀K ∈ Th.

Proof. Since ∇ · v is a constant on each K for v ∈ Vh, we may take q = ∇ · v on K, q = 0
elsewhere, leading to

0 =

∫

K

|∇ · v|2 dx = meas(K) |∇ · v|2K

which is the statement of the lemma. �

4. Stability

For the stability analysis, we consider first the following reduced problem: Find uh ∈ Wh

such that
ah(uh, vh) + j(uh, vh) = (f , vh) ∀vh ∈ Wh.

On Wh we have

ah(u, vh) + j(u, vh) = (σu, vh) + (2µ, ε(u), ε(vh))h

= (σu −∇ · 2µε(u), vh)h

+
∑

K

〈2µn · ε(u), [vh]〉∂K −
∑

K

〈p, [n · vh]〉∂K

= (f , vh) +
∑

K

〈2µn · ε(u), [vh]〉∂K −
∑

K

〈p, [n · vh]〉∂K
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and thus the following Galerkin orthogonality relation holds:

(4.1)
a(u − uh, vh) + j(u − uh, vh) =

∑

K〈2 µ n · ε(u), [vh]〉∂K

−
∑

K〈p, [n · vh]〉∂K .

We next define the norm

(4.2) |‖u‖| := ‖σ1/2u‖2 + |µ1/2u|2h + j(u, u),

where

|vh|
2
h :=

∑

K

|vh|
2
H1(K),

‖vh‖ := ‖vh‖L2(Ω), and, for use below,

‖vh‖h :=

(

∑

K

‖vh‖
2
L2(K)

)1/2

.

By rh we denote the Crouzeix-Raviart interpolant,

rh : [H1(Ω)]d → Vh

and note that if ∇ · u = 0, then rh takes u into Wh (cf. [4]).
We now wish to estimate the error measured in the triple norm, |‖u − uh‖|. Set

eh := rhu − uh

and assume that u ∈ [H2(Ω)]d. By the triangle inequality

|‖u − uh‖| ≤ |‖u − rhuh‖| + |‖eh‖|.

For |‖eh‖| we have the following result.

Lemma 2. There holds

(4.3) |‖eh‖| ≤ C
(

|‖u − rhu‖| + µ1/2h ‖u‖H2(Ω) + h ‖p‖H1(Ω)

)

Proof. Define π0 as the projection onto piecewise constants. By Korn’s inequality for
piecewise H1 vector fields,

|µ1/2vh|
2
h ≤ C(‖µ1/2ε(vh)‖

2
h + j(vh, vh)),
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cf. Brenner [1], and the Galerkin orthogonality (4.1) we have

c|‖eh‖|
2 ≤ ‖σ1/2eh‖

2 + ‖µ1/2ε(eh)‖
2
h + j(eh, eh)

= a(eh, eh) ≤ |a(rhu − uh, eh)| + j(rhu − uh, eh)

+|
∑

K〈2 µn · ε(u), [eh]〉∂K| + |
∑

K〈p, [n · eh]〉∂K|

≤ |‖u − rhu‖| |‖eh‖| + |
∑

K〈2 µ n · (ε(u) − π0ε(u)), [eh]〉∂K|

+|
∑

K〈p − π0p, [n · eh]〉∂K|

≤ |‖u − rhu‖| |‖eh‖|

+
(

∑

K ‖2 µ1/2h1/2n · (ε(u) − π0ε(u))‖∂K

)1/2

|‖eh‖|

+
(

∑

K ‖h1/2(p − π0p)‖∂K

)1/2

|‖eh‖|

and, using the trace inequality

(4.4) ‖v‖2
L2(∂K) ≤ C

(

h−1
K ‖v‖2

L2(K) + hK‖v‖2
H1(K)

)

, ∀v ∈ H1(K),

we find
∑

K

‖h1/2n · (ε(u) − π0ε(u))‖2
∂K ≤

∑

K

h2
K‖u‖2

2,K.

and
∑

K

‖h1/2(p − π0p)‖2
∂K ≤

∑

K

h2
K‖p‖2

1,K.

which ends the proof. �

Lemma 3. For |‖u − rhu‖| we have the following approximation result:

(4.5) |‖u − rhu‖| ≤ C
(

σ1/2h2 + µ1/2h + γ1/2
µ µ1/2h + γ0h

)

‖u‖2

Proof. This follows from the trace inequality (4.4) and interpolation theory for rh, see
[4]. �

Combining Lemmas 2 and 3, we have the following a priori estimate.

Theorem 1. Assuming that γµ and γ0 are bounded from above and below, there holds

(4.6) |‖u − uh‖| ≤ C
(

(σ1/2h2 + µ1/2h)‖u‖H2(Ω) + h ‖p‖H1(Ω)

)

.

For the pressure, we have the following estimate.

Theorem 2. There holds

‖p − ph‖L2(Ω) ≤ C
(

(σ1/2h2 + µ1/2h)‖u‖H2(Ω) + h ‖p‖H1(Ω)

)

.
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Proof. We split the error into

‖p − ph‖ ≤ ‖p − π0p‖L2(Ω) + ‖π0p − ph‖L2(Ω),

where π0 is the L2–projection of p onto Qh. For the first part we have the standard estimate

‖p − π0p‖ ≤ Ch ‖p‖H1(Ω).

For the second part, we proceed as follows. By the surjectivity of the divergence operator
(see [5]) there exists vp ∈ [H1

0 (Ω)]d such that ∇·vp = π0p−ph and ‖vp‖1,Ω ≤ C‖π0p−ph‖.
This gives, using the orthogonality of the L2–projection,

‖π0p − ph‖
2 = (π0p − ph,∇ · vp) = (π0p − ph,∇ · rhvp)h = (p − ph,∇ · rhvp)h

= ah(u − uh, rhvp) + j(u − uh, rhvp)

+
∑

K

〈p, [n · rhvp]〉∂K −
∑

K

〈2 µn · ε(u), [rhvp]〉∂K

Using the trace inequality we find

ah(u − uh, rhvp) + j(u − uh, rhvp) ≤ C|‖u − uh‖| ‖vp‖H1(Ω)

≤ C |‖u − uh‖| ‖π0p − ph‖
∑

K

〈p, [n · rhvp]〉∂K =
∑

K

〈(p − π0p), [n · rhvp]〉∂K

≤
1

γ
1/2
0

∑

K

h
1/2
K ‖p − π0p‖∂K

(

γ0

hK
〈[n · rhvp] [n · rhvp]〉∂K

)1/2

≤ C h ‖p‖H1(Ω) ‖π0p − ph‖

and
∑

K

〈2 µn · ε(u), [rhvp]〉∂K ≤
∑

K

〈2 µ (n · ε(u) − π0n · ε(u)), [rhvp]〉∂K

≤ C h ‖u‖H2(Ω) ‖π0p − ph‖,

(where π0n · ε(u) is understood as the projection onto [Qh]
d). Dividing both sides by

‖π0p − ph‖ concludes the proof. �

We end this section with an L2–estimate for the velocities. We emphasize that this
estimate can only be valid if µ is bounded from below since the necessary a priori regularity
estimate does not hold otherwise.

Consider the dual continuous problem of seeking ϕ and r such that

(4.7)
σϕ − 2µ∇ · ε(ϕ) + ∇r = e in Ω,

∇ · ϕ = 0 in Ω

where e := u − uh, and assume that we have the regularity estimate

(4.8) ‖ϕ‖H2(Ω) + ‖r‖H1(Ω) ≤ ‖e‖.
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Multiply the first line of (4.7) by e and integrate by parts to obtain

‖e‖2 = ah(e, ϕ) + j(e, ϕ) −
∑

K

〈2 µn · ε(ϕ), [e]〉∂K +
∑

K

〈r, [n · e]〉∂K.

Using orthogonality and the zero mean value property of the Crouzeix-Raviart element,
we obtain

‖e‖2 = ah(e, ϕ − rhϕ) + j(e, ϕ − rhϕ) −
∑

K〈2 µ(n · ε(ϕ) − π0n · ε(ϕ)), [e]〉∂K

+
∑

K〈r − π0r, [n · e]〉∂K −
∑

K〈2 µ(n · ε(ϕ) − π0n · ε(ϕ)), [ϕ − rhϕ]〉∂K

+
∑

K〈p − π0p, [n · (ϕ − rhϕ)]〉∂K

≤ |‖e‖| |‖ϕ − rhϕ‖|

+
(

∑

K hK‖2µ1/2(n · ε(ϕ) − π0n · ε(ϕ))‖2
L2(∂K)

)1/2

|‖e‖|

+
(
∑

K hK‖r − π0r‖L2(∂K)

)1/2
|‖e‖|

+
(

∑

K hK‖2µ1/2(n · ε(ϕ) − π0n · ε(ϕ))‖2
L2(∂K)

)1/2

|‖ϕ − rhϕ‖|

+
(
∑

K hK‖p − π0p‖L2(∂K)

)1/2
|‖ϕ − rhϕ‖|.

Using Lemma 3, the trace inequality and estimates for piecewise contant interpolation, we
arrive at

‖e‖2 ≤ Ch
(

|‖e‖| + h‖u‖H2(Ω) + h‖p‖H1(Ω)

) (

‖ϕ‖H2(Ω) + ‖r‖H1(Ω)

)

,

and thus we have

Theorem 3. Under the regularity assumption (4.8), the L2–error in the velocities can be
estimated as

(4.9) ‖e‖ ≤ Ch2
(

‖u‖H2(Ω) + ‖p‖H1(Ω)

)

.

5. Numerical results

5.1. Convergence study for Darcy flow. The first numerical example, taken from [8],
is a study of convergence rates for Darcy flow. The domain under consideration is the
unit square with a given exact pressure solution p = − sin π x + 2/π and velocity field
u = (−π sin 2 π y sin2 π x, π sin 2π x sin2 π y). We set γ0 = 1. In Figure 1, we show the
convergence of the method in the L2−norm, which yields second order accuracy for the
velocities and first order for the pressure. In Figure 2 we show the effect of removing the
stabilizing normal jump. As pointed out in [8] there is in fact no convergence at all if
γ0 = 0.

5.2. Convergence study for Stokes flow. Again, we consider the unit square with exact
flow solution given by u = (20 x y3, 5 x4 − 5 y4) and p = 60 x2y − 20 y3 + C. Choosing
γµ = γ0 = 1 and imposing zero mean pressure (C = −5), we obtain the optimal convergence
shown in Figure 3.
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Figure 1. Convergence in the Darcy case

Figure 2. Approximate solution of the velocities with and without normal
jump stabilization
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